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S1. Representation details 

S1.1 Specific representation of Mg-Mn-O system and rescaling fractional coordinates 

 

 

Figure S1. Specific representation of Mg-Mn-O structure.  

 

The representation is composed of unit cell parameters and the sets of rescaled 

fractional coordinates of atoms. Each set of rescaled fractional coordinates represents an 

element. If the number of elements increases, the number of sets of coordinates also increases. 

The length of each part of the coordinates is fixed to 𝑙𝑀𝑎𝑥
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 and the rows where atom does 

not exist are filled with zero-paddings 

 

 

Figure S2. Scheme of rescaling fractional coordinates. To distinguish real atoms located at 

(0,0,0) from zero-paddings which were used to fix the shape of the representation, we rescaled 
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the fractional coordinates. 

 

The first two rows of the 2D-representation contain the lengths of the unit cell edge 

and angles between them, and the fractional coordinates of atoms are listed below. To fix the 

shape of the representation, we set the maximum number of atoms in each element, 𝑙Max
A  and 

zero-padding (0, 0, 0) is used if the number of atoms with specific element type A is lower than 

𝑙Max
A . In the Mg-Mn-O system used here, for example, 𝑙Max

Mg
 is 8, 𝑙Max

Mn  is 8 and 𝑙Max
O  is 12. 

(See Figure S1) In addition, as shown in the Figure S2, we apply the rescaling operation to 

fractional coordinates of the point atom, 𝑷(𝑋, 𝑌, 𝑍) to distinguish the zero paddings from the 

atoms located at (0, 0, 0) position. 

𝑷′ =
2

3
[𝑷 − (0.5, 0.5, 0.5)] + (0.5, 0.5, 0.5) 

where 𝑷′  is the rescaled fractional coordinates used in our representation. Since our 

representation only requires the atomic coordinates and cell information, it requires almost no 

preparation and memory cost to store the raw input data that can be compared with the 3D 

voxel representations necessitating substantial memory space to store grid data. 

S1.2 Data augmentation 

 Supercell operation 

 

Figure S3. Scheme of supercell operation We made super cells by repeating unit cells twice 

in x-y axis, y-z axis, and x-z axis respectively where the number of atoms in the cell does not 

exceed the maximum number of atoms our representation. 
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 Translation operation 

 

Figure S4. Scheme of translation operation We applied translation operation on structure 

data by moving atoms in unit cell by random distances which are smaller than cell length. 

 

 Rotating operation 

 

Figure S5. Scheme of rotating operation We applied rotational operation on structure data by 

swapping two axes (column). 
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S2. Model details 

S2.1 Architecture of Composition-Conditioned Crystal GAN 

 

Figure S6. Architecture of Composition-Conditioned Crystal GAN 
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Table S1. Hyperparameters of Composition-Conditioned Crystal GAN 

Hyperparameter Value 

Mini batch size 32 

 

Adam optimizer 

Learning rate 0.0001 

𝛽1 0.5 

𝛽2 0.999 

Coefficient of Gradient penalty , λ 10 

Coefficient of generated data in 𝐿𝑐𝑙𝑎𝑠𝑠−𝑐𝑜𝑚𝑝 , 𝜆1 1 

Coefficient of generated data in 𝐿𝑐𝑙𝑎𝑠𝑠−𝑎𝑡𝑜𝑚, 𝜆2 1 

Coefficient of Composition Classification, 𝜆𝑐 0.3 

 

 

S2.2 Loss function of Composition-Conditioned Crystal GAN 

In this work, we implemented variant of GAN called WGAN (Wasserstein GAN1) 

WGAN overcomes the shortcoming of GAN such as unstable training or mode collapse by 

using the Wasserstein distance between real and generated data distributions as the loss 

function. This loss function train the generator to create materials that are similar to the real 

materials. In addition, for improved training of WGAN, Gulrajani et al.2 proposed additional 

term in loss function of WGAN, gradient penalty term. This regularizer term has enabled more 

stable training of WGAN. In detail, the loss function is 

𝐿𝑊𝐺𝐴𝑁 = 𝔼
𝑥̃~ℙ𝑔

[𝐷(𝑥̃)] − 𝔼
𝑥~ℙ𝑟

[𝐷(𝑥)] + 𝜆 𝔼
𝑥̂~ℙ𝑥̂

[(∥ 𝛻𝑥̂𝐷(𝑥̂) ∥2− 1)2] 

Where D is the critic function, 𝑃𝑥̂ is sampling uniformly along straight lines between pairs of 

points sampled from the real data distribution, 𝑃𝑟 and the generator distribution, 𝑃𝑔, and λ is 

penalty coefficient, set to be 10. In order to train the generator to create materials with target 

property, the generator is trained together with the classifier with a loss function 

𝐿𝑐𝑙𝑎𝑠𝑠−𝑐𝑜𝑚𝑝 = 𝐶𝐸(𝐶𝑟𝑒𝑎𝑙,  𝐶̂𝑟𝑒𝑎𝑙) +  𝜆1 𝐶𝐸(𝐶𝑔𝑒𝑛,  𝐶̂𝑔𝑒𝑛) 
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𝐿𝑐𝑙𝑎𝑠𝑠−𝑎𝑡𝑜𝑚 = 𝐶𝐸(𝐴𝑟𝑒𝑎𝑙,  𝐴̂𝑟𝑒𝑎𝑙) +  𝜆2 𝐶𝐸(𝐴𝑔𝑒𝑛,  𝐴̂𝑔𝑒𝑛) 

𝐿𝑐𝑙𝑎𝑠𝑠 = 𝐿𝑐𝑙𝑎𝑠𝑠−𝑎𝑡𝑜𝑚 +  𝜆𝑐𝐿𝑐𝑙𝑎𝑠𝑠−𝑐𝑜𝑚𝑝 

𝐶𝐸(𝑡, 𝑥) = − ∑ 𝑡𝑖log (𝑥𝑖)

𝐶

𝑖

 

where CE is cross entropy, 𝑥𝑖  is ith value of output value for classifier function, C is the 

number of classes and 𝑡𝑖 is ith target value. 𝐶𝑟𝑒𝑎𝑙, 𝐶̂𝑟𝑒𝑎𝑙, 𝐶𝑔𝑒𝑛, 𝐶̂𝑔𝑒𝑛 are true (no hat) and 

predicted (hat) property value of real (real subscript) and generated (gen subscript) materials. 

𝜆1, 𝜆2, and 𝜆𝑐 are generator coefficient in composition, generator coefficient in atomic state, 

and composition coefficient respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



S9 

 

S3. Learning curve of the Composition-Conditioned Crystal GAN 

 

Figure S7. The learning curve of Composition-Conditioned Crystal GAN. The Wasserstein 

loss as a function of the training epoch. The inset figures are scattered plot where scaled 

fractional coordinates of all atoms in generated structures are plotted. For clarity, only X-Y 

coordinates of atom positions are shown. The example of a generated structure according to 

the epoch is on the right side of the scatter plot. As the training progresses, generated atomic 

positions are becoming more and more similar to the ground truth representing the training 

dataset. 

The learning process of our model is described in Figure S7, demonstrating that the 

Wasserstein distance converges to zero as training progresses and the generator can generate 

the data similar to real data. To help visualize it, we included the inset figures for scatter plot 

of all atoms’ positions in randomly selected 1000 structures generated via Composition-

Conditioned Crystal GAN in the corresponding training epoch. In the ground truth indicating 

training dataset, all atoms in the structures of training dataset are located in the red box except 

zero paddings because the coordinates were rescaled. In the early stages of training, atoms were 

bound together and located in erroneous coordinates, however, as training progresses and 

Wasserstein distance converges to zero, the atomic and zero padding coordinates become 
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reasonable with the correct composition. The examples of converted to Mg-Mn-O structure 

were randomly selected from the generated structures in each corresponding training epoch 

and is located in the right side of each scatter plot. 

 

  



S11 

 

S4. Computational details 

S4.1 DFT calculations for the generated VO materials 

For the comparison with iMatGen, we performed identical VASP3 calculation method 

with Noh et al.4 Also, phase diagram and energy above convex hull were calculated by the 

method described in methodology section of Noh et al4 For all generated structures, we 

performed spin polarized GGA+U5,6 calculations, with the same U parameter for V used in the 

Materials Projects database.7 We relaxed both atomic positions and cell parameters using 

conjugate gradient descent method with convergence criteria of 1.0e-5 for energy and 0.05 eV/Å 

for force with 500 eV cut off energy. To compare the phase stability among the generated 

structures for all generated materials we first used sparse reciprocal lattice grid with a grid 

spacing of 0.5 Å-1. The formation energy (or formation enthalpy, 𝐸𝑓) was calculated using 

EVxOy
− (xEV − yEO)/(x + y) (in eV/atom). Then, for a smaller set of materials that satisfy 

energy stability (Ehull≤0.2 eV/atom), we refined the formation energy calculations using a 

denser reciprocal lattice grid with grid spacing of 0.25 Å-1. 

 

S4.2 DFT calculations for the generated MgMnO materials 

For the comparison with high-throughput screening method, we performed identical 

VASP calculation method with Noh et al.8 Also, phase diagram and energy above convex 

hull were calculated by the method described in methodology section of Noh et al.8 For all 

generated structures, we performed spin polarized PBE+U5,6 calculations and PAW9–PBE 

pseudopotentials as implemented in the ab initio package, VASP, and we used 3.9 as U-value 

for Mn taken from Materials Project.7 We relaxed both atomic positions and unit cell 

parameters using conjugate gradient descent method with convergence criteria of 1.0e-5 for 
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energy and 0.05 for 𝑒𝑉/Å force with 500  cut off energy. To compare the phase stability 

among the generated structures for all generated materials, Brillouin zone is used with k-point 

densities at or larger than 500 k-points per atoms using the Pymatgen10 package. Duplicates 

for the converged structures are removed using the StructureMatcher function implemented 

in Pymatgen package. After that, we performed the latter computations with dense k-space 

(i.e. Brillouin zone with k-point densities at or larger than 1000 k-points per atoms using the 

Pymatgen package).  

 

S4.3 Band gap calculations 

We performed HSE11 hybrid DFT functional implemented in VASP3 with a mixing 

parameter of 0.2. For computational efficiency, a uniform reduction factor for the q-point grid 

of the exact exchange potential is applied (NKRED = 2) with gamma centered even number k-

points (with a k-point densities at or larger than 1000 k-points per atoms). 
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S5. Detailed statistics of the result 

S5.1 Materials generation statistics in Mg-Mn-O system 

Table S2. Numerical statistic of Mg-Mn-O polymorphs generated from Composition-

Conditioned Crystal GAN with compositions in MP. 

Composition E above hull≤200meV E above hull≤80meV 

MgMnO3 3 - 

MgMn2O4 35 8 

MgMn2O5 17 - 

MgMn3O6 15 2 

MgMn3O7 42 - 

MgMn4O6 52 7 

MgMn4O8 51 1 

Mg2Mn2O5 24 4 

Mg2Mn3O6 95 5 

Mg2Mn3O8 4 - 

Mg6MnO8 30 8 

 

Table S3. Numerical statistic of Mg-Mn-O polymorphs generated from Composition-

Conditioned Crystal GAN with compositions not in MP. 

Composition E above hull≤200meV E above hull≤80meV 

MgMn3O4 37 13 

MgMn3O5 39 7 

MgMn4O5 29 3 

MgMn4O7 26 3 

MgMn5O6 31 11 

Mg2MnO3 12 3 

Mg2MnO4 13 2 

Mg2Mn3O5 67 8 

Mg2Mn4O7 84 5 

Mg3MnO5 22 1 

Mg3Mn2O5 28 3 

Mg3Mn2O6 68 10 

Mg3Mn2O7 22 - 

Mg3Mn3O7 74 6 

Mg4MnO5 12 3 

Mg4MnO6 15 4 
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Mg4Mn2O6 55 15 

Mg4Mn2O7 63 4 

Mg5MnO6 30 10 

Mg5MnO7 26 2 

 

S5.2 Structure comparison 

We first note that out of 28 Mg-Mn-O phases identified as promising photoanode 

materials, 14 phases correspond to new composition not included in database, meaning that the 

newly found structures are completely new and cannot be obtained from simple structural 

distortions. For the remaining 14 phases in 8 existing compositions, we estimated the similarity 

of the structures using the local structure order parameters with the ‘Structure Matcher’ 

function implemented in Pymatgen python package. (see Figure S8)  

 

In Figure S8, we listed the 14 newly identified Mg-Mn-O structures with the most similar 

structures in our database based on the calculated dissimilarity values cited above. Indeed, we 

find that 5 of 14 identified structures (red boxed) are classified as the same structures to those 

in our database. For the other 9 structures, however, the generated structures seem to have very 

different structural motifs with large structural dissimilarity values compared those in the 

database. Thus, we believe the 23 out of 28 identified structures correspond to either completely 

new (with new compositions) or very different (with large dissimilarity values) structural 

motifs that are not in the databases. 
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Figure S8. The result of comparison of 14 generated structures considered as promising 

photoanode materials and database structures having same chemical composition. In first 

row, 14 generated structures are located and in second row, the database structures most similar 

with corresponding generated structure are located. Structure dissimilarity in third row was 

value calculated between two structures in same column.  
 

 

S5.3 Examples of promising photoanode materials 

 

Figure S9. Examples of promising photoanode materials with composition not in MP. For 

each structure, the energy above the convex hull, pourbaix stability, and bandgap energy are 

also shown below the structure. 
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S6. V.O system 

S6.1 V.O dataset 

In V-O system, 𝑙Max
V  is 8 and 𝑙Max

O  is 12. V-O initial dataset is constructed by using 

the elemental substitution for the binary compounds existing in the Material Project (MP) 

database, and removed duplicates. From this, we get a total of 1396 unique structures with 86 

compositions for the V-O system. After data augmentation with the same way in Mg-Mn-O 

system, totaling 86,000 for V-O training dataset were constructed. 

S6.2 V.O results 

 

Figure S10. DFT calculated formation energies for generated VO polymorphs. (a) DFT 

calculated formation energies for the generated VO polymorphs with composition existing in 

MP (b) DFT calculated formation energies for the generated VO polymorphs with composition 

not in MP. Orange circles and Red circles are generated materials with composition existing in 

MP and not in MP respectively. Blue stars correspond to the materials of the V-O database in 

MP. The horizontal red lines represent 80meV/atom and 0meV/atom respectively. 

 

To validate that our model can generate stable and realistic polymorphs of VxOy with 

given composition condition, we generated VxOy compounds of several known compositions 

in MP (see Figure S10), and screened them with their formation energy. We sampled structures 
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according to these compositions and selected the structures only if the given composition 

condition (Cgen) is exactly reconstructed by the classifier ( 𝐶̂ gen). Also, we removed the 

structures if atoms are too close to each other. From this post process, 300 structures in each 

composition thus totaling 5400 structures in 18 compositions were sampled, and further DFT 

calculations are performed to compute stability (i.e. the energy above the convex hull, 𝐸hull) 

of the generated materials as shown in Figure S10. And for energy comparison with materials 

actually existing in MP, the formation energies of them were also plotted in Figure S10. Here, 

three main results are noteworthy: 

 

(1) As shown in Figure S10a, 562 of unique and entirely new structures are predicted 

as theoretically metastable (i.e. 𝐸hull ≤ 200  meV/atom) among the total 4800 

structures indicating that the proposed Composition-Conditioned Crystal GAN can 

effectively generate stable and new materials. Furthermore, considering that 80 

percent of the experimentally known identified sulfides and oxides were within 

this criterion12 91 unique structures are predicted as potentially synthesizable (i.e. 

𝐸hull ≤ 80 meV/atom). 

(2) Among 53 V-O polymorphs of MP which we compared with our generated results 

energetically in Figure S10a (blue stars), 15 materials have the same number of 

atoms in unit cell as the materials generated by our model. Although we randomly 

generated new materials using the trained model, 7 of 15 V-O polymorphs of MP 

with compositions which we selected to generate polymorphs are successfully 

rediscovered. Here, we expect the latter success ratio to increase further if we 

increase the number of samples. 
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(3) From comparison to the generated materials from iMatGen4 (see Figure S10b), 40 

percent of previous discovery was generated within the range of 𝐸hull ≤ 200 

meV/atom by our framework (see Figure S10b). It is notable that for V3O4 our 

model generates more stable materials than the most stable previous discovery 

from iMatGen. In addition, in the case of V6O7, while iMatGen does not find stable 

materials in the range of 𝐸hull ≤ 80  meV/atom, our model can successfully 

generate new and stable polymorphs showing the effectiveness of our model to 

explore unseen chemical space. 

 

 

 

Table S4. Comparison with the results of iMatGen4 Each value in the table is the number of 

structures. Considering structures with Ehull less than 200 meV/atom, 13 of 33 structures 

generated via iMatGen are composed in structures generated via Composition-Conditioned 

Crystal GAN. 

Composition 
Proposed Crystal 

GAN model 
iMatGen Identical structure 

V3O4 20 10 3 

V4O5 3 3 1 

V5O6 32 8 3 

V5O8 75 10 4 

V6O7 6 2 2 

 

 

 

 

 

 

  



S19 

 

S7. The effect of data augmentation in generative model. 

To clarify that the data augmentation is actually affect the critic network to indirectly 

learn invariance under symmetric operations, we implemented additional experiment. To 

identify the effect of data augmentation and the minimum number of required data 

augmentation, we trained addition four independent models by changing the number of 

applied data augmentation as following: 

-‘No Aug’: No augmentation (1,253 data points),  

-‘Aug1000’: 1,000 structures per composition (112,000 data points total),  

-‘Aug2000’: 2,000 structures per composition (224,000 data points total),  

-‘Aug3000’: 3,000 structures per composition (336,000 data points total) 

Next, we made a separate test dataset for 25 compositions. For each composition, there is 1 

unique structure and 999 structures are augmented by applying the same procedure in the 

manuscript, yielding a total of 25,000 data points (25 x 1,000 data for each composition). To 

quantify the effect of data augmentation, we computed the difference of the output of the 

critic network between the base structure and the augmented structures. Here, the model 

would learn the invariance under the symmetric operations if the computed difference values 

are close to zero as shown in below figure. To be specific, in ‘No Aug’ case, there are 

relatively large deviation from the base structure (i.e. red line) compared to the other 

augmented models because the critic network cannot learn additional information from 

augmented structures. Notably, for the other 3 cases (i.e. ‘Aug1000’, ‘Aug2000’ and 

‘Aug3000’), the distribution is centered at zero (i.e. red line) indicating that the model can 

learn invariance under the symmetric operations from the augmented structures. Therefore, 
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we can roughly estimate that augmenting 1000 data points per composition (in this work) 

would be sufficient.  

 

Figure S11. Distribution of the difference of the output of critic network between the base 

structure and augmented structures. 
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