Supporting information

For: Mathematical modelling reveals cellular dynamics within tumour spheroids

by Joshua A. Bull, Franziska Mech, Tom Quaiser, Sarah L. Waters, Helen M. Byrne

S2 Appendix: Algorithm for updating the cell cycle Algorithm 1 shows an outline of the algorithm used to update the spring lengths and cell cycles of each cell at each timestep.

Input: All cells, viable or necrotic for All cells do if Cell is alive then if $\omega_q < \omega \leq 1$ then // Cell is proliferative // Move cell through cell cycle by one timestep Set $T_i = T_i + dt$; // Ensure hypoxia timer is unset Set $\tilde{T}_i = 0$; // If cell is less than one hour old, increase the cell radius if $T_i < 1$ then Set $s_i = s_i + R_{\text{Cell}}dt$; end // If cell is at end of cell cycle, proliferate if $T_i = \tau_i$ then Choose random location within R_{int} of cell i; Place daughter cell j in selected location; Set $s_i = \frac{R_{\text{Cell}}}{2}$; Set $s_i = \frac{\bar{R_{\text{Cell}}}}{2};$ Set $T_i = 0$ for cells *i* and *j*; Choose new cell cycle durations τ_i for cells *i* and *j*; end else if $\omega_h < \omega \leq \omega_q$ then // Cell is quiescent // Ensure hypoxia timer is unset Set $\tilde{T}_i = 0$; else if $\omega \leq \omega_h$ then // Cell is hypoxic // Increment hypoxia timer by one timestep Set $\tilde{T}_i = \tilde{T}_i + dt;$ // Check for cell death if $\tilde{T}_i = \tilde{\tau}_i$ then Mark cell as dead; end end else // Cell is necrotic // Reduce necrotic cell radius linearly over $ar{ au}$ hours to model decay Set $s_i = s_i - \frac{R_{\text{Cell}} dt}{\bar{\sigma}};$ if $s_i = \theta$ then Remove cell from simulation; end end end

Algorithm 1: Pseudocode outlining the procedure used to update the cell cycle.