
```
setwd("/Users/Chang/Desktop")
mydata1 <- read.csv("imout1.csv")
mydata1$group=as.factor(mydata1$group)
mydata1$HF=as.factor(mydata1$HF)
mydata1$COPD=as.factor(mydata1$COPD)
mydata1$CAD=as.factor(mydata1$CAD)
mydata1$O2new=as.factor(mydata1$O2new)
summary(mydata1)
View(mydata1)
my_imp1<- mice(mydata1, m=5, method =c("","","","pmm","pmm",""), seed=500)
summary(mydata1$Feritin)
summary(mydata1$DDimer)
my_imp$imp$Feritin
final_data1<-complete(my_imp1,1)
write.csv(final_data1,file = "/Users/Chang/Desktop/impute1.csv")
stripplot(my_imp1, pch = 20, cex = 1.2)
```


Option1:

HF CAD COPD Ferritin DDimer O2

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept		1	-4.1961	0.7404	32.1172	<.0001	
HF	1	1	-3.1565	1.8452	2.9261	0.0872	
CAD	1	1	0.3249	1.2535	0.0672	0.7955	
COPD	1	1	-0.9089	1.1409	0.6346	0.4257	
Feritin		1	0.000627	0.000224	7.8298	0.0051	
DDimer		1	0.4152	0.2051	4.0967	0.0430	
O2new	1	1	2.8472	0.6109	21.7188	<.0001	

Odds Ratio Estimates						
Effect	Point Estimate	95% Wald Confidence Limits				
HF 1 vs 0	0.043	0.001	1.584			
CAD 1 vs 0	1.384	0.119	16.148			
COPD 1 vs 0	0.403	0.043	3.771			
Feritin	1.001	1.000	1.001			
DDimer	1.515	1.013	2.264			
O2new 1 vs 0	17.239	5.206	57.088			

Association of Predicted Probabilities and Observed Responses						
Percent Concordant	87.8	Somers' D	0.757			
Percent Discordant	12.2	Gamma	0.757			
Percent Tied	0.0	Tau-a	0.272			
Pairs	2970	с (0.878			

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	DF	Pr > ChiSq				
12.7747	8	0.1198				

e. Logistic regression analysis for the risk of intubation: What were the variables included into calculation (name all variables). How did the authors prevent overfitting of the model? Provide R2 and the p-value! (see also g.)

HF CAD COPD Ferritin DDimer O2

Hosmer and Lemeshow Goodness of Fit test:

P=0.1198>0.05

Therefore, the model is good fit the data (prevent overfitting of the model).

C=0.878 This is AUC It also shows the model is good.

The odds ratio of Invasive Mechanical Ventilation is 17.239, comparing O2 sat<90% to O2 sat>=90%, adjusted for other covariates. (95% Confidence interval: (5.206,57.088))

The odds ratio of Invasive Mechanical Ventilation is

1.001, when Ferritin increase 1 unit, adjusted for other covariates. (95% Confidence interval: (1.000, 1.001))

The odds ratio of Invasive Mechanical Ventilation is 1.515, when Ddimer increase 1 unit, adjusted for other covariates. (95% Confidence interval: (5.206, 57.088))

g. As usual in retrospective studies, there are a lot of missing values. Please clarify how you handled missing data especially for the regression analysis and provide the number of valid cases for the regression calculation.

Using multiple imputation to handle missing data.

Calculates imputations for univariate missing data by predictive mean matching (Ferritin and Ddimer).