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Supplementary Materials 

 

Supplementary Text 

Cognitive status of older participants 

We applied the Mini-Mental State Examination in order to assess possible cognitive impairments 

[MMSE (23)]. An MMSE score <24 has been suggested to indicate dementia (55), while subjects 

with MMSE scores ≥24 are considered non-demented. All participants from the “older” group (aged 

≥42 years; n = 104) showed MMSE scores of ≥25 (mean ± SD, 28.66 ± 1.33), indicating that all 

participants in the older sample had normal cognitive abilities. Furthermore, MMSE sum scores in 

older participants did not differ between genotypes (t(102) = 0.67, P = 0.507). 

All older participants underwent additional cognitive assessments that were specific to each 

recording site. We used results from these tests to check for mild cognitive impairment in our APOE 

sample (56). The criteria for mild cognitive impairment have been defined as a combination of 

cognitive concerns (subjective memory complaints) and objective evidence for impairment in one 

or several cognitive domains, typically including memory (57). Different cutoffs for cognitive tests 

have been proposed ranging from -1 standard deviation to -1.5 standard deviation (57). All older 

participants from our sample were above this cutoff, meaning that they did not fulfill the criteria 

for mild cognitive impairment.  

In detail, participants in APOE sample 1 (n = 41 older participants) were drawn from a community 

sample recruited for the “Vital study” (https://www.ifado.de/vital-studie/). Over the course of the 

“Vital study”, participants underwent extensive neuropsychological testing including the German 

version of the California Verbal Learning Test [“Verbaler Lern- und Merkfähigkeitstest”, VLMT 

(58)]. None of the participants performed below -1 standard deviation, indicating that none of the 

participants would meet the criteria for mild cognitive impairment. In APOE sample 2 (n = 51 older 

participants), all participants were volunteers from aging research programs conducted in the 

Laboratory of Functional Neuroscience at Pablo de Olavide University (Seville, Spain). All subjects 

showed a global score of 0 on the Clinical Dementia Rating [CDR (59)], which indicates normal 

cognitive functioning. Subjective memory complaints were excluded by phone interviews with 

participants and closest relative. APOE sample 3 did not contain any participants ≥42 years. In 

APOE sample 4 (n = 1 older participant), participants were recruited through the Memory Clinic of 

the Neurological Department of the University Clinic Saint-Luc in Brussels. The older participant 

performed normally on neuropsychological tests including the 10-items verbal memory tests from 

the CERAD battery (60). The participant underwent cognitive testing in the memory clinic because 



 

 

of subjective memory complaints, but the diagnosis of mild cognitive impairment was excluded by 

the neurologist. 

To conclude, no participant showed mild cognitive impairment or dementia. Subjective memory 

complaints were not assessed in all participants and their relationship to path integration 

performance should thus be investigated in future studies. 

 

Experimental and pre-experimental strategies 

In principle, the different subtasks could be solved using either implicit or explicit (i.e., declarative) 

path and time estimation strategies. Specifically, participants could have employed explicit time- 

or step-counting strategies, which may be less dependent on grid cell-based path integration 

mechanisms. We largely prevented the use of such strategies by using a joystick (rather than 

keyboard button presses) as input device. Furthermore, in a post-experimental questionnaire, we 

asked participants about their navigation strategies. While 24.34% of all participants indicated that 

they employed some kind of step-counting or time-counting strategies, this proportion did not differ 

between risk carriers and controls (χ²(1) = 1.14, P = 0.320, table S2), indicating that the effects of 

APOE on path integration performance are not due to alternative path and/or time estimation 

strategies.  

Moreover, APOE groups did not differ with respect to self-reported navigational abilities [t(264) = 

0.68, P = 0.494; based on the Santa Barbara Sense of Direction test, ref. (51)] or general 

navigational strategies, i.e., there were similar ratios of “mappers” and “egocentric navigators” 

among risk carriers and controls (both χ² ≤ 1.29, both P ≥ 0.308; table S2). Finally, experience in 

rural vs. urban navigation should be taken into account in future studies (61). 

 

Potential neurophysiological basis of rotation errors 

Increased rotation errors might be due to deficits in neural circuits coding for directional 

information (for example, due to impaired head-direction cells in RSC). However, we would like 

to point out that (i) grid cells may also be involved in direction coding, (ii) increased rotation errors 

can directly result from impaired distance coding, for which grid cells have been suggested as the 

underlying neural substrate, and (iii) RSC engagement did not predict performance in the PPI 

subtask. Instead, stronger grid-like representations were predictive of better PPI performance. 

In support of the first point that grid cells may also provide relevant directional information during 

navigation, recent simulations have shown that the spike phase of grid cells relative to local field 

potentials is capable of carrying information about movement direction (62). In these simulations, 



 

 

movement direction could be estimated from the sequence of locations decoded across grid cell 

phases. It is thus likely that grid cells do not only convey information about translational path 

integration, but that they are also relevant for the correct estimation of movement directions. 

Therefore, increased rotation errors during pure path integration in risk carriers as compared to 

control participants may have directly resulted from impaired grid-cell functioning in our study. 

Regarding the second point, rotation errors during the incoming phase can directly result from 

impaired distance coding during the outgoing phase – and distance coding has been suggested to 

rely on grid cell functioning [e.g. (63)]. The underlying rationale is schematically depicted in figure 

S3C. For an exemplary trial, we show the correct outgoing path (in black) and the estimated path 

of this trial (in gray). Here, “estimated path” refers to the subject’s mental representation of the 

correct path, which can be subject to representational errors. In this example, all rotations (angles) 

have been tracked correctly, and only the translations (distances) have been integrated incorrectly. 

This incorrect distance coding during the outgoing phase then results in a considerable rotation 

error during the incoming phase, despite correct angular path integration during the outgoing phase. 

This example illustrates that errors in translational path integration may induce rotational errors 

even if angular path integration is perfect. Reduced grid-cell functioning may thus result in impaired 

distance coding – in turn leading to rotation errors. Indeed, our data show that distance errors and 

rotation errors correlate significantly (r(265) = 0.76, P < 0.001), suggesting that they are not 

independent measures of two distinct functions. Instead, they may reflect the functioning of the 

same underlying neural substrate (i.e., grid cells).  

Finally, with respect to RSC engagement, our mechanistic model (Fig. 7) does not show any 

influence of RSC activity on performance except via landmark representations in the LPI subtask 

(Fig. 7D). This speaks against the idea that risk carriers’ deficit in the PPI condition is due to RSC 

malfunctioning. Instead, grid-like representations in the pmEC significantly predicted path 

integration performance in the PPI subtask (Fig. 7C). Therefore, we argue that the risk carriers’ 

deficit in PPI results from a deficit in grid-like representations. Future fMRI studies will be needed 

to directly relate path integration deficits of APOE risk carriers to impairments in grid-like 

representations. 

 

 

Post-hoc analyses of the interaction between EC volume, incoming distance, and APOE 

Post-hoc analyses on the interactions between the EC volume, incoming distance, and APOE were 

performed on quintiles of the incoming distance predictor. Since the use of quintiles is an arbitrary 



 

 

choice, we reanalyzed the post-hoc comparisons using quartiles or tertiles of the incoming distance 

predictor.  

Quartiles: EC volume did not predict performance at any incoming distance in controls (all z ≤ 1.85, 

all PTukey ≥ 0.124). We obtained the same result for risk carriers if incoming distances were short 

(first and second quartile: both z ≤ 1.24, both PTukey ≥ 0.382). However, at large incoming distances, 

risk carrier’s performance increased significantly with increasing EC volume (third and fourth 

quartile: both z ≥ 3.01, both PTukey ≤ 0.005). Directly comparing risk carriers with controls, we 

found larger effects of EC volume for risk carriers at large incoming distances (fourth quartile: z = 

2.56, PTukey = 0.036), but not at shorter incoming distances (first to third quartile: all z ≤ 1.89, all 

PTukey ≥ 0.176).  

Tertiles: EC volume did not predict performance at any incoming distance in controls (all z ≤ 1.84, 

all PTukey ≥ 0.128). For risk carriers, we obtained a significant influence of EC volume for large 

incoming distances (third tertile: z = 3.74, PTukey < 0.001), but not for shorter incoming distances 

(first and second tertile: both z ≤ 2.17, both PTukey ≥ 0.058). Comparing risk carriers with controls, 

we found no significant difference for the effect of EC volume on performance at lower incoming 

distances (first and second tertile: both z ≤ 1.33, both PTukey ≥ 0.379). At high incoming distances, 

however, EC volume had a more pronounced effect in risk carriers as compared to controls (z = 

2.56, PTukey = 0.028).  

To conclude, we obtain qualitatively identical results when incoming distance was subdivided into 

quartiles or tertiles.  

 

Representations of integrated path in EC and HC depend on subtask 

During the outgoing phase, EC and HC showed pronounced deactivation with increasing integrated 

path (both t34 ≥ 4.67, both PFDR < 0.001; Fig. 5A). Deactivation depended on subtask in HC (F2,68 

= 4.48, PFDR = 0.030; Fig. 5C), but not in EC (F2,68 = 1.55, PFDR = 0.221), and was more pronounced 

during the PPI and the BPI as compared to the LPI subtask (both PFDR ≤ 0.026). HC activity levels 

were significantly below zero during the PPI and the BPI subtasks (both t34 ≥ 4.21, PFDR < 0.001), 

but not the LPI subtask (t34 = 0.73, PFDR = 0.471). By contrast, we observed increased activation in 

EC and HC in response to integrated path during the incoming phase (both t34 > 2.55, both PFDR < 

0.046; Fig. 5A). These effects did not depend on subtask (both F2,68 ≤ 3.23, both PFDR ≥ 0.092; Fig. 

5C). Activity in PC/RSC did not show any relationship with integrated path. 

During both the outgoing and the incoming phase, HC activity increased with goal proximity (both 

t34 ≥ 2.96, both PFDR ≤ 0.028; Fig. 5B). In EC, we observed this effect only during the outgoing (t34 



 

 

= 2.86, PFDR = 0.029), but not during the incoming phase (t34 = 1.12, PFDR = 0.813). No relationship 

between goal proximity and PC/RSC activity was observed. 

 

Control analysis of GLMs with integrated path and goal proximity 

We tested the neural representation of integrated path and goal proximity in a GLM including both 

predictors. Goal proximity was entered first and the predictors were orthogonalized. We estimated 

the beta-values for the model including both predictors at the same time and correlated those beta-

values with the beta-values of the individual GLMs. We encountered significant correlations for 

both predictors, i.e. for goal proximity and for integrated path, and for both phases, i.e. for outgoing 

and for incoming phase (all r34 or ρ34 ≥ 0.75, all P < 0.001). This suggests that the neural 

representation of integrated path in EC and HC is not just a side effect of goal proximity. Instead, 

the two spatial representations seem to be represented at least partly independently in EC and HC.  

 

Control analyses of GLRs 

GLRs were not found in adjacent alEC (t34 = -1.55, P = 0.130), which putatively corresponds to 

rodent lateral EC (28), or in other control ROIs (all t34 ≤ 1.04, all P ≥ 0.307; Fig. 6C). Furthermore, 

we did not observe any 4-, 5-, 7- or 8-fold modulation of pattern similarity in bilateral pmEC (all P 

≥ 0.169) or in right pmEC (all P ≥ 0.644; Fig. 6C). Temporal distances between the two conditions 

did not differ (t34 = -0.40, P = 0.694), excluding spurious GLRs due to temporal autocorrelations. 

Rayleigh tests confirmed that movement directions were sampled uniformly in 360° space for all 

but one participant and in 60° space for all but two participants. Higher spatial and temporal signal-

to-noise ratios in pmEC as compared to alEC (both F1,34 ≥ 114.90, both P < 0.001) did not correlate 

with the strength of GLRs (both |r34| ≤ 0.213; both P ≥ 0.219), suggesting that selective GLRs in 

pmEC were not due to higher SNRs in that region.  

  



 

 

Supplementary Figures 
 

 

Figure S1. Environmental layout and demographic characteristics of the sample. (A) Environmental layout from bird’s eye 

view. Locations of baskets (i.e., goal locations) and trees were equally distributed across a grid of 8x8 squares such that each 

participant visited all squares once in each subtask (to ensure good coverage of the entire virtual environment). Feedback was given 

according to the Euclidean distance between the response location and the correct goal location (i.e., drop error). In all subtasks, 

participants’ speed was linearly decreased to zero when their distance from the center of the arena was larger than 1.25*r vm. In 

BPI, a circular boundary surrounded the environment at a distance of 1.5*r vm. In LPI, a landmark was located close to the center 

of the environment (at x = 1600 vm, y = 800 vm). (B) Age distribution of the APOE sample; (C) Age distribution of the sMRI 

sample. BPI, boundary-supported path integration; LPI, landmark-supported path integration; r, radius; vm, virtual meters, Control, 

APOE ε3/ε3-carriers; risk, APOE ε3/ε4-carriers. 

  



 

 

 
Figure S2. Effects of subtask, path distance, age, and sex on PI performance. (A) Main effect of subtask. Performance was 

better in LPI than in BPI and better in BPI than in LPI. (B) Main effects of outgoing (model 1a) and incoming (model 1b) distance. 

Performance was better at lower outgoing and lower incoming distances. (C) No interaction of subtask by outgoing distance (model 

1a), but significant interaction of subtask by incoming distance (model 1b). Incoming distance had a more pronounced effect in the 

PPI subtask than in the two other subtasks. (D) Main effect of age: Younger participants performed better (both F > 262.40, both P 

< 0.001). (E) Age by subtask interaction (F = 28.96, P < 0.001). Performance in the LPI subtask deteriorated more strongly with 

older age as compared to the other subtasks (both z > 2.65, both PTukey < 0.022), with no difference between PPI and BPI (z = 2.15, 

PTukey = 0.081). This result is in line with a recent publication showing that older age is associated with impaired landmark navigation 



 

 

(44). (F) Significant age by subtask by APOE interaction (F = 5.79, P = 0.003), but risk carriers did not differ from controls with 

respect to age-related decline of performance in any of the subtasks (all z < 1.79, all PTukey = 0.171). (G) Main effect of sex: Male 

participants performed better than females (both F > 63.49, both P < 0.001). (H) Significant sex by subtask interaction (F = 9.38, P 

< 0.001). Both sexes showed significant differences between the subtasks (all z ≥ 4.06, all P < 0.001), but females benefited more 

from boundaries and landmarks as indicated by a significantly larger performance increase in the BPI (z = 2.72, P = 0.020) and in 

the LPI (z = 4.72, P < 0.001) as compared to the PPI subtask. (I) Significant sex by APOE interaction (F = 3.90, P = 0.049), but risk 

carriers did not differ from controls with respect to sex-related differences in performance (both z < 1.50, both PTukey > 0.220). (A, 

D, E, F, G, H, I) depict results for model 1b. Results for model 1a are statistically equivalent. Error bars (A, G, H, I), s.e.m.; shaded 

areas (B, C, D, E, F), s.e.m.; every dot in (F) reflects the data of one participant; ***P < 0.001; PI, path integration; PPI, pure path 

integration; BPI, boundary-supported path integration; LPI, landmark-supported path integration; Control, APOE ε3/ε3-carriers; 

Risk, APOE ε3/ε4-carriers; vm, virtual meters.  



 

 

 
Figure S3. Performance based on distance and rotation error. (A) Performance based on the distance error showed no significant 

genotype by subtask interaction (both F < 0.95, left) and no significant improvements due to supportive spatial cues (right). (B) 

Performance based on rotation error showed a significant genotype by subtask interaction (both F > 8.65, left) and significant 

improvements due to supportive spatial cues (both P < 0.031, right). (C) Errors in translational path integration induce rotation errors 

even when angular path integration is perfect. (A, B) depict results for model 1b and results for model 1a are statistically equivalent. 

Y-axes show parameter estimates; error bars (A, B), s.e.m.; *P < 0.05; **P < 0.01; Control, APOE ε3/ε3-carriers; Risk, APOE ε3/ε4-

carriers; PPI, pure path integration; BPI, boundary-supported path integration; LPI, landmark-supported path integration. 

  



 

 

 

 

Figure S4. Exemplary design matrix of the PI model. (A) Overall design matrix for one participant. (B) Start phase, phases of no 

movement, outgoing phase, and incoming phase were modeled separately for each subtask and run. In this exemplary trial, the 

participant moves during the entire outgoing and incoming phase, and stops moving during feedback at the end of the trial. Onsets 

of these regressors were modeled at the sampling rate of the behavioral data (5 Hz temporal resolution). Here, integrated path, which 

is the cumulated path distance until that time point, was modeled as one of two possible parametric modulators. (C) Same as (B), 



 

 

but with goal proximity, which is the inverted Euclidean distance to the goal at that time point, as parametric modulator. (B) and (C) 

show a magnification of the red box in (A). pmod, parametric modulator.  



 

 

 

Figure S5. Exemplary design matrix of the subtask model. (A) Overall design matrix. (B) Start phase, outgoing phase, incoming 

phase, and feedback were modeled separately for each subtask and run. Onsets of the regressors correspond to the start of the 

respective phase; durations of the regressors depend on the duration of the respective phase. In the outgoing phase, a parametric 

modulator (PI difficulty) was modeled, varying between 1 and 5 depending on the number of trees in the respective trial. In this 

exemplary trial, PI difficulty was high. (C) Same as (B), but in this exemplary trial, PI difficulty was low. (B) and (C) show a 

magnification of the red box in (A). 



 

 

Supplementary Tables 
 

Table S1. Sample information. 

Sample Site Number of 

participants 

[male/female] 

Mean age (± s.d.), 

age range 

(years) 

Genotypes 

ε3/ε3 vs. 

ε3/ε4 

Structural 

MR 

available 

fMRI sample Ruhr-University 

Bochum, 

Bochum, 

Germany 

35 

[17/18] 

24.97 (± 3.98), 

19-35 

  

APOE sample 1 IfADo – Leibniz 

Research Centre for 

Working Environment 

and Human Factors at 

the Technical University 

Dortmund, 
Dortmund, 

Germany 

87 

[25/62] 

44.20 (± 13.60), 

21-68 

64 vs. 23 
 

APOE sample 2; 

sMRI sample 
Pablo de Olavide 

University, Seville, 

Spain 

99 

[48/51] 

43.43 (± 20.92), 

19-75 

76 vs. 23 99 

APOE sample 3 University of Parma, 

Parma, 

Italy 

62 

[21/41] 

22.42 (± 4.10), 

18-38 

49 vs. 13 
 

APOE sample 4 Cliniques Universitaires 

Saint-Luc, Université 

Catholique de Louvain, 

Brussels, Belgium 

19 

[9/10] 

28.16 (± 11.00), 
22-72 

13 vs. 6  

APOE sample 

Total 
Dortmund, Seville, 

Parma, Brussels 

267 

[103/164] 

37.72 (± 17.89), 

18-75 

202 vs. 65 99 

Values denote mean (± s.d.) or the number of participants. 

  



 

 

Table S2. Demographic and experiment characteristics of the APOE sample. 
 

Control group 
(APOE ε3/ε3) 

Risk group 

(APOE ε3/ε4) 

P 

Number 202 65 
 

Demographic characteristics 

Age (± s.e.m.), age range [years] 37.06 (± 1.25), 18-75 39.75 (± 2.25), 19-72 
0.545c 

0.287d 

Sex [male/female] 80/122 23/42 0.543b 

Years of education (± s.e.m.) [years] 13.78 (± 0.24) 13.58 (± 0.41) 0.495c 

MMSE score (± s.e.m.) 

of participants ≥42 years 
28.61 (± 0.16) 28.80 (± 0.21) 0.507a 

SBSOD score (± s.e.m.) 3.48 (± 0.07) 3.57 (± 0.11) 0.494a 

Mappers [yes/no] 101/201 32/65 1.000b 

Egocentric navigators [yes/no] 84/201 22/65 0.308b 

Site [Dortmund/Seville/Parma/Brussels] 64/49/76/13 23/13/23/6 0.754b 

Experiment characteristics 

Version [Fixed trial sequence/Random trial 

sequence/Random locations] 
24/29/149 4/13/48 0.282b 

Speed [vm/s] 626.91 (± 5.90) 620.54 (± 10.11) 0.664c 

Rotation speed [degrees/s] 94.76 (± 1.99) 90.47 (± 3.73) 0.188 c 

Experiment duration [min] 89.68 (± 2.74) 87.58 (± 4.37) 0.914c 

Subtask duration: PPI [min] 15.95 (± 0.48) 15.59 (± 0.59) 0.641c 

Subtask duration: BPI [min] 15.40 (± 0.36) 15.49 (± 0.53) 0.472c 

Subtask duration: LPI [min] 16.10 (± 0.33) 15.85 (± 0.55) 0.823c 

Practice duration [min] 9.20 (± 0.30) 9.45 (± 0.45) 0.272c 

Break duration [min] 9.57 (± 0.78) 8.81 (± 1.30) 0.835c 

Time/Step counting strategies [yes/no] 46/156 19/46 0.320b 

Values denote mean (± s.e.m.) or the number of participants. P-values refer to (a) two-sample t-tests, (b) χ2-tests, (c) Mann Whitney 

U-tests, (d) χ2-test across age quintiles. MMSE, Mini-Mental State Examination; SBSOD, Santa Barbara Sense of Direction; PPI, 

pure path integration; BPI, boundary-supported path integration; LPI, landmark-supported path integration; vm, virtual meters.  



 

 

Table S3. Demographic and experiment characteristics of the sMRI sample. 
 

Control group 
(APOE ε3/ε3) 

Risk group 

(APOE ε3/ε4) 

P 

Number 76 23 
 

Demographic characteristics 

Age (± s.e.m.), age range [years] 
42.63 (± 2.43) 

[19-75] 

46.09 (± 4.21) 

[19-68] 

0.724c 

0.870d 

Sex [male/female] 36/40 12/11 0.686b 

Years of education [years] 12.24 (± 0.41) 11.43 (± 0.68) 0.237c 

MMSE score (± s.e.m.) 

of participants ≥42 years 
28.89 (± 0.21) 28.71 (± 0.30) 0.648a 

Experiment characteristics 

Version [Fixed trial sequence/Random 

trial sequence/Random locations] 
0/9/67 0/1/22 0.296b 

Speed [vm/s] 641.79 (± 7.40) 636.22 (± 12.82) 0.999c 

Rotation speed [degrees/s] 101.81 (± 3.04) 104.74 (± 7.65) 0.807c 

Experiment duration [min] 123.02 (± 3.90) 117.02 (± 6.99) 0.458c 

Subtask duration: PPI [min] 19.05 (± 0.70) 17.56 (± 1.34) 0.206c 

Subtask duration: BPI [min] 18.22 (± 0.66) 17.68 (± 1.10) 0.706c 

Subtask duration: LPI [min] 18.97 (± 0.60) 18.37 (± 1.09) 0.640c 

Practice duration [min] 10.84 (± 0.61) 9.76 (± 0.86) 0.548c 

Break duration [min] 20.43 (± 1.24) 19.58 (± 2.25) 0.646c 

Gray matter volume 

Relative bilateral EC volume 

[% of whole brain volume] 
0.26 (± 0.004) 0.27 (± 0.09) 0.231a 

Relative bilateral HC volume 

[% of whole brain volume] 
0.69 (± 0.006) 0.71 (± 0.013) 0.236c 

Relative bilateral PC/RSC volume 

[% of whole brain volume] 
0.12 (± 0.002) 0.12 (± 0.002) 0.121a 

Brain volume (BrainSegVolNotVent) 

[mm³] 

1,094,888.75 

(± 13,150.44) 

1,065,430.39 

(± 25,786.52) 
0.267c 

Values denote mean (± s.e.m.) or the number of participants. P-values refer to (a) two-sample t-tests, (b) χ2-tests, (c) Mann Whitney 

U-tests, (d) Fisher’s exact test across age quintiles (due to the occurrence of expected values < 5); MMSE, Mini-Mental State 

Examination; PPI, pure path integration; BPI, boundary-supported path integration; LPI, landmark-supported path integration; vm, 

virtual meters; EC, entorhinal cortex; HC, hippocampus; PC/RSC, retrosplenial cortex.



 

 

Table S4. Behavioral results of APOE sample split by age groups. 
Model Effect APOE sample APOE sample 

Younger (<42 years) 

APOE sample  

Older (≥42 years) 

1a Subtask * * * 

 Outgoing distance * * * 

 Subtask by outgoing 

distance 

- - - 

 Gender * * * 

 Age * * * 

 APOE - - - 

 APOE by subtask * * * 

 APOE by outgoing distance - - - 

 risk vs. control: PPI * - * 

1b Subtask * * * 

 Incoming distance * * * 

 Subtask by incoming 

distance 

* * * 

 Gender * * * 

 Age * * * 

 APOE - - - 

 APOE by subtask * * * 

 APOE by incoming 

distance 

* - - 

 risk vs. control: PPI * - * 

2a Goal-to-boundary distance * * * 

 APOE by goal-to-boundary 

distance 

- * - 

2b Goal-to-landmark distance * * * 

 APOE by goal-to-landmark 

distance 

* - - 

2c APOE - - - 

2d APOE * * + 

* significant: P < 0.050; + trend: 0.050 ≤ P < 0.100; - not significant; PPI, pure path integration. 

  



 

 

Table S5. Global and local maxima of whole brain analysis for “Subtask” contrasts.  
Brain regions exhibiting BOLD activations or deactivations during BPI or LPI as compared to the PPI subtask. Reported 

are all clusters located in gray matter with more than 5 voxels, surviving an initial height threshold of P < 0.05, FWE-

corrected for whole brain, and a cluster-level FWE correction at P < 0.05, as well as small volume corrected (SVC) 

clusters for EC, HC, and PC/RSC. Clusters within ROIs are marked italic. Clusters depicted in Fig. 3 are marked with 

a *. For other significant clusters, maximum probability tissue labels are derived from the Neuromorphometrics atlas 

contained in SPM. L, left; R, right. 

Region Voxels MNI coordinates Z-score 

  X Y Z  

BPI > PPI      

R lingual gyrus* 991 6 -75 0 >15 

R PC/RSC (SVC) 10 8 -52 5 4.33 

PPI > BPI No significant clusters 

LPI > PPI      

L precuneus 119 -2 -57 50 6.74 

L middle occipital gyrus 79 -50 -72 23 5.94 

R middle occipital gyrus 38 41 -77 35 5.95 

R middle occipital gyrus 44 46 -72 20 5.92 

R lingual gyrus 7 28 -40 -10 5.69 

R thalamus 9 21 -30 5 5.59 

L precuneus 37 -15 -67 30 5.57 

R precuneus 17 18 -65 28 5.56 

R cerebellum 9 11 -60 -53 5.36 

L occipital fusiform gyrus 5 -22 70 -8 5.07 

R PC/RSC* (SVC) 28 8 -47 5 5.15 

L PC/RSC (SVC) 5 -7 -47 3 3.86 

PPI > LPI No significant clusters 

  



 

 

Supplementary Movies 

Movie S1. Paradigm.  
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