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Higher Executive Control Network Coherence Buffers  
Against Puberty-Related Increases in Internalizing  

Symptoms During the COVID-19 Pandemic  
 

Supplemental Information 

 

Supplemental Methods and Materials 

Sample 

We recruited 214 children and adolescents from 2013–2016 for a longitudinal study 

assessing the effects of early life stress (ELS) on psychobiological development throughout the 

course of puberty (1–3). Exclusion criteria included contraindications to MRI scanning (e.g., non-

removable metal in/on the body, pregnancy, claustrophobia), a history of learning disability, 

neurological disorder, or any serious cognitive or physical challenges that might interfere with the 

ability to understand or complete procedures, non-fluency in English, and self-reported onset of 

menses for females (to ensure that adolescents were in early stages of puberty given the focus of 

the parent study on neurodevelopment throughout puberty). Participants and their parent(s)/legal 

guardian(s) signed assent and consent forms, respectively, to participate in this study, which was 

approved by the Stanford University Institutional Review Board. Participants were compensated 

for their time.  

190 of 214 participants successfully underwent resting-state fMRI scanning at baseline 

(T1). One participant’s data could not be preprocessed due to surface reconstruction issues, 13 

participants were dropped due to excessive motion (based on visual inspection and/or greater than 

20% of volumes flagged for > 0.5 mm framewise displacement), and four participants were 

dropped due to poor coverage of the brain, resulting in 172 participants with usable brain data. On 
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April 3, 2020, we emailed an invitation to the 214 participants who completed the T1 assessment 

to complete a COVID-19-related survey. 103 participants provided COVID-19 survey data, 86 of 

whom had usable resting-state fMRI from T1; one participant did not provide responses to the 

internalizing symptoms questionnaire. Thus, the total current sample consisted of 85 adolescents 

(49 females) ages 9-13 (M=11.29, SD=.92) at T1 and ages 13-19 (M=16.50, SD=1.28) at the 

COVID-19 assessment (“COVID-19 assessment” conducted between April 3, 2020- April 20, 

2020, approximately 2.5-4.5 weeks after the start of the March 17, 2020 Bay Area shelter-in-place 

directive). The interval between the T1 and COVID-19 assessments ranged from 3.72 to 6.54 years 

(M=5.20, SD=.70). A flowchart of the assessments and time-points is presented in Figure S1. The 

103 adolescents who completed the COVID-19 assessment did not differ from the 111 participants 

enrolled in the parent study who did not complete the COVID-19 assessment in age (t(210)=1.06, 

p=.29), sex (𝜒2(1)=.01, p=.99), or internalizing symptoms (t(200)=1.85, p=.07) at T1; however, 

participants who completed the COVID-19 assessment had lower ELS severity (t(200)=3.00, 

p=.004) and were in lower stages of puberty (t(210)=2.36, p=.02) at T1 compared to participants 

who did not complete the survey.  

 

Cumulative early life stress severity (T1) 

A modified version of the Traumatic Events Screening Inventory for Children (TESI-C) 

(4) was used to assess the impact of 30+ types of stressful life experiences (e.g., physical and 

emotional abuse, domestic violence). Interviewers asked adolescents to provide details about 

stressful life events in order to assess their severity and impact. Using a modified version of the 

UCLA Life Stress Interview coding system (6), three coders blind to the adolescent’s subjective 

severity ratings then rated the objective severity of each event on a 5-point scale (0=non-impactful; 
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4=extremely severe impact). A cumulative ELS severity score was computed by summing the 

maximum objective severity scores for each type of endorsed stressor. Additional details on the 

scoring procedure and the range of cumulative ELS severity scores in the larger sample have been 

previously been reported (8), and the scoring algorithm is available at 

https://github.com/lucysking/els_stress_interview. 

 

Scan data acquisition 

Functional resting-state scan data were collected at the Stanford Center for Cognitive and 

Neurobiological Imaging using a 3T GE Discovery MR750 MRI scanner with a 32-channel head 

coil. Participants were given padding to minimize movement and earplugs to dampen scanner 

sounds. A series of 180 time points was acquired with an axial echo-planar imaging T2*-weighted 

sequence: echo time [TE]=30 ms; repetition time [TR]=2000 ms; isometric voxel size=3.2mm3; 

slices=37 (interleaved acquisition); field of view [FOV]=224 mm; flip angle [FA]=77°; total scan 

time=6 min. The first five volumes were discarded to ensure magnet stabilization. During the 

resting-state scan, participants were instructed to lie still with their eyes open and to focus on a 

fixation cross on the screen. To register the functional images to anatomical space, a high-

resolution T1-weighted structural scan was acquired using a sagittal spoiled gradient echo 

sequence (TE=2.34 ms; TR=6.24 ms; voxel size=0.8984 x 0.8984 x 0.9000 mm; slices=186; 

FOV=230 mm; FA=12°; total scan time=5:15 min).  

 

Scan data preprocessing 

Results included in this manuscript come from preprocessing conducted using fMRIPrep 

1.5.0 (5), which is based on Nipype 1.2.2 (7,9). 
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Anatomical data preprocessing. The T1-weighted (T1w) image was corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (10), distributed with ANTs 2.2.0 (11) and used as 

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a 

Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF),white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (12).  

Brain surfaces were reconstructed using recon-all (13), and the brain mask estimated previously 

was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle (14). Volume-based spatial 

normalization to standard space (MNI152Lin) was performed through nonlinear registration with 

antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w 

template. The Linear ICBM Average Brain (ICBM152) Stereotaxic Registration Model ((15) 

TemplateFlow ID: MNI152Lin) was used for spatial normalization. 

 

Functional data preprocessing. For the resting-state fMRI data, the following preprocessing was 

performed. First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. Based on the estimated susceptibility distortion, an unwarped BOLD 

reference was calculated for a more accurate co-registration with the anatomical reference. The 

BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration (16). Co-registration was configured with six degrees of 

freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, 

and six corresponding rotation and translation parameters) are estimated before any spatiotemporal 

filtering using mcflirt (FSL 5.0.9, (17)). BOLD runs were slice-time corrected using 3dTshift from 

AFNI 20160207 (18). The BOLD time-series, were resampled to surfaces in the fsaverage5 space. 
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The BOLD time-series were resampled onto their original, native space by applying a single, 

composite transform to correct for head-motion and susceptibility distortions.  These resampled 

BOLD time-series will be referred to as “preprocessed BOLD”.  The BOLD time-series were 

resampled into the MNI152Lin standard space. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep.  Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS 

and three region-wise global signals. FD and DVARS are calculated for each run, both using their 

implementations in Nipype (following the definitions by Power et al., (19)). The three global 

signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of 

physiological regressors were extracted to allow for component-based noise correction (CompCor, 

(20)).  Principal components are estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the anatomical (aCompCor). A 

subcortical mask is obtained by heavily eroding the brain mask, which ensures it does not include 

cortical GM regions. For aCompCor, components are calculated within the intersection of the 

aforementioned mask and the union of CSF and WM masks calculated in T1w space, after their 

projection to the native space of each functional run (using the inverse BOLD-to-T1w 

transformation). Components are also calculated separately within the WM and CSF masks. For 

each CompCor decomposition, the k components with the largest singular values are retained, such 

that the retained components' time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, or combined). The remaining components are dropped from 

consideration.  The head-motion estimates calculated in the correction step were also placed within 

the corresponding confounds file. The confound time series derived from head motion estimates 

and global signals were expanded with the inclusion of temporal derivatives and quadratic terms 
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for each (21). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were 

annotated as motion outliers.  All resamplings can be performed with a single interpolation step 

by composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility 

distortion correction when available, and co-registrations to anatomical and output spaces).  

Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels (22). 

Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Following preprocessing in fMRIPrep, the first 5 frames were discarded to allow the MR 

signal to achieve T1 equilibrium.  We then conducted nuisance regression followed by temporal 

band-pass filtering (.01 - .1 Hz) to the resting-state data. Our nuisance regressors included 

framewise displacement, translation and rotation (x,y,z) and their first and second derivatives, and 

aCompCor components 0-5. 
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Supplemental Results 

Correlations Among Self-Report Variables 

Pubertal stage at T1 was positively correlated with age at the T1 (r(83)=.23, p=.03) and 

COVID-19 assessments (r(83)=.32, p=.003). By design, males and females did not differ in 

pubertal staging at T1, F(83)=1.55, p=.22. Although there was no significant association between 

pubertal stage and internalizing symptoms at T1 (p=.36), a regression analysis testing sex 

differences in the association between these variables yielded a significant interaction of sex and 

pubertal stage (F(79)=4.94, p=.029): whereas females showed a positive relation between pubertal 

stage and internalizing symptoms at T1 (t(34)=2.11, p=.038), males did not (t(47)=-1.15, p=.26). 

While there was no significant association between pubertal stage and internalizing severity pre-

COVID-19 (p=.28), pubertal stage was positively associated with internalizing severity peri-

COVID-19 (r(83)=.22, p=.04). Internalizing symptoms at T1 were correlated with pre-COVID-19 

internalizing severity (r(83)=.21, p=.05), but not with peri-COVID-19 internalizing severity 

(p=.36). While there were no sex differences in internalizing severity at T1 (p=.11), females 

reported greater internalizing severity during pre-COVID-19 (t(83)=2.37, p=.02) and peri-

COVID-19 (t(83)=3.77, p<.01) than did males. Females, but not males, exhibited a positive 

association between ELS and pubertal stage (t(47)=2.25, p=.027, and t(34)=-1.53, p=.13, 

respectively; Full Model: t(80)=2.71, p=.008). 

 

Tests of Associations between ECN Coherence and Model Covariates 

We tested whether bilateral ECN coherence was related to our model covariates. Although 

bilateral ECN coherence was not significantly associated with sex, age (T1 or COVID-19), 

pubertal stage (T1), internalizing problems (T1), or SES (T1) (all ps>.05), ECN coherence was 
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negatively associated with ELS at T1 (r(83)=-.25, p=.022). This finding is consistent with prior 

literature showing that childhood abuse is associated with deficits in executive functioning and 

lower connectivity among ECN regions (23). Similarly, previous research has shown that 

adolescent girls who experienced ELS have an earlier onset of pubertal maturation and age of 

menarche (24). We tested whether this is true in our sample using a regression analysis including 

pubertal stage as a dependent variable, sex and ELS as an interaction term, and age as a covariate. 

Indeed, females, but not males, in our sample exhibited a positive association between ELS and 

pubertal stage (t(47)=2.25, p=.027, and t(34)=-1.53, p=.13, respectively; Full Model: t(80)=2.71, 

p=.008). Thus, ELS may contribute to both earlier pubertal maturation and lower ECN coherence 

in females; the combination of lower ECN coherence and more advanced pubertal staging relative 

to peers may exacerbate their internalizing symptoms during periods of stress, such as the COVID-

19 pandemic.  

 

Sensitivity Analyses 

To test whether other networks, such as the SN and DMN, might similarly moderate the 

association between more advanced pubertal staging at T1 and increases in internalizing severity 

from pre- to peri-COVID-19, we replaced the ECN variable with the DMN and SN in two 

additional regression models. There was no significant main effect of the DMN or interaction with 

pubertal stage on the difference between pre- and peri-COVID-19 internalizing severity, (p=.08 

and .11, respectively, for main and interaction effects; Table S2). In addition, there was no main 

effect of the SN (p=.66) or interaction with pubertal stage on the difference between pre- and peri-

COVID-19 internalizing severity (p=.73; Table S3). 
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We also tested whether the left or right ECN differentially modulates the association 

between pubertal stage and changes in internalizing symptoms during COVID-19 by modeling 

two interaction terms in one regression model (right ECN x pubertal stage, and left ECN x pubertal 

stage). This analysis indicated that only the left ECN moderated the association between puberty 

and internalizing symptom changes (t(63)=-2.25, p=.01); the right ECN did not (p=.10; Table S4).   

Finally, to test whether our main results (described in section 3.2) were driven by females 

in the sample, we reran our model and included a third interaction term (i.e., sex X pubertal stage 

X ECN). Interestingly, we found that the three-way interaction of these variables was significant 

(t(62)=2.14, p=.04). Simple slopes analyses again showed that in females, the positive association 

between pubertal stage and the difference in internalizing severity from pre- to peri-COVID-19 

was significant when bilateral ECN coherence was low (β=.44, p=.03), but not when ECN 

coherence was high (β=.04, p=.79). In contrast, males showed a positive association between 

pubertal stage and increase in internalizing severity from pre- to peri-COVID-19  when ECN 

coherence was low (β=.85, p<.01), but a negative association between pubertal stage and 

internalizing changes when ECN coherence was high (β=-.56, p=.03). Specifically, males with 

higher ECN coherence who were in more advanced stages of puberty at T1 exhibited a decrease 

in internalizing severity during the pandemic (Table S5; Figure S5). While these results are 

interesting and suggest a more protective role of the ECN in early developing males compared to 

females, they should be interpreted with caution given the relatively small cell sizes when 

conducting a three-way interaction.  
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Supplemental Figures and Tables 

 

Figure S1. Flowchart of sample recruitment and assessment time-points. 

 

 

 

Figure S2. Default-mode (DMN) and salience (SN) networks identified using ICA. 

T1 Assessment (N=214)

- Resting-state fMRI (N=172)
- Tanner Pubertal Stage

- YSR Internalizing Severity

COVID-19 Assessment (N=103)

- CRISIS Pre- and Peri-COVID-19 
Internalizing Severity (N=102; 85 

who completed fMRI at T1)

2013 – 2016
Ages 9-13 (M=11.29, SD=0.92)

April 2020
Ages 13-19 (M=16.50, SD=1.28) 
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Figure S3. Correlations among study variables. “X” indicates non-significant correlations (p>.05).  
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Figure S4. ECN coherence moderates the association between early pubertal maturation and 

residual scores of peri-COVID-19 regressed on pre-COVID-19 internalizing severity. 

Note: ECN (B)=bilateral executive control network coherence. Pubertal stage is relative to same-

age peers. ECN is only grouped (Mean +1 SD/ - 1 SD) for visualization. The regression model 

included the interaction of pubertal stage (T1) and ECN (T1; both continuous variables) and the 

following covariates: age (T1 and COVID-19), internalizing severity (T1), sex, ELS severity (T1), 

head motion during the scan (i.e., mean frame-wise displacement), an identified “noise” 

component from the ICA (T1), as well as SES and neighborhood disadvantage (T1). 
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Figure S5. Sex differences in the effects of ECN coherence on the association between early 

pubertal maturation and differences in reported pre- to peri-COVID-19 internalizing 

severity. 

Note: ECN (B)=bilateral executive control network coherence. Pubertal stage is relative to same-

age peers. ECN is only grouped (Mean +1 SD/ - 1 SD) for visualization. The regression model 

included the interaction of sex, pubertal stage (T1), and ECN (T1) and the following covariates: 

age (T1 and COVID-19), internalizing severity (T1 and pre-COVID-19), sex, ELS severity (T1), 

head motion during the scan (i.e., mean frame-wise displacement), an identified “noise” 

component from the ICA (T1), as well as SES and neighborhood disadvantage (T1). 
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Table S1. Effects of pubertal stage and ECN coherence (T1) on residual score of peri-COVID-19 
regressed on pre-COVID-19 internalizing severity.  

Effect Β SE t p 
Pubertal Stage (T1) 0.23 0.12 1.90 .060 
ECN (B) (T1) -0.08 0.13 -0.67 .510 
Scan Noise (T1) -0.11 0.10 -1.11 .274 
Age (COVID-19) 0.38 0.22 1.72 .090 
Sex 0.48 0.22 2.12 .037 
Head Motion During Scan (T1) -0.25 -0.27 -0.93 .354 
ELS Severity (T1) 0.49 0.15 3.38 .001 
Neighborhood Disadvantage (COVID-19) -0.16 0.11 -1.42 .161 
Internalizing Symptoms (T1) -0.22 0.11 -1.91 .061 
Age (T1) -0.52 0.19 -2.25 .028 
SES/ Income to Needs (T1) -0.02 0.13 -0.19 .848 
Pubertal Stage X ECN (B) -0.35 0.12 -2.85 .006 

Simple Slopes of Pubertal Stage:     
ECN (B) – 1SD 0.57 0.18 3.22 .002 
ECN (B) + 1SD -0.08 0.15 -0.54 .594 

Note: ECN (B) = bilateral executive control network coherence; ELS = Early life stress; SES = 
socioeconomic status. Head motion based on mean framewise displacement (mm) during scan. 
Beta estimates are standardized. Beta estimates are standardized. 
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Table S2. Effects of pubertal stage and DMN coherence (T1) on internalizing severity differences 
between pre- and peri-COVID-19. 

Effect β SE t p 
Pubertal Stage (T1) -0.56 0.48 -1.18 .242 
DMN (T1) -1.39 0.77 -1.79 .078 
Scan Noise (T1) -0.47 0.44 -1.07 .289 
Internalizing Severity (Pre-COVID-19) -0.47 0.10 -4.56 .000 
Age (COVID-19) 0.20 0.10 2.06 .043 
Sex 0.35 0.15 2.40 .019 
Head Motion During Scan (T1) -0.48 1.02 -0.47 .642 
ELS Severity (T1) 0.06 0.02 3.64 .001 
Neighborhood Disadvantage (COVID-19) 0.00 0.00 -1.21 .229 
Internalizing Symptoms (T1) -0.01 0.01 -1.81 .075 
Age (T1) -0.39 0.14 -2.75 .008 
SES/ Income to Needs (T1) 0.03 0.15 0.19 .848 
Pubertal Stage X DMN 0.67 0.42 1.60 .114 

Note: DMN=default mode network coherence 

 

Table S3. Effects of pubertal stage and SN coherence (T1) on internalizing severity differences 
between pre- and peri-COVID-19. 

Effect β SE t p 
Pubertal Stage (T1) 0.33 0.44 0.74 .459 
SN (T1) 0.37 0.84 0.44 .661 
Scan Noise (T1) -0.55 0.46 -1.19 .236 
Internalizing Severity (Pre-COVID-19) -0.49 0.11 -4.53 .000 
Age (COVID-19) 0.21 0.10 2.12 .038 
Sex 0.37 0.16 2.36 .021 
Head Motion During Scan (T1) -0.60 1.05 -0.57 .568 
ELS Severity (T1) 0.06 0.02 3.46 .001 
SES (COVID-19) 0.00 0.00 -1.07 .289 
Internalizing Symptoms (T1) -0.01 0.01 -1.58 .120 
Age ( T1) -0.35 0.14 -2.45 .017 
Income to Needs (T1) 0.03 0.16 0.18 .858 
Pubertal Stage X SN -0.15 0.44 -0.35 .731 

Note: SN=salience network coherence.  
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Table S4. Effects of pubertal stage and ECN coherence (left and right; T1) on internalizing severity 
differences between pre- and peri-COVID-19. 

Effect β SE t p 
Pubertal Stage (T1) 0.22 0.10 2.09 .041 
ECN (R) (T1) 0.01 0.10 0.06 .956 
ECN (L) (T1) 0.00 0.10 0.00 .999 
Scan Noise (T1) -0.11 0.10 -1.07 .287 
Internalizing Severity (Pre-COVID-19) -0.44 0.10 -4.53 .000 
Age (COVID-19) 0.37 0.19 1.92 .059 
Sex 0.49 0.22 2.21 .031 
Head Motion During Scan (T1) -0.08 0.10 -0.87 .387 
ELS Severity (T1) 0.34 0.11 3.24 .002 
SES (COVID-19) -0.12 0.10 -1.16 .251 
Internalizing Symptoms (T1) -0.16 0.10 -1.64 .106 
Age ( T1) -0.45 0.19 -2.37 .021 
Income to Needs (T1) 0.01 0.10 0.05 .961 
Pubertal Stage X ECN (R) -0.16 0.10 -1.65 .104 
Pubertal Stage X ECN (L) -0.25 0.10 -2.52 .014 

Note: ECN=executive control network coherence; (R)=right; (L)=left. 
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Table S5. Sex differences in the effect of ECN coherence on the association between pubertal 
stage and internalizing severity differences between pre- and peri-COVID-19. 

Effect β SE t p 
Pubertal Stage (T1) 0.12 0.16 0.75 .459 
ECN (B) (T1) -0.60 0.25 -2.46 .017 
Scan Noise (T1) -0.16 0.09 -1.63 .108 
Internalizing Severity (Pre-COVID-19) -0.39 0.09 -4.23 .001 
Age (COVID-19) 0.40 0.22 1.88 .065 
Sex 0.54 0.23 2.37 .021 
Head Motion During Scan (T1) -0.26 0.25 -1.04 .302 
ELS Severity (T1) 0.49 0.14 3.53 .001 
Neighborhood Disadvantage (COVID-19) -0.14 0.10 -1.34 .184 
Internalizing Symptoms (T1) -0.17 0.11 -1.53 .132 
Age (T1) -0.51 0.22 -2.36 .022 
SES/ Income to Needs (T1) 0.03 0.12 0.20 .840 
Pubertal Stage X ECN (B) -0.88 0.26 -3.41 .001 
Sex X Pubertal Stage 0.14 0.21 0.64 .530 
Sex X ECN (B) 0.63 0.28 2.29 .025 
Sex X ECN (B) X Pubertal Stage 0.64 0.28 2.29 .036 

Males -0.06 0.13 -0.49 .630 
ECN (B) – 1SD 0.97 0.29 3.38 .001 
ECN (B) + 1SD -0.64 -.29 -2.26 .028 

Females     
ECN (B) – 1SD 0.49 0.22 2.25 .028 
ECN (B) + 1SD .047 0.18 0.26 .793 

Note: ECN (B) = bilateral executive control network coherence; ELS = Early life stress; SES = 
socioeconomic status. Head motion based on mean framewise displacement (mm) during scan. 
Beta estimates are standardized. 
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