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Supplementary Materials

S1 Correlations of the reflected and distorted wave-fields in
the pupil plane

In this section, we derive the pupil correlations of the R- and D- matrices. Our aim is to provide

a theoretical proof of the experimental observation made in Fig.1C2 and 1D2. The distorted

wave-fields exhibit correlations over a longer range than the reflected wave-fields in the pupil

plane. For sake of analytical tractability but without loss of generality, we will assume in this

section: (i) a set of fully incoherent input focal spots (i.e a strong aberration regime); (ii) a field-

of-illumination (FOI) contained in a single IP. The main result is the following: While the pupil

correlation length rP of R scales as the inverse of the FOI size (rP ∼ λf/Ω), the correlation

length dP of D is inversely proportional to the width δin of the input PSF (rP ∼ λf/δin). The

proofs of these two assertions are provided below.

S1.1 Reflection matrix

To investigate the angular correlations of the reflected wave-field, the correlation matrix BR =

N−1
in RR† should be considered. Using Eq. 2, its coefficients can be expressed as follows:

BR(uout,u
′
out) = N−1

in

∫
Ω

dr

∫
Ω

dr′T (uout, r)T ∗(u′out, r
′)γ(r)γ∗(r′)

∑
rin

Hin(r, rin)H∗in(r
′, rin).

(S1)

In a strong aberration regime, the input focal spots can be considered as fully incoherent,

〈Hin(r, rin)H∗in(r′, rin)〉 =
〈
|Hin(r, rin)|2

〉
δ(r− r′). (S2)

where δ is the Dirac distribution and the symbol 〈· · · 〉 denotes an ensemble average. In a

strong aberration regime, BR can be decomposed as the sum of a covariance matrix 〈BR〉 and

a perturbation term δBR:

BR = 〈BR〉+ δBR, (S3)



The correlation matrix BR (Eq. S3) should converge towards the covariance matrix 〈B〉 for

a sufficiently large number MR ∼ (Ω/δ0
in)

2 of independent speckle grains in the focal plane

(Eq.S27). More precisely, the intensity of the perturbation term in Eq.S3, |δBR|2, scales as the

inverse of MR (57–59).

Assuming the convergence of BR towards 〈BR〉 (MR >> 1), the correlation coefficients

BR(uout,u
′
out) (Eq. S1) can be expressed as follows:

BR(uout,u
′
out) = N−1

in

∫
drT (uout, r)|γ(r)|2T ∗(u′out, r)×

∑
rin

〈
|Hin(r, rin)|2

〉
, (S4)

To go further, an isoplanatic configuration should be considered. On the one hand, this means

that the input PSF is invariant by translation:

Hin(r, rin) = Hin(r− rin) (S5)

On the other hand, the output transmission matrix coefficients T (uout, r) can be decomposed as

the product of the transmittance Ĥout(uout) of the aberrating layer and the free-space transmis-

sion matrix coefficients T0(uout, r) (Eq.3):

T (uout, r) = Ĥout(uout)T0(uout, r). (S6)

Injecting these last equations and Eq. 3 into Eq. S4 leads to the following expression for :

BR(uout,u
′
out) = IinĤout(uout)Ĥ

∗
out(u

′
out)γ̂(u′out − uout) (S7)

where

Iin = N−1
in

∑
rin

〈
|Hin(r− rin)|2

〉
is the mean input PSF intensity and

γ̂(u) =

∫
dr|γ(r)|2 exp(−j2πu.r/λf)



is the 2D Fourier transform of the scattering distribution |γ(r)|2 in the focal plane. This quantity,

which dictates the correlations displayed by R in the pupil plane, can be seen as an incoherent

structure factor of the object placed in the FOI. The corresponding coherence length rp scales

as

rP ∼ λf/Ω, (S8)

The numberNR of independent speckle grains in the reflected wave-field is given by the squared

ratio between the output pupil size Dout = λf/δ0
out and the pupil coherence length rP :

NR ∼ (Ω/δ0
out)

2 (S9)

NR scales as the number of output resolution cells mapping the object.

These theoretical predictions account for the incoherence of the reflected wave-field shown

in Fig. 1C3. This figure plots the auto-correlation functionBR(∆u) of the reflected wave-field in

the pupil plane. It is computed by averaging the correlation matrix coefficients BR(uout,u
′
out)

over couples (uout,u
′
out) sharing the same relative position ∆u = uout − u′out.

S1.2 Distortion matrix

As highlighted by Fig. 1C and demonstrated above, the reflection matrix displays a random

feature at the output in the strong aberration regime. Now we will show how the realignment of

the reflected wave-fronts in the pupil plane can reveal the angular correlations of the distorted

component.

The distortion matrix D is defined as the Hadamard product between the reflection matrix

R and the reference transmission matrix T∗0 (Eqs. 4-5). In the isoplanatic limit (Eqs. S5-S6)

and using Eq.2, the D-matrix coefficients can be expressed as follows

D(uout, rin) = Ĥout(uout)

∫
drT0(uout, r− rin)γ(r)Hin(r− rin). (S10)



To investigate the angular correlations between distorted wave-fields, the spatial correlation

matrix BD = N−1
in DD† is investigated. Its coefficients can be expressed as follows:

BD(uout,u
′
out) = N−1

in Ĥ(uout)Ĥ
∗(u′out) (S11)

×
∫
dr1

∫
dr2γ(r1)γ∗(r2)

×
∑
rin

Hin(r1 − rin)T0(uout, r1 − rin)H∗in(r2 − rin)T ∗0 (u′out, r2 − rin)

As BR (Eq. S3), BD can be decomposed as the sum of a covariance matrix 〈BD〉 and a per-

turbation term δBD whose intensity decreases with the number MD ∼ (Ω/`F )2 of independent

speckle grains for the distorted wave-field from the focal plane (Eq. S35). For MD >> 1, BD

converges towards 〈BD〉, such that:

BD(uout,u
′
out) = N−1

in Ĥ(uout)Ĥ
∗(u′out) (S12)

×
∫
dr1

∫
dr2γ(r1)γ∗(r2)

×
∑
rin

〈Hin(r1 − rin)H∗in(r2 − rin)〉T0(uout, r1 − rin)T ∗0 (u′out, r2 − rin)

Assuming a strong aberration regime (Eq. S2), the expression of the correlation matrix coeffi-

cients BD(uout,u
′
out)can be simplified as follows

BD(uout,u
′
out) = I0Ĥ(uout)Ĥ

∗(u′out)

∫
dr1|γ(r1)|2

∑
r′in

T0(uout, r
′
in)T

∗
0 (u′out, r

′
in)γD(r′in)

(S13)

with r′in = r1 − rin and

γD(r′in) =
〈
|Hin(r′in)|2

〉
, (S14)

the intensity distribution of the virtual source synthesized in the focal plane at the input. Using

Eqs. 3 and S6, Eq. S13 can be rewritten as

BD(uout,u
′
out) ∝ Ĥ(uout)Ĥ

∗(u′out)γ̂D(u′out − uout) (S15)



where γ̂D(u) =
∑

r γD(r) exp(−j2πu.r/λf) is a discrete 2D Fourier transform of the scatter-

ing distribution γD(r) in the focal plane. The correlation length dp of the distorted wave-field

in the pupil plane is thus inversely proportional to the spatial extension δin of the input PSF

intensity |Hin|2, such that

dP ∼ λf/δin. (S16)

The number of independent speckle grains in the distorted wave-field is the squared ratio be-

tween the output pupil size Dout = λf/δ0
out and the pupil coherence length dP :

ND ∼ (δin/δ
0
out)

2 (S17)

ND scales as the number of output resolution cells mapping the input PSF.

As δin is smaller than the FOI dimension Ω, dP /ND are larger/smaller than rP /NR (Eqs. S8-

S9), respectively. This highlights the enhancement of the far-field correlations in D shown

in Fig. 1D3. This figure plots the auto-correlation function BD(∆u) of the distorted wave-

field in the pupil plane. BD(∆u) is computed by averaging the correlation matrix coefficients

BD(uout,u
′
out) over couples (uout,u

′
out) of common relative position ∆u = uout − u′out.

S2 Spatial correlations of the reflected and distorted wave-
fields

In this section, we derive the input correlations of the matrices R and D. Our aim is to provide a

theoretical proof of the experimental observation made in Fig.1C2 and 1D2. As seen previously

in the pupil plane, the distorted wave-fields reveal spatial correlations in the focal plane that

were originally hidden in the recorded wave-fields. Unlike the previous section, we derive a

general expression for the input correlation matrices beyond the isoplanatic limit. The main

result is the following: While the correlation length rF of the reflected wave-field in the focal



plane is restricted to the input diffraction limit resolution δ0
in, the correlation length dF of D in

the focal plane corresponds to the isoplanatic length `c.

S2.1 Reflection matrix

To investigate the spatial correlations of the reflected wave-field, the correlation matrix CR =

N−1
out R

†R should this time be considered. Unlike in the previous section, the isoplanatic as-

sumption is here not made. Using Eq. 2, the coefficients of CR can be expressed as follows:

CR(rin, r
′
in) = N−1

out

∫
dr

∫
dr′γ(r)γ∗(r′)Hin(r, rin)H∗in(r

′, r′in)
∑
uout

T (uout, r)T ∗(uout, r
′)

(S18)

As correlation matrices in the pupil plane, CR converges towards the covariance matrix 〈CR〉

for a large number NR ∼ (Ω/δ0
out)

2 of independent speckle grains for the reflected wave-field

in the pupil plane (Eq. S27). For NR >> 1, the coefficients of CR are given by:

CR(rin, r
′
in) = N−1

out

∫
dr

∫
dr′γ(r)γ∗(r′)Hin(r, rin)H∗in(r

′, r′in)
∑
uout

〈T (uout, r)T ∗(uout, r
′)〉

(S19)

The mean correlation term 〈T (uout, r)T ∗(uout, r
′)〉 can be developed by writing the transmis-

sion matrix as a Hadamard product between the free-space transmission matrix T0 and an aber-

ration matrix Hout, such that

T (uout, r) = Ĥout(uout, r)T0(uout, r).

It comes

〈T (uout, r)T ∗(uout, r
′)〉 =

〈
Ĥout(uout, r)Ĥ∗out(uout, r

′)
〉
T0(uout, r)T ∗0 (uout, r

′) (S20)

= F (r, r′)

〈∣∣∣Ĥout(uout, r)
∣∣∣2〉T0(uout, r)T ∗0 (uout, r

′). (S21)

The correlation function,

F (r, r′) =
〈
Ĥout(uout, r)Ĥ∗out(uout, r

′)
〉
/

〈∣∣∣Ĥout(uout, r)
∣∣∣2〉 , (S22)



describes the spatial correlation of the aberration matrix Ĥout in the focal plane. Its support

is directly related to `c, the IP size. For sake of simplicity but without lack of generality, we

assume that the aberrating layer does not attenuate the wave-field:〈∣∣∣Ĥout(uout, r)
∣∣∣2〉 = 1. (S23)

Using Eq. S21, the sum over uout into Eq. S19 can then be rewritten as:

N−1
out

∑
uout

〈T (uout, r)T ∗(uout, r
′)〉 = F (r, r′)

∑
uout

T0(uout, r)T ∗0 (uout, r
′) (S24)

Injecting the expression of the coefficients T0(uout, rin) (Eq. 3), it finally comes

N−1
out

∑
uout

〈T (uout, r)T ∗(uout, r
′)〉 = F (r, r′)

∑
uout

exp

(
i
2π

λf
uout.(r− r′)

)
= δ(r− r′) (S25)

The physical meaning of this last equation is that two virtual sources located at points r and

r′ in the focal plane give rise to uncorrelated wave-fields in the pupil plane. Injecting this last

relation into Eq. S19 leads to the following expression for CR(rin, r
′
in)

CR(rin, r
′
in) =

∫
dr|γ(r)|2Hin(r, rin)H∗in(r, r

′
in) (S26)

To go further, a rough approximation is to assume an object of constant reflectivity in intensity:

〈|γ(r)|2〉 = γ2
0 . The correlation length rF of the reflected wave-field then corresponds to the

coherence length of the input focal spots. In the strong aberration regime, rF thus scales as the

input diffraction limit δ0
in. The numberMR of independent speckle grains in the focal plane then

correspond to the number of input resolution cells mapping the object:

MR ∼ (Ω/δ0
in)

2 (S27)

These theoretical derivations account for the spatial incoherence exhibited by the reflected

wave-field in Fig. 1C2. This figure plots the auto-correlation function CR(∆r) of the reflected

wave-field in the focal plane. CR(∆r) is computed by averaging the correlation matrix coeffi-

cients CR(rin, r
′
in) over couples (rin, r

′
in) of same relative position ∆r = rin − r′in.



S2.2 Distortion matrix

As highlighted by Fig. 1C and demonstrated above, the reflection matrix displays a random

feature both at its output and input in the strong aberration regime. Now we will show how the

de-scan of the input focal spots in the focal plane reveals the spatial correlations between wave

distortions.

In the general case (i.e beyond the isoplanatic limit), the D-matrix coefficients can be ex-

pressed as follows

D(uout, rin) =

∫
drĤout(uout, r)T0(uout, r− rin)γ(r)Hin(r, rin) (S28)

To investigate the spatial correlations of the distorted wave-field in the pupil plane, the correla-

tion matrix CD = N−1
out D

†D should be considered. As the other correlation matrices, CD can

be decomposed as the sum of a covariance matrix 〈CD〉 and a perturbation term δCD whose in-

tensity is inversely proportional to the number, ND = (δin/δ
0
out)

2, of independent pupil speckle

grains in the distorted wave-field (Eq. S17).

For ND >> 1, CD is shown to converge towards the covariance matrix 〈CD〉. Its coeffi-

cients can then be expressed as follows:

CD(rin, r
′
in) = N−1

out

∫
dr1

∫
dr2Hin(r1, rin)H∗in(r2, r

′
in)γ(r1)γ∗(r2) (S29)

×
∑
uout

〈Ĥout(uout, r1)Ĥ∗out(uout, r2)〉T0(uout, r1 − rin)T ∗0 (uout, r2 − r′in)

Using Eqs. 3, 14 and S23, the sum over uout in Eq. S29 can be simplified as follows:

N−1
out

∑
uout

〈Ĥout(uout, r1)Ĥ∗out(uout, r2)〉T0(uout, r1 − rin)T ∗0 (uout, r2 − r′in)

= F (r1, r2)
∑
uout

exp

(
i
2π

λf
uout.(r1 − rin − r2 + r′in)

)
= F (r1, r2)δ(r1 − rin − r2 + r′in) (S30)



If the statistical properties of the scattering medium are invariant by translation, thenF (r1, r2) =

F (||r1 − r2||). The spatial extension of the function F directly yields the isoplanatic length `c.

The injection of Eq. S30 into Eq. S29 yields

CD(rin, r
′
in) = F (∆r)

∫
drγ(r)γ∗(r−∆r)Hin(r, rin)H∗in(r−∆r, r′in). (S31)

with ∆r = rin − r′in and ∆r = |rin − r′in|. The factor F (∆r) requires that the correlation

coefficients CD(rin, r
′
in) cancel for points belonging to different IPs. The input PSFs can thus

be considered as locally invariant by translation, such thatHin(r−rin+r′in, r
′
in) ' Hin(r−rin).

Equation S31 simplifies into

CD(rin, r
′
in) ∝ F (∆r)

∫
drγ(r)γ∗(r−∆r)|Hin(r, rin)|2, (S32)

To go further, we can assume that the width of the input focusing beam δin is larger than the

characteristic fluctuation length `γ of the sample reflectivity:

CD(rin, r
′
in) ∼ F (∆r)(γ ∗ γ)(∆r). (S33)

where the symbol ∗ stands for the correlation product. Depending on the experimental con-

ditions, the coherence length dF of the distorted wave-field can correspond to the correlation

length `γ of the object’s reflectivity or the isoplanatic length `c associated with the aberrating

layer

dF = min {`c, `γ} (S34)

dF is thus always larger than the coherence length rF ∼ δ0
in of the incoherent reflected wave-

field (Eq. S15). The numberMD of independent focal speckle grains for the distorted wave-field

is given by

MD = (Ω/`c)
2 (S35)

If `γ > `c, this number MD coincides with the number (Ω/`c)
2 of IPs contained by the object.



These theoretical predictions confirm the experimental observations highlighted by Fig. 1.

Spatial correlations are drastically enhanced between the input entries of D (Fig. 1D2) com-

pared to R (Fig. 1C2). Figure 1D2 plots the auto-correlation function CD(∆r) of the distorted

wave-field in the focal plane. This quantity is calculated by averaging the correlation matrix co-

efficients CD(rin, r
′
in) over couples (rin, r

′
in) sharing the same relative position ∆r = rin−r′in.

Now, we show how the long-range correlations exhibited by D can be leveraged for over-

coming the aberrations and retrieving an image of the object with a resolution close to the

diffraction limit.

S3 Singular value decomposition of the distortion matrix

To take advantage of the correlations exhibited by the matrix D, its SVD (Eq. 6) is shown to

be an essential tool. It enables a decomposition of the FOI into IMs and an estimation of the

transmission matrix T between the CCD surface and the focal plane. To provide a theoretical

proof of this claim, the previous study of the correlation matrices BD and CD will be helpful.

Their eigenvalue decomposition actually dictates the SVD of D. Correlations in the focal plane

are shown to predominate in the experiments depicted in the accompanying paper, but also,

more generally, in optical microscopy. Strikingly, an exchange of role is noticed between the

medium’s reflectivity and the input PSF in the D-matrix compared to the original R-matrix.

While the first singular vector of R yields the input PSF for a point-like reflector (26, 60), the

first singular vector of D directly yields the sample reflectivity for a point-like input focusing

beam in an isoplanatic configuration. Beyond this analogy made between R and D in this

asymptotic limit, a theoretical proof is then provided in the general case. We show how: (i) the

SVD of D allows a decomposition of the FOI into a set of IMs Vp; (ii) a coherent combination

of the output eigenvectors Up can lead to an estimator of the transmission matrix T.



S3.1 Eigenvalue decomposition of the correlation matrices

The SVD of D (Eq. 6) can be directly deduced from the eigenvalue decompositions of its

correlation matrices BD and CD. The latter ones can actually be written as follows

BD = UΣ2U† (S36)

and

CD = VΣ2V†. (S37)

or, in terms of matrix coefficients,

BD(uout,u
′
out) =

Nin∑
p=1

σ2
pUp(uout)U

∗
p (u′out). (S38)

and

CD(rin, r
′
in) =

Nin∑
p=1

σ2
pVp(rin)V ∗p (r′in). (S39)

The eigenvalues of BD and CD are the square of the singular values σp; their eigenvectors, Up

and Vp, are the output and input singular vectors, respectively. The SVD of D is dictated either

by the correlations between its lines or columns. To know which ones dominate over the other,

the analytical expressions of the correlation matrices, BD and CD, should be investigated (see

Eqs. S15 and S33).

If the reflectivity of the object was fully random, i.e 〈γ(r) ∗ γ(r)〉 = δ(r), the correlation

matrix CD (Eq. S33) would be diagonal. This means that the columns of D would be fully

uncorrelated. On the contrary, output correlations would subsist in D as they only depend on

the spatial extension of the input focal spot (Eq. S16). In this random speckle regime, the SVD

of D is dominated by its correlations in the pupil plane and the analysis of D should rather be

restricted to a FOI containing a single IP. This regime has been recently investigated in medical

ultrasound imaging (51) where scattering is often due to a random distribution of unresolved

scatterers.



In optical microscopy, biological tissues induce a strong forward scattering: The involved

scatterers display a characteristic length `γ larger than the wavelength. The auto-correlation

of the sample reflectivity can span over several IPs especially at large depths. In this forward

scattering regime, correlations of the distorted wave-field in the focal plane may dominate over

its far-field correlations.

To know if this is the case, one can compare the number of independent speckle grains,

ND and MD, in the pupil and focal planes, respectively. The correlation degree in each plane is

actually inversely proportional to this number. Correlations in the focal plane will thus dominate

ifND > MD. The latter condition is fulfilled in a strong aberration regime for which the number

of output resolution cells mapping each aberrated focal spot, ND = (δin/δ
0
out)

2, is larger than

the number of IPs mapping the object surface, MD = (Ω/`c)
2. This condition is checked in

the experiments of the accompanying paper. For instance, in the experiment depicted in Fig. 4,

ND ∼ 500 while MD ∼ 10.

S3.2 Analogy with iterative time reversal

Now that the conditions for a domination of correlations in the focal plane have been derived,

we now study the singular vectors of D. To that aim, an analogy with iterative time reversal is

first explored to give a physical intuition of the SVD of D.

If we compare the analytical expressions of the correlation matrices CR (Eq. S13) and

CD (Eq. S31), we can notice an exchange of the role between the medium reflectivity γ and the

input PSFHin. While CR corresponds to a static object scanned by a moving illuminating beam

(Fig.2A), CD corresponds to a static focused beam illuminating a moving object (Fig.2B). In

the isoplanatic limit, the distortion matrix D (Eq. S31) is thus equivalent to a virtual reflection

matrix associated with: (i) a coherent reflector of scattering distribution |Hin(r)|2 (located on the

optical axis and at the focal plane); (ii) a virtual focusing beam associated with the PSF γ(rin +



r). As shown by iterative time reversal experiments (60,61), the reflection matrix is of rank 1 for

a point-like scatterer, and its first input singular vector V1 shall directly yield the virtual input

PSF (27). By analogy, for a point-like input focusing beam, the D-matrix shall be also of rank

1 and its first input singular vector V1 shall directly provide the medium reflectivity γ(rin).

Interestingly, the SVD of D should therefore unscramble aberrations and sample reflectivity.

However, this qualitative analysis has been made under strong hypotheses: the isoplanatic limit

and a point-like input focusing beam. In the following, we make the problem more complex

by first going beyond the isoplanatic limit and then by considering the finite size of the input

focusing beams.

S3.3 Isoplanatic modes

Let us first assume a point-like input focusing beam, Hin(r, rin) = |Hin(rin, rin)|2δ(r − rin),

beyond the isoplanatic limit. Equation S31 becomes

CD(rin, r
′
in) ∝ F (∆r)γ(rin)γ∗(r′in)Hin(rin, rin)H∗in(r′in, r

′
in). (S40)

A full-field intensity image F(rin) of the sample reflectivity can be retrieved by considering the

diagonal of CD:

F(rin) = CD(rin, rin) = |γ(rin)|2|Hin(rin, rin)|2 (S41)

F(rin) can be a satisfying estimator of the sample reflectivity, |γ(rin)|2. However, the input

focusing beam intensity Hin(rin, rin) pollutes the full-field image. The latter term can be detri-

mental to imaging since it gives rise to a fluctuating contrast across the focal plane. Moreover,

experimental noise and diffusive multiple scattering can still degrade the image. At last, we may

want to have access to the amplitude and phase of the reflectivity rather than only its square

norm. For all these reasons, the singular value decomposition of D (Eq.6), or equivalently,

the eigenvalue decomposition of CD(Eq.S39) is decisive. In the general case, the correlation



function F (∆r) (Eq. S22) governs the eigenvalue decomposition of CD. The ratio between

the object surface Ω2 and the isoplanatic area `2
c yields the effective rank MD = (Ω/`c)

2 of

CD. This rank scales as the number of IPs that fit in the object. The input eigenvectors Vp

can be derived by solving a second order Fredholm equation with Hermitian kernel (42). An

analytical solution can be found for certain analytical form of the correlation function F (∆r)

(Eq. S22). For instance, a sinc kernel imply 3D prolate spheroı̈dal eigenfunctions (43); a Gaus-

sian covariance function leads to Hermite-Gaussian eigenmodes (44); exponential or triangular

kernels yields cosine and sine eigenfunctions (42). A general trend is that the spatial frequency

content of the eigenvectors increases with their rank.

The identification of Eqs. S39 and S40 leads to the following equality:

MD∑
p=1

σpVp(rin) = Hin(rin, rin)γ(rin) (S42)

A coherent combination of the MD first eigenvectors Vp can yield the amplitude and phase

of the reflectivity but the result is still polluted by the input illumination beam Hin(rin, rin). In

practice, aberrations at the input can be corrected through the same process by exchanging input

and output, i.e by projecting the data in the pupil plane at the input and in the focal plane at the

ouput. In the experiments depicted in the accompanying paper, the sparse illumination scheme

makes the input basis incomplete and the spatial sampling insufficient. The image should thus

be built from the output to benefit from the excellent resolution with which the field is recorded

by the CCD camera. To do so, Eq. S42 can be used to prove that the coherent combination of

output singular vectors Uc =
∑MD

p=1 Up (Eq. 6) perfectly compensate for the output aberration

matrix Ĥout. To that aim, let us apply the transpose conjugate U†c to the output of the matrix D

(Eq.S28). It comes:∫
dr
∑
u

U∗c (u)Hout(u, r)T0(u, r− rin)γ(r)Hin(r, rin) = Hin(rin, rin)γ(rin)



This last equality is valid only and only if

∑
u

U∗c (u)Hout(u, r)T0(u, r− rin) = δ(r− rin) (S43)

which, under the matrix formalism, can be rewritten as

(Uc ◦T0)†T = I (S44)

The matrix T̂ = (Uc ◦ T0) is an estimator of the transmission matrix T. The application

of its transpose conjugate, T̂† enables a perfect compensation for the aberrations contained in

the transmission matrix T. To obtain a diffraction-limited image of the object, the matrix T̂†

should be directly applied to the output of the matrix R (Eq.12 of the accompanying paper).

This operation leads to a focused matrix RF whose coefficients can be expressed as

RF (rout, rin) = γ(rout)Hin(rout, rin) (S45)

This matrix consists in an Hadamard product between the reflectivity of the focal plane at its

output and the input focusing matrix. In other words, aberrations are corrected at the output but

subsists at the input. Hence the resulting confocal image built from the diagonal of RF suffers

from the same issue:

I(rout) = RF (rout, rout) = γ(rout)Hin(rout, rout) (S46)

It is a relying estimator of the object’s reflectivity γ(rout), but modulated by the amplitude and

phase of the input illumination Hin(rout, rout). To reduce this detrimental effect on the image

contrast, one can consider a full-field image integrated over all input focusing beams (see Eq. 14

of the accompanying paper) or an adaptive confocal image integrating over a numerical pinhole

(see Eq.18 of the accompanying paper). This integration over rin allows us to smooth the

modulation of the image induced by the input focusing beams.



S3.4 Finite size of the input PSF

All these theoretical developments have been made by considering a point-like input focused

beam. This is, of course, not true in reality. The input focusing beam gives rise to a virtual

coherent reflector of finite size δin. The issue we want to address is the impact of this size on

the SVD of D. Assuming incoherent input focusing beams (Eq. S2), Eq. S32 can be rewritten

as follows in the isoplanatic limit (Eqs. S5-S6):

CD(rin, r
′
in) ∝

(∫
drγ(r)Hin(r− rin)

)
×
(∫

dr′γ(r′)Hin(r′ − r′in)

)∗
, (S47)

By confronting this last equation with the eigenvalue decomposition of Eq. S39, it turns out that

the distortion matrix D is of rank 1 and that its input singular vector V1 can be expressed as

V1(rin) =

∫
drγ(r)Hin(r− rin) = [γ ~Hin](rin). (S48)

where the symbol ~ stands for the convolution product. Albeit independent from output aber-

rations, V1 is nevertheless a convolution product between the object’s reflectivity and the input

PSFHin (see Fig 2C of the accompanying paper). The output singular vector U1 can be deduced

from V1 through the following matrix product:

σ1U1 = DV1. (S49)

Injecting Eq. S10 and Eq. S48 into this last equation yields the following expression for the

coefficients of U1

σ1U1(uout) = Ĥout(uout)

∫
dr

∫
dr′
∑
rin

T0(uout, r− rin)γ(r)γ(r′)Hin(r− rin)Hin(r
′ − rin)

For a large number of resolution cells in the FOI, U1 will converge towards its ensemble aver-

age, such that

σ1U1(uout) = Ĥout(uout)

∫
dr

∫
dr′
∑
rin

T0(uout, r−rin)γ(r)γ(r′) 〈Hin(r− rin)Hin(r
′ − rin)〉



In a strong aberration regime (Eq. S2), the last equation can be rewritten as follows

σ1U1(uout) = Ĥout(uout)

∫
dr|γ(r)|2

∑
rin

T0(uout, r− rin)
〈
|Hin(r− rin)|2

〉
Using the expression of the free-space transmission coefficients T0(uout, rin) (Eq. 3), it finally

turns out that

U1(uout) ∝ Ĥout(uout)
[
Ĥin ∗ Ĥin

]
(uout). (S50)

and

σ1 ∝
∫
dr|γ(r)|2. (S51)

While the singular value σ1 yields the object’s reflectivity integrated over the associated iso-

planatic patch (here the FOI), the vector U1 corresponds to the aberration output transmittance

Ĥout modulated by the autocorrelation function of the aberration input transmittance Ĥin (see

Fig 2C of the accompanying paper). This last term tends to limit the angular aperture of the

singular vector U1 by the coherence angle of the input aberration Ĥin. To circumvent that issue,

the trick is to consider only the phase of the first singular vector U1. Indeed, if we make the

realistic hypothesis of a real and positive autocorrelation function Ĥin ∗ Ĥin, the normalized

vector Ũ1 is then given by

Ũ1(uout) = exp (jarg {U1(uout)}) = Ĥ(uout) (S52)

A novel input vector Ṽ1 can then be retrieved through the matrix product:

Ũ†1D = V̂1. (S53)

Injecting the expression of Ũ1 (Eq. S52) and D (Eq. S10), the following expression can be

retrieved for V̂1 in the isoplanatic limit:

V̂1(rin) = Hin(rin, rin)γ(rin) (S54)



If we compare this last equation with Eq. S48, the normalization of U1 allows us to virtually

reduce the size of the input focusing beam (see Fig 2D of the accompanying paper). The matrix

T̂ = (Ũ1 ◦ T0) is then a satisfying estimator of the transmission matrix T in the isoplanatic

limit. The application of its transpose conjugate, T̂†, allows a perfect compensation for the

aberrations contained in the transmission matrix T. A diffraction-limited image of the object

can be obtained by applying the matrix T̂† to the output of matrix R (Eq. 12).

S3.5 General case

In the general case (i.e beyond the isoplanatic limit), the same method can be employed to

virtually reduce the size of the focal spot over each IM. The corresponding singular vectors

should be normalized: Ũp = exp (jarg {Up}). The application of their transpose conjugate

to the R-matrix should lead to an optimal aberration correction over each IM at the output.

One open question is whether these output singular vectors can be combined coherently or

not, such that Ũc =
∑

p Ũp. In the present work, this coherent combination does not provide

better results than an incoherent summation of each IM image Ip (Eq.20). This is because an

incoherent sum of RF-matrix coefficients at the input is required to smooth the modulation of

the image by Hin (Eqs.14-18).
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Figure S1: Measuring the time-gated reflection matrix. Experimental set up: P: polarizer,
MO: microscope objective, BS: beam splitter, PBS: polarized beam splitter, SLM : spatial light
modulator, PZT: piezo phase shifter, M: Mirror. A femtosecond laser beam (center wavelength:
810 nm, bandwidth: 40 nm) is shaped by an SLM acting as a diffraction grating. A set of inci-
dent plane waves is thus emitted from the SLM and focused at a different position in the focal
plane of an immersion MO (NA=0.8). The backscattered wave-field is collected through the
same MO and interferes with a reference beam on a CCD camera. The latter one is conjugated
with the back focal plane of the MO. The amplitude and phase of the wave-field is recorded
by phase shifting interferometry (20). The time of flight t is controlled by the length of the
interferometric arm and is matched with the position of the focal plane. For each input focusing
point rin, a reflected wave-field is recorded in the pupil plane and stored along a column vector
in the matrix R) = [R(uout, rin)] .
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Figure S2: Conjugation relationships between the pupil, focal and imaging planes. The
distortion matrix connects the focal plane of the MO with the output pupil plane. This figure
illustrates the various parameters involved in the different planes of the system. Both input
and output pupil planes are ultimately limited by the MO edges. The input pupil Din is even
more limited because the illumination beam underfills the objective pupil D. It results in a
reduced NA denoted NAin. In turn, the size of the input focal spot in the image plane is given
by δ0

in = λ/2NAin if there is no aberration and δin in the general case. In this focal plane, the
field-of-illumination depends on the scanning step (spatial sampling), denoted as δrin, and the
number of measurements Nin. In reflection, the output pupil Dout is also smaller than the total
objective pupil D due to the limited surface of the detector but larger than the input pupil Din.
The resolution of the image is thus governed by the output resolution cell δ0

out = λ/2NAin.
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Figure S3: Predicting the single-to-multiple scattering ratio in biological tissues. (A) SMR
as a function of depth for the imaging experiment through the rat intestinal tissue (see Figs. 1
and 3). The red curve (before aberration correction) is plotted for a Strehl ratio S = 3× 10−3,
while the blue curve (after matrix correction) corresponds to S = 1.1 × 10−2. The detection
threshold yields an imaging depth limit of ∼ 450 µm for conventional OCT and 900 µm for
our matrix approach. (B) SMR as a function of the scattering mean free path `s for the cornea
imaging experiment (see Fig. 5). A SMR of 1 is obtained for a scattering mean free path `s ∼
80 µm. In both panels, the theoretical curves are built by considering the model described in
Ref. (38) and the experimental parameters described in the paper. Note also that the y-axis is in
log-scale.
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Figure S4: Building the reflection matrix R. For each focused illumination at rin = (xin, yin),
the reflected wave-field ψrin(vout, wout) is recorded in the pupil plane by each pixel of the CCD
camera whose position is denoted by the vector uout = (vout, wout) . Each wave-field is concate-
nated and stored along a column vector. This set of column vectors forms the reflection matrix
R = [R(uout, rin)], such that R(uout, rin) = ψrin(vout, wout).
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Figure S5: Modeling light propagation from the virtual source plane to the output pupil
plane. The reflection matrix R contains the impulse responsesR(uout, rin) between each virtual
source point rin and each CCD pixel uout in the output pupil plane. (A) The virtual source point
rin is produced by each transverse mode shaped by the SLM in the input pupil plane. (B) The
propagation between the virtual source plane and the focal plane of the MO can be modelled
by the input focusing matrix Hin = [Hin(r, rin)] whose columns correspond to each input focal
spot in the sample plane for each incident focusing point rin. (C) The return trip of the wave
from the sample to the CCD camera is modeled by the transmission matrix T = [T (uout, r)]
that connects each point r in the focal plane to each pixel uout of the CCD camera. (D) Finally,
based on these propagation matrices and the sample reflectivity matrix Γ, the reflection matrix
R can be simply expressed as the matrix product of these three matrices (Eq.1).



Supplementary tables

variable definition
λ wavelength
n optical index
g anisotropy factor
`s scattering mean free path
L thickness of the scattering layer
d distance between the aberrating layer and the focal plane
f focal length of the microscope objective
Ω size of the field-of-illumination

rin / rout position vector in the input focusing / output pupil planes
r position vector in the focal plane of the microscope objective

uout position vector in the output pupil plane
Nin / Nout number of input focusing beams / pixels in the output pupil plane
Din / Dout input / output pupil aperture

NAin / NAout input / output numerical aperture
δrin / δuout spatial sampling in the input focusing / output pupil planes
δin / δout characteristic width of the input/output point spread functions
δ0

in / δ0
out diffraction limit resolution at input/ouput

rP / rF correlation length of the reflected wave-field in the output pupil / input focusing plane
dP / dF correlation length of the distorted wave-field in the output pupil / input focusing plane
`γ charateristic correlation length of the sample’s reflectivity
`c characteristic size of an isoplanatic patch

MD / ND number of independent speckle grains for D in the input focusing / output pupil planes
MR / NR number of independent speckle grains for R in the input focusing / output pupil planes
S0 / Sp / S ′p Strehl ratios: initial /final / weighted values
σp / σ̃p singular values of D: raw / normalized
H(σ̃p) Shannon entropy of singular values
SMR single-to-multiple scattering ratio

Table S1: Glossary of the variables used in this study.



matrix definition
R = [R(uout, rin)] dual reflection matrix
R0 = [R0(rout, rin)] focused reflection matrix built from T0

Rp = [Rp(rout, rin)] focused reflection matrix built from T̂p

RF = [RF (rout, rin)] focused reflection matrix built from T̂
T = [T (uout, r)] transmission matrix
T0 = [T0(uout, r)] free-space transmission matrix
T̂ = [T̂ (uout, rout)] estimator of the transmission matrix
T̂p = [T̂p(uout, r)] estimator of the transmission matrix built from Up

Γ = [γ(r)] sample’s reflectivity matrix
ΓD = [γD(r)] virtual scatterer reflectivity matrix
Hin = [Hin(r, rin)] input focusing matrix
D = [D(uout, rin)] distortion matrix
Up = [Up(uout)] output singular vector of D

Ũp = [Ũp(uout)] normalized output singular vector of D
Vp = [Vp(rin)] input singular vector of D
BR = [BR(uout,u

′
out)] correlation matrix of R in the pupil plane

〈BR〉 = [BR(∆u)] covariance matrix of R in the puil plane
BD = [BD(uout,u

′
out)] correlation matrix of D in the pupil plane

〈BD〉 = [BD(∆u)] covariance matrix of D in the pupil plane
CR = [CR(uout,u

′
out)] correlation matrix of R in the focal plane

〈CR〉 = [CR(∆r)] covariance matrix of R in the focal plane
CD = [CD(uout,u

′
out)] correlation matrix of D in the focal plane

〈CD〉 = [CD(∆r)] covariance matrix of D in the focal plane
Ĥout = [Ĥout(uout, r)] aberration matrix
F = [F (r, r′)] correlation matrix of Ĥout in the focal plane

Table S2: Glossary of the matrices used in this study.
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