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Supplementary Text 

X-ray reflectometry (XRR) analysis 

The analysis method involves measuring the intensity of X-ray beam reflected on the sample 

with changing the incident angle of X-ray. In the XRR analysis, the refractive index of material 

can be estimated by the equation (1). When the incident angle is lower than the critical angle, 

incident X-ray beam is totally reflected and thus the reflectivity value becomes 1. Therefore, the 

critical angle is related to the refractive index of material, which can be calculated by the 

following equations (38). 

𝑛 = 1 − 𝛿 − 𝑖𝛽    (1) 

𝛿 = (
𝑟𝑒𝜆2

2𝜋
) 𝑁𝑜𝜌 ∑ 𝑥𝑖(𝑍𝑖 + 𝑓𝑖′𝑖 )/ ∑ 𝑥𝑖𝑀𝑖𝑖  (2) 

𝛽 = (
𝑟𝑒𝜆2

2𝜋
) 𝑁𝑜𝜌 ∑ 𝑥𝑖(𝑍𝑖 + 𝑓𝑖"𝑖 )/ ∑ 𝑥𝑖𝑀𝑖𝑖  (3) 

𝑟𝑒: Classical radius of an electron (2.818×10-9 m); 𝑁𝑜: Avogadro number;  

𝜆: X-ray wavelength; 𝜌: Density (g/cm3); 𝑍𝑖: Atomic number of the ith atom;  

𝑀𝑖: Atomic weight of the ith atom; 𝑥𝑖: Atomic ratio of the ith atom; 

𝑓𝑖′,  𝑓𝑖" : Atomic scattering factor of the ith atom  

where δ is the energy dispersive term, and β is X-ray absorption term.  

The real part of the complex refractive index is related to the phase velocity of X-ray in the 

material, and the imaginary part is related to the X-ray absorption of the material. Therefore, the 

critical angle is related only to the real part of the complex refractive index, which can be 

calculated as follows. 



 

 

 

𝑛 = 1 − 𝛿 = cos(𝜃𝑐) ≒ 1 −
𝜃c

2

2
 (4) 

𝜃𝑐 ≒ √2𝛿 (5) 

Since the δ value includes the density information of the sample, which can be calculated from 

the critical angle value of the incident X-ray beam. In our data, the critical angle is 0.35o, which 

gives the density of SBDDDVE as 1.58 g/cm3. 

 

Conformal coating on complex structure 

In the EDS spectra from the cross-sectional images in Fig. S2, bare stainless steel mesh 

shows only a trace amount of sulfur, while the stainless steel mesh coated with 200 nm-thick 

SBDDVE shows 9.43 wt% sulfur content at the side of the mesh fiber, which indicates 

deposition of SCP is accomplished.  

 



Fig. S1. SCP films on various substrates. Digital camera images of the colorless poly(sulfur-

co-1,4-butanediol divinyl ether) (SBDDVE) films (thickness = 110 nm), deposited on (A) glass, 

(B) silicon wafer, (C) polyethylene terephthalate (PET), (D) polyethylene naphthalate (PEN), (E) 

polyimide (PI), (F) polydimethyl siloxane (PDMS), and (G) latex. (Scale bar : 1cm) Photo credit: 

Wontae Jang (Korea Advanced Institute of Science and Technology).



 

 

 

 
Fig. S2. Cross-sectional scanning electron microscope (SEM) image and energy dispersive 

spectroscopy (EDS) scan spectra with sulfur atom peaks (red dash line) of the stainless steel 

mesh coated with the sulfur-containing polymer (SCP) film (Spectrum 1) and the non-coated 

area (Spectrum 2) of (A) before and (B) after the 200 nm SBDDVE film deposition on the 

stainless steel mesh.  

  



Fig. S3. X-ray diffraction (XRD) spectra of (A) SBDDVE film with 61.64 wt% and (B) 66.82 

wt% of sulfur contents; (C) SV4D4, (D) SV3D3, (E) SHVDS, deposited by sCVD, and Fourier 

transform infrared (FTIR) spectra of (F) 1, 4-butanediol divinyl ether (BDDVE), di(ethylene 

glycol)divinyl ether (DEGDVE), 1,11-dodecadiene (DDDE), 1,9-decadiene(DDE), and the SCPs 

of poly(sulfur-co-1,4-butanediol divinyl ether) (SBDDVE), poly(sulfur-co-di(ethylene 

glycol)divinyl ether) (SDEGDVE), poly(sulfur-co-1,11-dodecadiene) (SDDDE), poly(sulfur-co-

1,9-decadiene) (SDDE) synthesized by sCVD, (G) 1,3,5-trivinyl-1,3,5-

trimethylcyclotrisiloxane(V3D3), 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane 



 

 

 

(V4D4), hexavinyldisiloxane (HVDS) monomer, and their corresponding polymers of 

poly(1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane) (pV3D3), poly(1,3,5,7-tetravinyl-1,3,5,7-

tetramethyl cyclotetrasiloxane) (pV4D4), poly(hexavinyldisiloxane) (pHVDS), and the SCPs of 

poly(sulfur-co-di(ethylene glycol)divinyl ether) (SDEGDVE), poly(sulfur-co-1,3,5-trivinyl-

1,3,5-trimethylcyclotrisiloxane) (SV3D3), poly(sulfur-co-1,3,5,7-tetravinyl-1,3,5,7- 

tetramethylcyclotetrasiloxane) (SV4D4), and poly(sulfur-co-hexavinyldisiloxane) (SHVDS), 

synthesized by sCVD, where blue area at 1100, 2900 cm-1 represent -C-O-C- and -C-H stretching 

peaks, respectively, and gray area at 1260 cm-1 represents Si-CH3 peak. 

 

 

 

 

 



 

 

 

 
Fig. S4. UV-Vis absorbance (A) and normalized UV-Vis absorbance (B) spectra of SBDDVE 

films of varying thickness obtained from sCVD, and the refractive index (n) and extinction 

coefficient (k) values of (C) SV3D3, (D) SV4D4, (E) SDDDE, (F)SDDE obtained by 

ellipsometry measurement.  

 

 

 

 

  



Fig. S5. Thickness variation of SBDDVE film with respect to (A) substrate temperatur (TS) (B) 

the sulfur loading amount (with the fixed chamber pressure of 1000 mTorr and substrate 

temperature (Ts) = 110 oC), (C) the chamber pressure (with the fixed sulfur amount 0.1 g and Ts 

= 110 oC), (D) Thickness, (E) refractive index variation of SBDDVE film with respect to sulfur 

loading amount (with the fixed chamber pressure of 1000 mTorr and Ts = 110 oC) with 120 min 

reaction time, (F) thickness, (G) refractive index variation of the substrate temperature (with the 

fixed sulfur loading amount of 0.3 g and the process pressure of 1000 mTorr). 



Fig. S6. X-ray photoelectron spectroscopy (XPS) survey spectra and deconvoluted S2p 

(left), C1s (center), O1s (right) XPS high resolution scan spectra of SBDDVE films with 

various sulfur contents of (A) 71.90 wt%, (B) 68.82 wt%, (C) 66.86 wt%, (D) 63.58 wt%, and 

(E) 61.69 wt%. Deconvoluted spectra are colored with light blue for S-C-O, green for C-O, blue

for C-S, and grey for C-C in C1s XPS high resolution spectra, blue for C-S and red for S-S,

respectively, in S2p XPS high resolution spectra, and green as C-O in O1s XPS high resolution

spectra.



Table S1. Comparison of SCPs from sCVD with those synthesized by other methods. Tristan S. Kleine 
(University of Arizona) and Wontae Jang (Korea Advanced Institute of Science and Technology).
 

Material n632.8nm Color Notes Ref 

1.87 
Yellow/ 

Red 

▪ Synthesized by inverse vulcanization

▪ Must use olefin monomer miscible with

elemental sulfur

▪ A strong absorption in visible region

▪ Hard to mold into thin film due to the la

ck of solubility in common organic solve

nts.

1 

1.83 
Orange/ 

Red 

▪ Synthesized by inverse vulcanization

▪ Use of sulfur and olefin comonomer wit

h tri-vinyl groups

▪ A strong absorption in visible region

6 

1.78 Yellow 

▪ Multi-step synthesis.

▪ Tellurium was used to maximize the ref

ractive index.

▪ A strong absorption in visible region

39 

This study > 1.90 Colorless 

▪ One-step sCVD in vapor phase.

▪ No limit in monomer selection.

▪ Fully transparent in whole visible region.

▪ Film thickness and refractive index properties

can be controlled in systematic manner.

▪ Extremely high refractive index larger than 1.9.



Table S2. Refractive index from ellipsometry measurement, and calculated Abbe’s number (vD) 

of the SBDDVE films with two different refractive index, SDDDE, SDDE, SV3D3, and SV4D4 

synthesized by sCVD. 

Polymer n632.8 n656.3 n589.3 n486.1 vD 

SBDDVE 

1.915 1.910 1.926 1.973 14.698 

1.726 1.724 1.732 1.755 23.613 

SDDDE 1.719 1.717 1.725 1.748 23.387 

SDDE 1.754 1.751 1.760 1.787 21.111 

SV3D3 1.729 1.726 1.737 1.767 17.976 

SV4D4 1.708 1.706 1.714 1.738 22.313 

Table S3. XPS survey scan quantitative result of SBDDVE films with various sulfur weight % 

(wt%), copolymer ratio, and S-S/S-C bond ratio. 

Sulfur wt% 

Atomic % 
Copolymer 

 ratio 

S-S/S-C ratio

S C O S
8
 : BDDVE 

71.90 52.81 37.24 9.95 1.42 : 1 1.84 

68.82 48.48 39.63 11.88 1.22 : 1 1.45 

66.86 46.21 41.31 12.49 1.12 : 1 1.24 

63.58 43.23 44.68 12.09 0.97 : 1 0.94 

61.69 41.46 46.44 12.09 0.89 : 1 0.79 

 * Considered Molecular weight of S
8
 is 256.52, and BDDVE is 142.2 



 

 

 

Table S4. XPS S2p, C1s high resolution scan quantitative result of SBDDVE films with various 

sulfur weight % (wt%), calculated S-C bond ration in total polymer, and S-S/S-C bond ratio 

Sulfur wt% 

S2p deconvoluted area (a.u.) 
S-C bond 

ratio in total 
polymer (%) 

S-S/S-C 
ratio 

C-S 2p1/2 C-S 2p3/2 S-S 2p1/2 S-S 2p3/2 

71.90 8323.85 16647.69 16324.03 32648.06 17.83 1.96 

68.82 13192.70 26385.40 18700.00 37400.00 20.05 1.42 

66.86 13628.79 27257.58 18591.42 37182.83 19.54 1.36 

63.58 15622.28 31244.56 14174.77 28349.55 22.66 0.91 

61.69 16201.22 32402.44 12762.19 25524.38 23.19 0.79 

 

Sulfur wt% 

C1s deconvoluted area (a.u.) 
S-C bond 

ratio in total 
polymer (%) 

S-C-O C-O C-S C-C 

71.90 7341.494 7381.83 7229.488 7255.087 18.58 

68.82 12404.24 11721.76 12283.53 12036.01 20.20 

66.86 12631.49 13623.93 13757.76 13140.88 20.51 

63.58 14222.58 13890.16 13877.22 13602.36 22.58 

61.69 13843.02 14036.51 14196.76 14008 23.22 
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