Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A *in vivo*

¹Ines Cabrita[#], ²Andre Kraus[#], ²Julia Katharina Scholz, ²Kathrin Skoczynski, ¹Rainer Schreiber[&], ¹Karl Kunzelmann^{§,&}, ²Björn Buchholz[&]

Supplementary Information

Content:

- Supplementary Figure 1
- Supplementary Figure 2
- Supplementary Figure 3
- Supplementary Figure 4
- Supplementary Figure 5
- Supplementary Figure 6
- Supplementary Figure 7
- Supplementary Figure 8
- Supplementary Figure 9
- Supplementary Figure 10
- Supplementary Figure 11

Corresponding author Karl Kunzelmann e-mail: <u>karl.kunzelmann@ur.de</u> Tel.: +49 (0)941 943 4302

Supplementary Figure 1. Validation of the CRISPR/Cas9-mediated Pkd1 knockout in pIMDCK cells. a DNA sequences of CRISPR guide, wildtype ($Pkd1^{+/+}$), control clone ($Pkd1^{+/+}$ #1) and two Pkd1 knockout clones ($Pkd1^{-/-}$ #1 and #2) confirming unaffected DNA sequences in wild type and control clone, and mutations in the two Pkd1 knockout clones either resulting in insert mutations (light blue) or deletion (black line). **b** Representative Western blots for Polycystin-1 (PKD1, ~450 kDa) (vinculin as loading control, ~116 kDa) showing expression in wild type ($Pkd1^{+/+}$) and control clone ($Pkd1^{+/+}$ #1) and lack of Polycystin-1 expression in two Pkd1 knockout clones ($Pkd1^{-/-}$ #1 and #2). (n=2 blots each). Source data are provided as a Source Data file.

Supplementary Figure 2. PKD1-deficiency in pIMDCK cells leads to upregulation of TMEM16A, CFTR, and P2Y2R. a Western blotting for pIMDCK wildtype ($Pkd1^{+/+}$), control clone ($Pkd1^{+/+}$ #1) and Pkd1-deficient clones ($Pkd1^{-/-}$ #1 and $Pkd1^{-/-}$ #2) detecting an increase of TMEM16A (~130 kDa) expression upon deletion of Pkd1 ($^{#}$ P=0.02 and $^{#}$ P=0.005) (n=6 replicates). **b** Western blotting from cell clones described in (a), detecting an increase of CFTR (~170 kDa) expression upon deletion of *Pkd1 in clone* #1 and #2 ($^{#}$ P=0.02 and $^{#}$ P=0.007) (n=6 replicates). **c** Western blotting from cell clones described in (a) detecting an increase of P2Y2R (~47 kDa) expression upon deletion of *Pkd1* ($^{#}$ P=0.002 and $^{#}$ P=0.002) (n=6 replicates). Mean and error bars indicating ± SEM. [§]unpaired two-sided t-test. Source data are provided as a Source Data file.

Supplementary Figure 3

Supplementary Figure 3. Cyst formation by polycystin-1-deficient collecting duct cells depends on cAMP- and Ca²⁺activated CI⁻ secretion. a,b. Wild type (*Pkd*^{+/+}) and polycystin-1-deficient (*Pkd*^{1-/-}) principal-like MDCK cells (clone #2) were cultured in a collagen matrix in the absence (-Fsk) or presence (+Fsk) of 10 µM forskolin. Forskolin induced cyst formation by *Pkd*^{1+/+} cells within 5 days. *Pkd*^{1-/-} cells demonstrated cyst formation even in the absence of FSK ([#]P=0.0001) and formed larger cysts in the presence of FSK ([§]P=0.002 and [§]P=0.012). (n=105 cysts examined in n=3 independent experiments). **c**. Deletion of polycystin-1 induced an increase in basal intracellular cAMP concentrations (-FSK) ([#]P=0.022). FSK-stimulation further enhanced cAMP levels in both *Pkd*^{1+/+} and *Pkd*^{1-/-} cells ([§]P=0.003 and [§]P=0.006) (each n=3 independent experiments). cAMP levels in *Pkd*^{1+/+} cells were set to 100%. **d,e.** Enhanced ([#]P=0.026) cyst growth in *Pkd*^{1-/-} and cyst growth in *Pkd*^{1+/+} was strongly inhibited by CFTRinh172 (CFTRinh; 10 µM) ([§]P<0.0001 and [§]P=0.014), niclosamide (Niclo; 1 µM) ([§]P=0.007 and [§]P=0.002), and suramin (Sur; 100 µM) ([§]P=0.014 and [§]P=0.019), but was further augmented by ATP (10 µM) ([§]P<0.014 and [§]P=0.04). (n=87 cysts examined in n=3 independent experiments). Bars 200 µm. Mean and error bars indicating ± SEM. ^{#§}unpaired two-sided t-test. Source data are provided as a Source Data file.

Supplementary Figure 4. Deletion of Tmem16a inhibits expression of CFTR. a,b. Analysis of CFTR (~ 170 kDa) expression in protein lysates from whole kidneys (Vinculin as loading control, ~ 116 kDa) 10 weeks after induction of $Pkd1^{-/-}$, and $Pkd1^{-/-}/Tmem16a^{-/-}$ double knockout mice. Densitometric quantification indicating non-significant upregulation of CFTR-expression in $Pkd1^{-/-}$ kidneys and reduced expression of CFTR in $Pkd1^{-/-}/T16a^{-/-}$ kidneys (P =0.021). (n=3 independent blots). Mean and error bars indicating ± SEM. [§]unpaired two-sided t-test. Source data are provided as a Source Data file.

TMEM16A/megalin TMEM16A/calbindin TMEM16A/AQP2

acetylated tubulin

Supplementary Figure 5. Expression of TMEM16A and CFTR in murine kidney. a. Correlation between expression of TMEM16A and CFTR in the cyst epithelium of Pkd1-/kidneys. Expression of TMEM16A and CFTR was normalized to tissue area. (n=25 images from n=5 mice). A correlation was found between expression of CFTR and TMEM16A (Pearson coefficient r=0.57). b. Expression of TMEM16A in Pkd1^{+/+} kidneys. Colocalization was detected for TMEM16A and megalin (marker for proximal tubular epithelial cells), but not for TMEM16A and calbindin (marker for distal tubule) or TMEM16A and aquaporin 2 (AQP2) (marker for collecting duct). Representative images of kidneys from n=3 animals. Bar 20 µm. c. Primary cilia in *Pkd1*^{+/+} renal tubules were identified using acetylated tubulin staining, which expressed TMEM16A. (Representative images of kidneys from n=3 animals). Bar 5 µm. Source data are provided as a Source Data file.

Supplementary Figure 6. TMEM16A is essential for upregulated chloride conductance in primary Pkd1^{-/-} cells. a. Western blots and densitometric analysis indicating knockdown of Polycystin-1 (~ 450 kDa) in renal epithelial cells from Pkd1-/- (#P=0.003) and Pkd1-/-/T16a-/- (#P=0.006) mice (n=67 cells from n=3 animals). #one-way ANOVA and Tukey's posthoc test. b. Western blot and densitometric analysis indicating increased expression of TMEM16A (~ 130 kDa) in renal epithelial cells from Pkd1^{-/-} mice ([#]P=0.025) mice (n=3 blots from n=3 animals). [#]unpaired two-sided t-test. c. Inhibited expression of TMEM16A in cells from Pkd1+//T16a- mice (#P=0.025) (n=7 blots from n=3 animals). Actin was used as loading control. #unpaired two-sided t-test. d,e. Original recordings of whole cell currents and corresponding current/voltage relationships obtained in UTP-stimulated medullary primary epithelial cells isolated from Pkd1+/+, Pkd1-/- and Pkd1-/-/T16a-/mice. (#P<0.02) (n=17 cells from n=3 animals each). #one-way ANOVA and Tukey's post-hoc test f. Basal and Ca²⁺activated (100 µM UTP) anion conductances detected by YFP quenching. Initial slopes correlate with size of anion conductance. g. Summary of initial slopes, (Δ Fluorescence/s) indicating enhanced basal (#P=0.047) and UTP-activated ([#]P=0.0003) uptake in Pkd1^{-/-} cells. Compared to Pkd1^{-/-} cells, uptake was reduced in cells from Pkd1^{-/-}/T16a^{-/-} mice ([§]P=0.015 and [§]P<0.0001). (n=126 cells from n=3 animals each). **h,i.** Original recordings and summaries of Ussing chamber experiments with primary medullary epithelial cells from Pkd1+/+, Pkd1-/- and Pkd1-/-/T16a-/- double knockout mice, showing enhanced CI⁻ secretion by activation of CFTR with IBMX/forskolin (IF; 100 μM/ 2 μM) in Pkd1^{-/-} cells ([#]P=0.007). (n=18 filters from n=3 animals each). [#]one-way ANOVA and Tukey's post-hoc test. Mean and error bars indicating ± SEM. Source data are provided as a Source Data file.

Supplementary Figure 7. TMEM16A is essential for upregulated CI⁻ conductance in cortical primary epithelial cells from *Pkd1*^{-/-} mice. a,b. Whole cell currents and corresponding current/voltage relationships obtained in primary cortical epithelial cells isolated from *Pkd1*^{+/+}, *Pkd1*^{-/-} and *Pkd1*^{-/-}/*T16a*^{-/-} mice. ([#]P<0.01) (n=19 cells from n=3 animals each). c. Summary of short circuit currents measured in Ussing chamber recordings showed upregulated transport in *Pkd1*^{-/-} cells ([#]P<0.0001), which was lower in *Pkd1*^{-/-}/*T16a*^{-/-} cells ([§]P=0.007). (n=15 filters from n=4 mice each). d,e. Basal and Ca²⁺⁻ activated (100 μ M UTP) anion permeability assessed by YFP quenching. Summaries of YFP quenching (initial slope, Δ Fluorescence/s) indicate upregulation of basal ([#]P<0.028) and UTP-activated ([#]P=0.0001) anion conductance in *Pkd1*^{-/-}/*T16a*^{-/-} double knockout cells ([§]P<0.036 and [§]P=0.0002). (n=131 cells from n=4 animals each). f-i. Original Ussing chamber recordings and calculated short circuit currents indicate upregulated CI⁻ conductance activated by UTP (100 μ M) ([#]P=0.039) (n=14 filters from n=3 animals each) or IBMX/Forskolin (I/F; 100 μ M, 2 μ M)

Supplementary Figure 8. Augmented Ca²⁺ signals in cortical primary epithelial cells. a-c. Original recordings and summaries for basal and ATP (100 μ M) induced increase in intracellular Ca²⁺. Ca²⁺ peak (ER store release) was enhanced in primary cells from *Pkd1^{-/-}* (#P=0.001), but was reduced in cells from *Pkd1^{-/-}/T16a^{-/-}* kidneys ([§]P=0.003). (n=137 cells from n=3 animals each). **d,e.** Original recordings and summaries for cyclopiazonic acid (CPA, 10 μ M) induced store release and SOCE which were augmented in cells from *Pkd1^{-/-}* (#P=0.002 and #P=0.01) (n=131 cells from n=3 animals each). **f-i.** Original recordings and summaries from experiments performed in the presence of Orai-inhibitor YM58483 and TRP-inhibitor SK&F96365 (both 5 μ M). YM58483 inhibited store release in *Pkd1^{+/+}* (#P=0.025), *Pkd1^{-/-}* (#P<0.0001) *and Pkd1^{-/-}/T16a^{-/-}* cells (#P=0.02) and SOCE in *Pkd1^{+/+}* (#P<0.0001), *Pkd1^{-/-}* (#P<0.0001) *and Pkd1^{-/-}/T16a^{-/-}* cells (#P=0.0007), *Pkd1^{-/-}* (#P<0.0001) *and Pkd1^{-/-}/T16a^{-/-}* (#P<0.0001), *Pkd1^{-/-}* (#P<0.0001) *and Pkd1^{-/-}/T16a^{-/-}* cells (#P=0.0007), *Pkd1^{-/-}* (#P<0.0001) *and Pkd1^{-/-}/T16a^{-/-}* cells (#P=0.024). (n=137 cells from n=3 animals each). Mean and error bars indicating ± SEM. ^{#§}oneway ANOVA and Tukey's post-hoc test. Source data are provided as a Source Data file.

Supplementary Figure 9. TMEM16A-inhibitors block expression of TMEM16A in renal epithelial cells. a. Expression of TMEM16A mRNA assessed by semiquantitative RT-PCR and subsequent densitometric analysis in $Pkd1^{+/+}$ and $Pkd1^{-/-}$ renal epithelial cells. Expression was enhanced in $Pkd1^{-/-}$ cells under control (#P=0.04), and in the presence of Niclo (#P=0.005). (n=3 reactions for each inhibitor from n=2 animals). b. Expression of TMEM16A protein assessed by Western blotting and subsequent densitometric analysis in $PKD1^{+/+}$ and $PKD1^{-/-}$ renal epithelial cells. Expression was enhanced in $Pkd1^{-/-}$ cells under control (#P=0.035). Expression was inhibited in $Pkd1^{+/+}$ and $Pkd1^{-/-}$ cells under control (#P=0.006 and #P<0.0001), Ani9 (#P=0.004 and #P=0.002), and BBR (#P=0.018 and #P=0.018) (n=4 blots for each inhibitor from n=2 animals). Cells were grown in the absence or presence of the TMEM16A inhibitors niclosamide (Niclo; 0.5 μ M), Ani9 (1 μ M) and benzbromarone (BBR; 5 μ M) for 72h. Mean and error bars indicating ± SEM. #unpaired two-sided t-test. Source data are provided as a Source Data file.

Supplementary Fig. 10. Original uncropped blots and gels. Blots shown belong to **a** Fig. 2a, **b** Fig. 2c, and **c** Fig. 5e, **d** Supplementary Fig. 1b. Molecular weight markers (kDa or bp) are shown at the left side of the blots.

Supplementary Fig. 11. Original uncropped blots. Blots shown belong to **a-c** Supplementary Fig. 2a-c, **d** Supplementary Fig. 4a, **e-g** Supplementary Fig. 6a-c. Molecular weight markers (kDa or bp) are shown at the left side of the blots.