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1 Supplementary Methods

1.1 Supplementary theory

The many-body approach to BCS superconductivity is to construct the equa-
tions of motion for the Green’s function g, supplemented by the equations of
motion for the anomalous part, which describes the superconducting corre-
lations [1, 2, 3, 4, 5].

In a disordered superconductor, in which the (impurity) scattering time
is shorter than any other timescale in the system, one can integrate over mo-
mentum space of the Eilenberger equation [6] and obtain the Usadel equation
[7], which describes the system in terms of a position and energy dependent
diffusion equation.

The out of equilibrium state of the system can be described within the
Keldysh formalism, in which the Green’s function (GF) can be written down
as

ǧ =

(
ĝR ĝK

0 ĝA

)
(1)
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where ĝR/A is the retarded/advanced GF (related by ĝA = −τ3ĝ
Rτ3), and ĝK

the Keldysh component which takes into account the (out of equilibrium)
distribution function.

For the case of a superconductor in a spin-splitting field the Usadel equa-
tion for the GF ǧ reads:

D∇ · (ǧ∇ǧ) + [iEτ3 − ih · στ3 − ∆̌− Σ̌, ǧ] = 0 (2)

where D is the normal state diffusion coefficient, E the energy, h the
external magnetic field, σi and τi the Pauli matrices in the spin and Nambu
(electron-hole) subspaces respectively 1, ∆̌ a matrix related to the (complex)
order parameter, and Σ̌ the self energy term.

In addition to the Usadel equation 2, one also needs to consider the
so-called normalizing condition ǧ2 = Ǐ, where Ǐ is the unit matrix in the
Nambu-spin space.

This chapter provides a detailed overview of the theory of spin-dependent
transport phenomena in Zeeman-split superconductors introduced in [8], and
described in more detail in [9, 10], with a focus on the spin-energy mode,
first introduced in [11], and its experimental signatures. The scope of the
discussion is restricted to the aspects relevant to the experiment.

1.1.1 Spectral equations

In the case of a uniform superconductor (∆̂ = const), in the R subspace
(the ”ĝR” block of equation 2) the gradient term vanishes from the Usadel
equation and one is left with:

[iEτ3 − ih · στ3 − ∆̂− Σ̂, ĝR] = 0 (3)

In the absence of gradients one can choose a gauge in which ∆ is a real
number, so that ∆̂ becomes ∆̂ = ∆τ1. In the following the self-energy contri-
bution Σ̂ describes the effects of spin relaxation through spin-flip and spin-
orbit mechanisms, as well the effects of orbital depairing. Within the first

1formally speaking σ̂i = Î ⊕ σi and τ̂i = σi ⊕ Î where σi is the regular definition of the

Pauli matrices. For example τ2 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

, and σ3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

.

For the σ matrices in the Usadel equation the direct product with the unity matrix is in
the Nambu space is implied.
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Born approximation the self-energy contributions are:

Σ̌SF =
σ · τ3ǧτ3σ

8τSF

,

Σ̌SO =
σ · ǧσ
8τSO

,

Σ̌ORB =
τ3ǧτ3

6τORB

(4)

In the principle the self-energy should also contain terms describing the
electron-electron and electron-phonon interactions. However these terms
would be non-local in energy and would increase the complexity of the prob-
lem significantly.

If the out of equilibrium state is probed within a time shorter than
the effective electron-electron interaction time the effects of the pseudo-
thermalization (i.e. redistribution of the quasiparticles towards a Fermi-
Dirac-like distribution through particle collisions) will be small, and thus
this term can be dropped. Likewise, if there is a faster relaxation mecha-
nism than the quasiparticle recombination, which in this case is an absorbing
boundary condition at the (geometrical) end of the system, the effects of the
electron-phonon interaction can also be neglected. As a model without these
contributions successfully captures the main physical effects observed in the
experiment the omission of these terms is justified.

The normalization condition in the R subspace gives (ĝR)2 = 1, which
allows for a parametrization in the form ĝR =

∑3
j=0

(
gR
j,1τ1 + gR

j,3τ3

)
σj. The

components proportional to τ1 are related to the anomalous part of the GF,
and the ones proportional to τ3 are related to the regular part. Similarly the
components proportional to σ0 describe singlet correlations, while the ones
proportional to σi={1,2,3} describe triplet correlations in x, y and z directions
respectively. For a BCS superconductor, at zero field, we have gR

0,3 = E√
E2−∆2

and gR
0,1 = i∆√

E2−∆2 , while the other ones are equal to zero. If the external
magnetic field is applied along the z direction only the σ0 and σ3 terms need
to be kept.

With the ∆̂ and the Σ̂ as defined in eq. 4 the Usadel equation reduces to
a system of nonlinear coupled algebraic equations, in terms of four complex
numbers: g0,1, g3,1, g0,3 and g3,3. A numerical solution, obtained using a
variant of the Powell method [12], of the Usadel equation presented in terms
of the components of ĝR, calculated for the following parameters: H = 1T,
∆ = 235µeV, H = 1T, τ−1

ORB = 6.5µeV, τ−1
SO = 13µeV, τ−1

SF = 0 (these are the
same values as for the rest of the theoretical figures in this document, unless
otherwise stated), is shown in figure 1.
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Supplementary Figure 1: A numerical solution of the Usadel equation shown
in terms of the real (blue lines) and imaginary (red lines) parts of g0,1, g3,1,
g0,3 and g3,3.

The spin-averaged density of states N+ =
N↑+N↓

2
is directly given by

N+ = Re(g0,3), while the DOS spin-difference N− =
N↑−N↓

2
is given by N− =

Re(g3,3) (see figure 1).

1.1.2 Kinetic equations

After solving the spectral equations, and obtaining ĝR, we can now turn
out attention to the the kinetic part of the problem, which determines the
out-of-equilibrium distribution function.

By utilizing the normalization condition, ǧ2 = 1, the Keldysh component
can be rewritten as ĝK = ĝRf̂ − f̂ ĝA, where f̂ is the generalized distribution
function f̂ = fL+fT τ3 +

∑3
i=1(fT iσi+fLiσiτ3). Following the same reasoning

as before, if the external magnetic field is applied along the z direction, the
distribution function can be reduced to:

f̂ = fL + fT τ3 + fT3σ3 + fL3σ3τ3 (5)

In equilibrium only the fL component is nonzero: f 0
L = tanh( E

2kBT
), which
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is related to the particle distribution function in the following way fp(E) =
(1− fL(E))/2.

If we allow the distribution function to be position dependent f̂ = f̂(x),
and substitute this into the Usadel equation (eq. 2), the gradient term will
be nonzero. In the Keldysh subspace the equation then reads ∇J̃ − S̃ = 0,
which is in fact a continuity equation for the current J̃ = DĝR∇ĝK with sink
terms given by S̃ = [ǧ, iEτ3 − ih · στ3 − ∆̌− Σ̌]K.

To compute physical observables,one needs to multiply J̃ by an appropri-
ate matrix and take the trace:

j̃a,b =
1

8
Tr
[
τaσbJ̃

]
The energy current density is given by je = j̃0,0 (even in the electron-hole

as well as the spin subspaces), the charge current density by jc = j̃3,0 (odd
in the e-h subspace but even in the spin subspace), the spin current density
by js = j̃0,3 (e-h even, spin odd), and finally the spin-energy current is given
by jse = j̃3,3 (odd in both subspaces). The total current is obtained by inte-
grating these current densities with respect to energy: Je =

∫∞
−∞ dEEje(E),

Jc = e
∫∞
−∞ dEjc(E), Js =

∫∞
−∞ dEjs(E), Jse =

∫∞
−∞ dEEjse(E).

If we go back to the energy resolved quantities and utilize the previously
laid out parametrization for ĝR and f̂K we can obtain2 a simple system of
equations for the currents:

je = DL∇fL +DT3∇fT3,

js = DL∇fT3 +DT3∇fL,

jc = DT∇fT +DL3∇fL3,

jse = DT∇fL3 +DL3∇fT

(6)

In the equation 6 DL,T,L3,T3 are the energy dependent diffusion coefficients

2As en example the energy current je = 1
8Tr

[
J̃
]

is found to be

je = D
2

(
1 + |g0,3|2 + |g3,3|2 − |g0,1|2 − |g3,1|2

)
∇fL +

D
2

(
g3,3g

∗
0,3 + g0,3g

∗
3,3 − g3,1g∗0,1 − g0,1g∗3,1

)
∇fT3. The prefactor in front of ∇fL is

identified as DL and the one in front of ∇fT3 as DT3. The same quantities will appear in
the expression for the spin current js. Likewise in the jc-jse subspace.
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given by the equation 7 and shown in figure 2.

DL =
D

2

(
1 + |g0,3|2 + |g3,3|2 − |g0,1|2 − |g3,1|2

)
,

DT3 =
D

2

(
g3,3g

∗
0,3 + g0,3g

∗
3,3 − g3,1g

∗
0,1 − g0,1g

∗
3,1

)
,

DT =
D

2

(
1 + |g0,3|2 + |g3,3|2 + |g0,1|2 + |g3,1|2

)
,

DL3 =
D

2

(
g3,3g

∗
0,3 + g0,3g

∗
3,3 + g3,1g

∗
0,1 + g0,1g

∗
3,1

)
(7)

For each of these currents the sink terms can be computed in exactly the
same way:

s̃a,b =
1

8
Tr
[
τaσbS̃

]
The continuity equation can then be restated as:

∇je = 0,

∇js = ST3fT3,

∇jc = RTfT +RL3fL3,

∇jse = (RT + SL3)fL3 +RL3fT

(8)

The relaxation rates RT and RL3 correspond to Andreev-like charge re-
laxation processes, while the ST3 and SL3 correspond to spin relaxation pro-
cesses. One can verify, by taking the appropriate traces and separating out
the terms proportional to each of the distribution function modes, that they
are as follows:

RT = 2∆Re(g0,1),

RL3 = 2∆Re(g3,1),

SL3 = RS

[
Re(g0,3)2 −Re(g3,3)2 + β

(
Re(g3,1)2 −Re(g0,1)2

)]
,

ST3 = RS

[
Re(g0,3)2 −Re(g3,3)2 − β

(
Im(g3,1)2 − Im(g0,1)2

)] (9)

where RS = RSO + RSF = 1
τSO

+ 1
τSF

and β =
RSF −RS0

RS

. Supplementary

figure 2 also shows the relaxation rates, calculated for the same parameters
as figure 1.

At H = 0 all of the g3,i components vanish and DT3 and DL3 do so too.
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Supplementary Figure 2: Top: the normalized (D = 1) energy depen-
dent diffusion coefficients DL and DT3 (left) as well as DT and DL3 (right).
Bottom: the charge (RT and RL3) and spin (SL3 and ST3) relaxation rates,
normalized to 2∆ = 1 and RS = 1;

The expressions for the currents 6 are reduced to:

je = DL∇fL,

js = DL∇fT3,

jc = DT∇fT,

jse = DT∇fL3

(10)

The transport of the spin dependent modes fT3 and fL3 is then decoupled
and the transport equations 10 recover the result from [11] (without the
supercurrent contribution), giving a more direct interpretation of the spin-
energy current as the spin resolved energy current.

1.1.3 Transport eigenmodes

The transport problem for the four out-of-equilibrium modes can be sepa-
rated into two independent subspaces: the first two equations from each of
the systems 6-9 are expressed only in terms of the fL and fT3 modes, while
the remaining two are dependent only on fT and fL3. In the following two
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subsections the transport equations in these two subspaces will be addressed
separately.

The fL and fT3 modes:
The fL − fT3 subspace of equation 6 can be rewritten as(

je
js

)
=

(
DL DT3

DT3 DL

)
∇
(
fL
fT3

)
(11)

while the same subspace of equation 9 reads

∇
(
je
js

)
=

(
0

ST3fT3

)
(12)

Substituting the first one into the second yields(
DL DT3

DT3 DL

)
∇2

(
fL
fT3

)
=

(
0

ST3fT3

)
(13)

With the ansatz

(
fL
fT3

)
= ekxv, we have(

k2DL k2DT3

k2DT3 k2DL − ST3

)
v = 0 (14)

which has a nontrivial solution only if the determinant of the matrix is

zero. Solving for k yields two solutions k2
1 = 0 and k2

2 =
DLST3

D2
L −D2

T3

, with the

corresponding null-space vectors v1 ∝
(

1
0

)
and v2 ∝

(
−DT3

DL

)
.

The top panel of figure 3 shows the energy dependence of k2.
The first solution corresponds to ∇2fL = 0 because of the absence of

any inelastic relaxation mechanism in the model. The effective relaxation
is taken into account through an absorbing boundary condition at the ends
of the wire (where large, well thermalized, metallic reservoirs are located).
Assuming that the quasiparticles are injected at x = 0 and the reservoir is
located at x = L the solution can be expressed as:(

fL
fT3

)
= B1v1(L− x) +B2v2e

−k2x +B+
2 v2e

+k2x +

(
f 0
L

0

)

Once again, invoking the boundary condition

(
fL
fT3

)
x=L

=

(
f 0
L

0

)
, where

f 0
L = tanh( E

2kBT
), one finds B+

2 = −B2e
−2k2L
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Finally the full form of the solution is found to be:(
fL
fT3

)
= B1

(
L− x

0

)
+B2v2

(
e−k2x − e+k2(x−2L)

)
+

(
f 0
L

0

)
(15)

The energy dependent coefficients B1 and B2 are to be determined from
the boundary condition at the point of quasiparticle injection. This is dis-
cussed in detail in section 1.1.3.

At vanishing magnetic field the transport eigenmodes in the fL-fT3 sub-
space decouple as well. The second mode describes just the decay of the spin
mode, which then relaxes within the spin-flip length (SL3 is nonzero even at
H = 0). The transport of the fL mode is the same as in [13], only modified
by the energy dependent diffusion DL.

The fT and fL3 modes:
By following the same procedure as in the previous section one can obtain

the transport eigenmodes in the fT − fL3 subspace. From the equations 6
and 8 we have: (

k2DT −RT k2DL3 −RL3

k2DL3 −RL3 k2DT −RT − SL3

)
v = 0 (16)

In the limit of vanishing spin relaxation (SL3 = 0) two modes can be

obtained with k3 =
RL3 −RT

DL3 −DT

, v3 ∝
(
−1
1

)
and k4 =

RL3 +RT

DL3 +DT

, v4 ∝
(

1
1

)
.

Taking into account the boundary condition, the following solution can
be obtained:(

fT
fL3

)
= B3v3

(
e−k3x − e+k3(x−2L)

)
+B4v4

(
e−k4x − e+k4(x−2L)

)
(17)

If the spin relaxation rate is finite the form of the solution 17 remains the
same, however v3 and v4 become energy dependent, while the expressions for
k3 and k4 become slightly more complicated. The bottom panel of figure 3
shows the relaxation rates for both modes based on the calculation including
the spin-relaxation mechanism.

At energies close to the ∆ the transport of the fT and fL3 modes is
closely coupled (because DL3 6= 0). However at higher energies DL3 →
0 so the modes become decoupled. We can also see this by investigating
the components of the k3 and k4 modes in the basis of fT and fL3. The
decomposition of v3 and v4 is shown in figure 4; indeed at higher energies
the k3 mode becomes the charge mode, while the k4 becomes the spin-energy
mode.
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Supplementary Figure 3: The relaxation rates of the exponentially decaying
modes normalized by the spin-relaxation length λSF =

√
DτSO in the fL−fT3

(left) and fT − fL3 (right) subspaces. The labels are assigned to the traces
based on the high energy behavior, as shown in figure 4.

Unlike the previous two modes the fT and fL3 are not completely de-
coupled at H = 0 as the relaxation (equation 9) mixes the two even at all
magnetic fields.

Injector boundary conditions:
In the experiment that was performed the injector junction is an NIS tunnel

junction (Cu/Al2O3/Al). The current density through this junction is given
by equation 18: 

je
js
jc
jse

 =
1

R̃


N+ N− 0 0
N− N+ 0 0
0 0 N+ N−
0 0 N− N+



f̃L

f̃T3

f̃T

f̃L3

 (18)

where R̃ is the barrier resistance normalized by the ratio of the junc-
tion surface area and the cross section of the wire. f̃i = fi − fNi is the
difference between the distribution function in the superconductor and in
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Supplementary Figure 4: The decomposition of the k3 (left) and (k4) trans-
port eigenmodes in terms of fT (charge, blue line) and fL3 (spin-energy, red
line). The dashed black line indicates an equal mixture of the fT and fL3

modes. Note that below E ≈ 150µeV there are no quasiparticle states as
indicated by the DOS (shown on the right scale).

the normal metal (indicated by the superscript N). The tunneling matrix is
block-diagonal and again separates the problem into the fL−fT3 and fT−fL3

subspaces.
More generally, when using a ferromagnetic injector the off-diagonal blocks

of 18 are also nonzero and are proportional to the injector polarization P (cf.
equation 57 in [10]), allowing for the excitation of the spin-dependent modes
without Zeeman splitting. Here the we restrict the discussion only to the
case of a normal-metal injector junction.

When the superconductor is Zeeman split N− 6= 0, and even if the spin
(fT3) and spin-energy (fL3) modes are not present a finite spin and spin
energy current will flow through the barrier: js = N−

r̃
f̃L and jse = N−

r̃
f̃T .

This current through the tunnel barrier must be component-wise equal
to the current along the wire at x = 0; there are two components to this
current the one which flows to the left j← (and relaxes in the reservoir at x =
−LL < 0) and the one which flows to the right j→ (relaxes at x = LR > 0).
For the sake of simplicity only the case of a symmetric wire (LL = LR = L)
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will be discussed here, under which |j←| = |j→| and allows one to consider
only the right-moving current with an effective barrier resistance r̃ = 2R̃.

In the fL− fT3 subspace the current conservation is given by (from equa-
tions 18 and 13):(
DL DT3

DT3 DL

)
∇
(
fL
fT3

)
x=0

−1

r̃

(
N+ N−
N− N+

)(
fL

fT3

)
x=0

=
1

r̃

(
N+ N−
N− N+

)(
fNL
fNT3

)
(19)

When a voltage is applied to the normal metal the distribution function is
shifted by the voltage f(E, V ) = f0(E−V ). Tunneling across the barrier will
imprint this distribution into the superconductor, resulting in quasiparticle
up to the energy E ≈ eV , which can be parameterized by the four out of
equilibrium modes. The normal metal will be driven out of equilibrium by
this process, and kinetic equations should be solved for the nonequilibrium
state.

Because of the large thickness of the injector electrode compared to the
thickness of the Al wire the distribution function is assumed to be the Fermi-
Dirac one offset by the applied voltage - for one tunneled electron the distri-
bution function is modified by VNNNδfN = 1 = VSNSδfS (V is the volume
and N the density of states at the Fermi level, the subscript N/S refers to
the normal metal or the superconductor). As VN � VS the superconductor
is driven further out equilibrium, for a relatively small δfS one can safely
neglect the nonequilibrium state in the normal metal.

The right hand side of 19 depends solely on the distribution function of the
injection electrode; when a finite voltage is applied in the L/T parametriza-
tion the distribution function is fNL/T =

(
tanh E−eV

kBT
± tanh E−eV

kBT

)
/2.

By using the expression 15 the left hand side can be expressed in terms
of B1 and B2. By solving the linear system of equations, and making all the
necessary substitutions, at the end one finds that the distribution function
in the superconducting wire is given by:

fL(E, x) = χL(E, x)fNL (E, V, T ) + f 0
L(E, T ),

fT3(E, x) = χT3(E, x)fNL (E, V, T ),

fT (E, x) = χT(E, x)fNT (E, V, T ),

fL3(E, x) = χL3(E, x)fNT (E, V, T )

(20)

The χ coefficients of equation 20, calculated for the same parameters as
in figure 1 and x = 0, are shown in figure 5.

If LL 6= LR the left and right moving currents are not the same, and a
set of B parameters (eqs 15 and 17) determines both of them. However, by
imposing the continuity of the distribution function at x = 0: f←(x = 0) =
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Supplementary Figure 5: The χ coefficients from equation 20 calculated for
the experimental parameters at H = 1T and x = 0. The top panel shows χL

and χT3 while the bottom one shows χT and χL3; in both panels the DOS
for both spins is shown on the right scale.

f→(x = 0), the B← can be expressed in terms of B→ and the problem is
effectively reduced to the symmetric case.

In the experiment the corresponding values are LR ≈ 6µm, and LL ≈
4µm. For the sake of simplicity, the calculations have been performed with
LR = LL = 5µm.

1.1.4 Spin and charge accumulation

The currents introduced in section 1.1.2 have a corresponding charge (den-
sity), which is defined as

˜qa,b =
1

8
Tr
[
τ3τaσbĝ

K
]

Compared to the definition of the currents there is an extra τ3 matrix,
coming from the structure of the time derivative term in the Gor’kov equation
[1].

In terms of the components of the retarded Green’s function and the
generalized distribution function the accumulation of charge, spin, energy
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and spin-energy is respectively given by:

µ =

∫ ∞
−∞

Tr
[ ˆg(E, x)

K
]dE =

∫ ∞
−∞

[
fTRe(g0,3) + fL3Re(g3,3)

]
dE,

µz =

∫ ∞
−∞

Tr
[
τ3σ3

ˆg(E, x)
K

]dE =

∫ ∞
−∞

[
fT3Re(g0,3) + fLRe(g3,3)

]
dE,

ε =

∫ ∞
−∞

Tr
[
τ3

ˆg(E, x)
K

]EdE =

∫ ∞
−∞

[
fLRe(g0,3) + fT3Re(g3,3)

]
EdE,

εz =

∫ ∞
−∞

Tr
[
σ3

ˆg(E, x)
K

]EdE =

∫ ∞
−∞

[
fL3Re(g0,3) + fTRe(g3,3)

]
EdE

(21)

The same result can be found using a more straight forward argument: in
the particle (or electron-like) definition of the distribution function, and the
semiconductor definition of the DOS, the density of spin up/down particles is
given by ρ↑/↓ = N↑/↓(E)fp↑/↓(E), where N↑/↓ is the density of states for each

of the spins and fp is the particle distribution function (i.e. in equilibrium
the Fermi-Dirac distribution). The total (energy-independent) density of
particles can be obtained by integrating this quantity ρtot↑/↓ =

∫∞
−∞ dEρ↑/↓(E).

The total charge is then related to the number of particles present in the
system ρtot = ρ↑ + ρ↓. To obtain the charge imbalance one just needs to
subtract the number of particles in equilibrium ρtoteq =

∫∞
−∞N+(E)f0(E, T )dE

where f0 is the Fermi-Dirac distribution. Likewise the total magnetization
can be determined as the difference between the number of spin up and spin
down quasiparticles. By using the expressions for the density of states N↓/↑ =
N+±N− and the distribution function f↑/↓ = (1−fL−fT±(fL3+fT3))/2 and
by dropping the terms that yield zero under integration the same expressions
for µ and µz are obtained.

Finally, to determine the out-of-equilibrium component of the charge and
spin accumulation the equilibrium one must subtract the equilibrium one
(i.e. to replace fL with fL − f 0

L in eq. 21):

µz =

∫ ∞
−∞

dE
[(
fL(E)− f 0

L(E)
)
N− + fT3N+

]
,

µ =

∫ ∞
−∞

dE
[
fT (E)N+ + fL3N−

] (22)

The first equation, describing the spin accumulation, tells us that in the
presence of a spin-splitting field the energy mode (fL) results in a finite
magnetization. In equilibrium and at nonzero temperatures this is the effect
that results in a finite paramagnetic response of a superconductor [14]. The
second equation describes the charge imbalance of the system: the first term
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describes the charge mode described by [15], while the second term describes
the charge accumulation associated with the spin-energy mode.

Supplementary figure 6 shows the magnetic field dependence of the spin
accumulation as well as the charge accumulation proportional to the fT and
fL3 modes versus the injection voltage (the field dependence of ∆(H) is as
discussed in the section 1.1.5). The spin accumulation is dominantly due to
the induced fL mode and therefore grows with the magnetic field (as N−
becomes larger with increasing H), and again decays when ∆ → 0 as the
field approaches the critical one.

As discussed in [16, 17], the orbital depairing induced by the magnetic
field facilitates the charge relaxation processes and therefore the fT mode is
suppressed by a finite magnetic field. However as the charge imbalance due to
the spin-energy mode µL3 is a function of N− it shows a qualitatively different
behavior: although the charge relaxation increases at a finite filed, so does the
span of energies at which N− is nonzero. Combined these two contributions
result in a charge imbalance which is maximal at ∆−µBH < Vinj < ∆−µBH
and doesn’t monotonically decrease with the magnetic filed, as can be seen
in figure 6.

1.1.5 The self-consistency relation

Within the Keldysh formalism the self-consistency for the pairing potential
∆ is given by

∆ =
λ

16i

∫ ωD

−ωD

Tr
[
(τ1 − iτ2)gK(E)

]
dE

where λ is the BCS pairing potential, ωD is the Debye frequency, and the trace
essentially ”separates out” the anomalous part of the Keldysh component.

This expression can be expanded in terms of the distribution functions
and the various components of the retarded GF:

∆ =
λ

2

∫ ωD

−ωD

dE
[
Im(g0,1)fL + Im(g3,1)fT3 + i

(
Re(g0,1)fT + Re(g3,1)fL3

)]
(23)

The first term is nonzero even at equilibrium (with fL = tanh( E
2kBT

)),
while the other three are nonzero only out of equilibrium. The last two
terms are related to the charge imbalance (given by the fT and fL3) and add
a nonzero imaginary component to the ∆.

While it is true that at equilibrium one can always choose a gauge such
that ∆ is strictly real, out of equilibrium this is not the case. As it was shown
in section 1.1.2, the quasiparticle charge current is relaxed through Andreev
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Supplementary Figure 6: A color-plot showing the spin accumulation (left
panel), the charge accumulation proportional associated with the fT (top
right) and fL3 (bottom right) modes as a function of the applied magnetic
field and the injection voltage.

processes, which means that the current is transferred from the quasiparticles
to the condensate, which implies the existence of a finite phase gradient along
the wire, which is precisely the meaning of the imaginary component of ∆ in
equation 23.

In order to solve the whole problem self-consistently one must:

• Solve the spectral equations at each position using the local ∆(x);

• Solve the transport problem in terms of all of the out-of-equilibrium
modes (at each energy);

• Calculate the new ∆(x) using the self-consistency relation using the
obtained modes at each x;

• Repeat the previous steps until convergence is reached.

While doing so one cannot rely on the previously laid out analytical re-
sults: the transport solution can no longer be obtained by diagonalizing the
transport equations as the diffusion and relaxation terms are now position
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dependent, as ∆ is a function of the position as well. Therefore the solution
needs to be obtained numerically from start to finish, including at the bound-
ary condition, which increases the complexity of the calculation drastically.
We can, however, calculate the ∆(x, Vinj) based on the analytical solution
(without any gradients in ∆) to estimate the magnitude of the effect in our
experimental situation. Supplementary figure 7 shows the absolute value, as
well as the argument of ∆ at x = 0 (where one can naively expect the largest
deviation from the equilibrium values) - the maximum suppression turns out
to be in the order of ≈ 10%, justifying the previous approach.

The self-consistency relation in equilibrium as function of the magnetic
field will be further discussed in the section describing the sample properties
(1.2 and 1.2.1).

Supplementary Figure 7: The self-consistent calculation of ∆ at the injection
sight (x = 0) as a function of the injection voltage at H = 0T (blue) and
H = 1T (red). The top panel shows the absolute value of the complex ∆,
while the bottom shows the argument. At H = 0 the argument is multiplied
by a factor of 10 for clarity - this signifies that the supercurrent induced in
the wire is lower at H = 0, as it should be for a slower charge relaxation.
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1.2 Supplementary experimental methods

The sample, shown in figure 8, consists of a L = 10µm long, w = 200nm
wide superconducting Al wire. The total thickness of the wire, including the
natively grown oxide layer on the top of the wire, is d ≈ 6nm. The wire
resistance at T = 4K is R ≈ 850Ω resulting in a resistance per square of
R� ≈ 17Ω and the normal state diffusion coefficient of D ≈ 11 cm2

s
. The

critical temperature of the wire is Tc ≈ 1.7K (the increase of the critical
temperature compared to the bulk value of ≈ 1.2K is related to the disorder
induced by the small film thickness and is consistent with previous findings
[18]), while the critical in plane magnetic field is Hc ≈ 2.7T. On both ends
the wire is terminated with large, well thermalized, metallic reservoirs.

On top of the wire there are several tunnel junctions (using the native
oxide as the tunnel barrier):

• The injector junction Jinj (cyan in 8) - an NIS junction used for creating
quasiparticle excitations in the wire by current injection. The normal
metal N is Cu (100nm thick), the surface area of the junction is S =
200nm× 200nm and the normal state resistance is R = 13kΩ.

• The detector junctions J{1,2,3} (red in 8) - SIS′ junctions, where the
counter electrode S′ is an dAl ≈ 8nm thick layer of Al with a mono-
layer of Pt (dPt = 1Å nominally) on top. The purpose, and the effects,
of the Pt layer are described in detail in 1.2.3. The surface area of these
junctions is S = 50nm × 200nm, while their normal state resistances,
as well as their distances from the injector junction are:

– J1: R = 31.2kΩ, L1 = 250nm

– J2: R = 38.3kΩ, L2 = 1.89µm

– J3: R = 29.5kΩ, L2 = 3.53µm

The basic idea of the experiment is the following: quasiparticles are in-
jected into the wire by applying a current through Jinj. As the diffusion time

to the reservoirs τdif =
L2
res

D
≈ 20ns is much shorter than the quasiparticle-

quasiparticle recombination time τrec ≈ 400ns [19] the quasiparticles relax
only by diffusing to the end of the wire and thermalizing with the phonon
bath there. An externally applied magnetic field will cause pair-breaking
effects, and for an in-plane field the pair breaking energy is determined to
be α ≈ 6.5µeV

T 2 (see figures 9 and 10). Consequently, all the way up to the
critical field αH2

c < µBH, which implies that the DOS of the superconductor
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will be Zeeman split, and allow us to create spin-polarized excitations by
biasing the injector junction such that ∆− µBH < Vinj < ∆− µBH.

The out-of-equilibrium quasiparticles can then be probed by one of three
spin-sensitive spectroscopic detectors, positioned at different distances away
from the injection site. The spin relaxation mechanism in the wire is as-
sumed to be through spin-orbit scattering and the effective relaxation time
is estimated, based on [20], to τSO = 50ps, giving a spin relaxation length
of LSO ≈ 240nm, which is comparable to the distance between Jinj and J1.
Thus our device, due to the spin sensitivity of the detector, allows for the
detection of a spin dependent distribution function at short distances from
the injection site.

All of the measurements presented in this chapter were performed in a
3He/4He dilution refrigerator at T = 90mK.

A

Supplementary Figure 8: An SEM micrograph of the sample, with a sim-
plified schematic of the principal measurement setup: Jinj (cyan) is current
biased, and the I(V )/G(V ) curve of one of the detector junctions J{1,2,3}
(red) is measured simultaneously.

The following sections will address the injection scheme (section 1.2.1) as
well as the workings of the detectors in detail (sections 1.2.2 and 1.2.3).

1.2.1 The NIS injector

In a superconductor quasiparticles can be excited by current (or voltage)
biasing an NIS junction, where the tunnel barrier allows for a finite voltage
drop across the junction and thus quasiparticles with energies up to the
voltage bias, E ≈ eV , can be injected into the superconductor. Following
[21] the tunneling current through such a junction is given by:

I(V ) =
1

eRN

∫
N(E)[fp(E)− fpN(E − eV )]dE (24)
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while the differential conductance is:

G(V ) =
∂I(V )

∂V
=

1

eRN

∫
N(E)

∂f pN(E − eV )

∂V
dE (25)

The quantity
∂f pN(E − eV )

∂V
becomes the Dirac-delta function at T = 0,

and at finite temperatures is a bell-like curve with a FWHM of ≈ 3.5kBT .
Therefore the G(V ) curve of the NIS junction depends only on the DOS
of the superconductor and the effective temperature in the normal metal
(and at a sufficiently low temperature the G(V ) approaches the DOS of the
superconductor).

When a finite magnetic field is applied to a superconductor there are
several observable effects [22]. The first of which is the orbital (Abrikosov-
Gor’kov) depairing, from the induced screening supercurrent, which results
in a rounding of the DOS coherence peaks as well as a reduction of the spec-
troscopic gap below ∆. The strength of this effect is geometry dependent,
and for a thin film superconductor with an in-plane field the depairing pa-

rameter is α =
De2d2

6~
H2 [21, 23], where d is the sample thickness and D

the normal state diffusion constant. The critical field, at zero temperature,
due to the orbital depairing is set by 2α(H) = ∆(H = 0), and at low fields
the ∆(H) curve is roughly linear: ∆(H) ≈ ∆0 − 0.4α(H). If the sample
is thin α is quadratically suppressed which leads to an increased Hc. The
second effect is the Zeeman splitting of the DOS, a result of the coupling of
the quasiparticle spin degree of freedom with the external field, which shifts
the spin up/down quasiparticle dos by Ez = ±µBH (the Landé factor is
g = 2) [24]. The Zeeman splitting can be observed only if the orbital smear-
ing of the DOS is sufficiently small and if the (critical) field is larger than
the temperature of the superconductor µBH > 3.5kBT . In the presence of
the spin-orbit coupling, which is the relevant spin relaxation mechanism for
this experiment, spin is only approximately a good quantum number, which
leads to the spin-mixing of the DOS, as shown in figure 4 and [25] - the
spin up DOS is nonzero even in the ∆ − µBH < E < ∆ + µB. However
this is not directly observable with an NIS junction with a spin-independent
transmission.

Supplementary figure 9 shows the G(V ) of the injector at H = 0T and at
H = 1T. Both of these traces show features beyond the simple equilibrium
model. In particular, at H = 0T (fig. 9, the blue trace) the coherence
peaks are sharper (higher and narrower) than what one should expect at
T = 90mK.

This can be understood in terms of the out-of-equilibrium suppression of
∆: when a finite voltage is applied across the junction there is a nonzero
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current flowing through it which, due to the relatively low resistance of the
junction R(Jinj) = 13kΩ and the thin superconducting wire, induces an out
of equilibrium state in the wire, which could be taken into account through
the voltage dependent gap ∆ = ∆(Vinj). This suppression of ∆ reduces the
range of injection voltages for which eVinj ≈ ∆(Vinj) and thus makes the
coherence peak sharper than at equilibrium.

At H = 1T (fig. 9, the red trace), there are two observable peaks, cor-
responding to the spin down and spin up component of the DOS. The spin
down peak, located at V ≈ 175µV is slightly sharper than the model, while
the main difference is in the spin up peak (located at V ≈ 290µV) is signifi-
cantly less pronounced than the equilibrium model predicts.

Supplementary Figure 9: The NIS G(V ) curves at H = 0T (blue) and at
H = 1T (red). The gray traces are the G(V ) traces up to H ≈ 1.8T in steps
of ∆H ≈ 0.4T. The dashed blue and red traces are the simulated G(V )
curves for a BCS DOS at T = 90mK and an Abrikosov-Gor’kov DOS at
H = 1T and α = 6.5µeV and the same temperature.

Supplementary figure 10 shows the G(V ) of the injection junction Jinj
as a function of the magnetic field as a color-plot, as well as a numerical
simulation of the same using the equilibrium ∆(H) dependence (based on
23) for comparison.

As a result of the nonequilibrium effects some of the sample properties,
in particular the Abrikosov-Gor’kov depairing energy α, cannot be deter-
mined from a straightforward fit. The depairing rate was determined to be
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α0 = 6.5µeV
T2 by using the both the tunneling spectra of the injector junction

as well as the detectors which also, albeit indirectly, probe the DOS with-
out significant out-of-equilibrium effects. This value was also used for the
theoretical calculation shown in figure 10.

As the AG energy is lower than the Zeeman energy α(H) = α0H
2 < µBH

all the way up to the critical field, at finite fields the DOS will be well Zeeman
split, as shown in the same figure.

Supplementary Figure 10: A color-map of the NIS G(V ) curves as a function
of the magnetic field, from the experiment (left), and from the theory using
the equilibrium self-consistent ∆(H) (blue curve).

1.2.2 The SIS′ detector

The current across an SIS′ has two main contributions: the Josephson su-
percurrent and the quasiparticle tunneling current. In this chapter we will
discuss how the tunneling current can be used as a spectroscopic probe of the
out of equilibrium state in a superconductor, as well as how the supercurrent
contribution can be suppressed.

The Josephson current:
The Josephson supercurrent trough an extended SIS junction, at a finite
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magnetic field, is given by [26]:

Is =

∫ −d
2

−d
2

js(x,H) sin(ϕ0 + kx)dx (26)

where d is the junction width, and js(x,H) describes both the current density
profile along the axis orthogonal to the applied magnetic field as well as the
field dependence of ∆(H). The wavenumber k = 2πH(2λ + dbarrier)/Φ0 (λ
is the field penetration depth and Φ0 = 2 × 10−15Wb the magnetic flux
quantum), describes the total magnetic field flux trapped in the junction.

If the barrier is uniform, that is jc = const, the following result is ob-

tained: Is(ϕ) =
js sin(d k

2 )
k/2

sin(ϕ). Then the critical current is always obtained
at ϕ = π

2
and it follows the usual Fraunhofer pattern - it is equal to zero

when the trapped flux is equal to one flux quantum.
If, on the other hand, the barrier is not spatially uniform and js(x) has

an odd component (x = 0 is the center of the junction), the supercurrent
can be expressed as Is(ϕ) = A sin(ϕ) + B cos(ϕ), where the field depen-
dence is hidden in A(H) and B(H). The critical current then becomes
Ic =

√
A(H)2 +B(H)2. Because these two coefficients are not simulta-

neously equal to zero the critical current cannot be fully suppressed by an
application of the magnetic field. However the minimum of Ic is still obtained
close to the field at which there is one flux quantum in the junction.

Experimentally the critical current can be accessed directly by measuring

the V (I) or by measuring the differential conductance G(V ) =
∂I

∂V
at V = 0.

Additionally, there can be an excess supercurrent contribution at a finite
voltage V , if the the Josephson frequency matches a resonant frequency in
the device 2eV = hf , which for the device in question happens at V ≈ 256µV
(f ≈ 124GHz) - see the inset of figure 11.

Supplementary figure 11 shows the normalized differential conductance at
zero voltage bias of detector J1. As expected from the geometry (djunction ≈
200nm, 2λ+dbarrier ≈ 10nm) the Josephson critical current is minimal around
H = 1T, and by measuring at (or close to) this magnetic field allows us to
probe only the quasiparticle current contribution (as described in the section
1.2.2). The curve does not exactly follow the shape of a (smeared out)
cardinal sine function, which is primarily because of the ∆(H) and ∆D(H)
dependencies which are not taken into account.

The residual Josephson contribution to the G(V ) curve at H = 1T, can
be modeled as a Gaussian peak and subtracted from the trace, as is shown
in figure 16.
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Supplementary Figure 11: The magnetic field dependence of the zero bias
Josephson peak (G(V = 0) - blue curve) as well as the first Josephson res-
onance (5.5G(V ≈ 256µV) - red curve) for the detector J1. The red trace
stops at H = 1T as slightly above this field the spectral gap closes below
the threshold ∆ + ∆D = 256µeV. The black dashed curve shows the Fraun-
hofer pattern normalized by the Ic at H = 0. The inset shows the G(V )
curve at zero magnetic field with the Josephson peak, as well as the first two
resonances labeled.

The quasiparticle tunneling current:
The tunneling current through an SIS′ junction is (see [21]):

I(V ) =
1

eRN

∫ ∞
−∞

ND(E + eV )N(E)[fp(E)− fpD(E + eV )]dE (27)

where RN is the junction resistance, N and ND are the DOS functions for
the probed superconductor and the detector electrode respectively, while fp

and fpD are the distribution functions in the particle picture.
By applying a voltage eV = ∆ + ∆D to the detector junction the the

(electron side) gap edge of the detector is brought down to the gap edge of
the superconductor at E = −∆. As the density of states of the detector
is ND(E > 2∆D) ≈ 1 and the distribution function fpD(E > 2∆D) = 0
the electron side of the superconductor is probed by a flat DOS with no
excitations present. The tunneling on the hole side is blocked by the spectral
gap of the detector down to E = ∆ − 2∆D. Therefore the total current
will be directly proportional to the number of electron-like excitations in the
probed superconductor. Likewise if a negative voltage of the same magnitude
is applied the number of hole-like excitations is measured by the tunneling
current.
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Measuring the G(V ) curves can provide spectroscopic information about
the quasiparticle population. If the detector is at equilibrium and at a suf-
ficiently low temperature it will host a vanishingly small number of quasi-

particles and therefore the term in the G(V ) =
∂I

∂V
proportional to ND(E +

eV )
∂f pD(E + eV )

∂V
� 1 can be neglected (∂f

p

∂E
is nonzero only in a window of

3.5kBT � ∆). The other, nonzero, term is

G(V ) =
1

eRN

∫ ∞
−∞

N(E)[fp(E)− fpD(E + eV )]
∂ND(E + eV )

∂V
dE

At sub-gap voltages (eV ≤ ∆ + ∆D) and in the relevant energy range
(|E| > ∆, where N(E) > 0), fp can be replaced with fp(E, T = 0) (i.e.
no quasiparticles are present in the detector which could contribute to the
tunneling process), and so the term in the square brackets becomes δf(E) =
fp(E) − fpD(E + eV ) = fp(E) − fp(E, T = 0), which just accounts for the
(out-of-equilibrium) excitations in the superconductor. Finally the relevant
expression for the differential conductance becomes:

G(V ) =
1

eRN

∫ ∞
−∞

∂ND(E + eV )

∂V
N(E)δf(E)dE (28)

The derivative ∂ND(E+eV )
∂V

is very sharply peaked at E ≈ ∆D, and from
this it is clear that the G(eV = E−∆D) ∝ N(E)δf(E) probes the number of
excitations at energy E. This property allows for the use of an SIS junction
as a spectroscopic detector of out-of-equilibrium quasiparticles.

A graphical representation showing all of this is given in figure 12, showing
the DOS of the probed superconductor, an equilibrium distribution function,
an out-of-equilibrium distribution function (only the fL mode is nonzero), the
DOS of the detector as well as it’s derivative. Supplementary figure 13 shows
the corresponding I(V ) and G(V ) curves, along with a comparison with
N(E)f(E). Although only the electron side of the spectrum is shown in figure
13 the situation is the same on the hole side: δf(E) in equation 28 amounts
to, at a sufficiently low detector temperature, δf = 1−f for E < 0. Thus the
hole-like excitation density is again probed by ∂ND(E+eV )

∂V
. Additionally, as in

our device the gap in the detector is smaller than the gap in the bar, ∆D < ∆,
for a positive/negative detector voltage the detector hole/electron coherence
peak is within the gap of the superconductor, the detector G(±|V |) curve
probes only the density of electron/hole like excitations at E = ±(e|V | +
∆D). Therefore an even number of hole-like and electron-like excitations will
present itself as a detector G(V ) even in V , while a charge imbalance (i.e. a
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dissimilar number of electrons and holes) will give rise to an odd component
of the detector G(V ) spectrum.

By integrating the previous expression for the G(V ) one again finds that
the I(V ) measures the number total number of quasiparticles.

The whole discussion holds true in the spin-split case, the only difference
is that the different spin channels have to be considered separately and their
contributions should be then added, as the spin is conserved by tunneling.
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Supplementary Figure 12: Top: the superconductor DOS N(E) (purple), the
detector DOS ND(E) (black dashed), the equilibrium Fermi-Dirac distribu-
tion function (blue) and a nonequilibrium one (red, only fL 6= 0). Middle:
The density of states as above and the nonequilibrium quasiparticle density
N(E)δf(E). Bottom: The DOS of the detector (black dashed, right scale),
as well as its derivative at Vdet = 0µV (black), Vdet = 30µV (blue) and
Vdet = 60µV (red). The two distribution functions shown in the top panel
are also used used for the traces in figure 13.
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Supplementary Figure 13: Left: the I(V ) curve for the equilibrium and
non-equilibrium distribution functions shown in figure 12. Right: the corre-
sponding G(V ) curves and a comparison with N(E)f(E).
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1.2.3 The spin sensitive SIS′ detector

Contrary to an NIS junction, as shown by [25], the I(V )/G(V ) traces of
an SIS junction will not show the Zeeman splitting under a finite magnetic
field. This is because both superconductors become Zeeman split, and as
the tunneling process needs to be considered separately for the spin up and
spin down, this just amounts to having the same shift in the chemical po-
tential/Fermi energy ±µBH on both sides of the junction. However, if the
detector side of the junction is not spin split (i.e. N↑ ≈ N↓), which is the case
of the spin-mixing induced by spin-orbit interaction in the superconductor
[25], it leads to an observable Zeeman splitting in the G(V ) curve. The top
panel of figure 14 shows the difference between the DOS of a superconductor
with a negligible spin-orbit interaction (RSO � ∆, blue traces) and with a
large spin-orbit interaction (RSO � ∆, red traces) at H = 1T. The bottom
panel of the same figure shows the normalized differential conductance of
an SIS junction made out of two superconductors with low SO interactions
(blue) and an SIS′ where the one has a low and the other a high spin-orbit
interaction.

A detector made out of a non-Zeeman-split superconductor can be used
as a spin sensitive detector: following the discussion in 1.2.2 the spin down
quasiparticles will be detected at a detector voltage of V↓ = ∆−µBH −∆D,
while the spin up ones will be detected at V↑ = ∆ + µBH −∆D.

Experimentally such a detector can be realized covering the Al detector
electrode, with a mono-layer of Pt [27]. Because of the high atomic number
of Pt it induces a strong spin-orbit effect in the detector and suppresses
the Zeeman splitting. To verify this a separate set of samples, fabricated in
roughly the same geometry as the final device, were made with high resistance
NIS junctions (R ≈ 250kΩ) to probe the equilibrium DOS. Supplementary
figure 15 shows the magnetic field dependence of the DOS, with and without
the Pt doping, verifying that the doped sample is not Zeeman split. Although
such a measurement is not a reliable way to determine the strength of the SO
interaction precisely, the key point is that there is a single gap edge, which
allows the junction to be a spin sensitive spectroscopic detector. The G(V )
curve of the SIS′ at a finite magnetic field, showing the Zeeman splitting,
is shown in figure 16. For reference the same figure includes a trace from a
previous sample at the same field, where the detector electrode was Al only
and is therefor Zeeman split, and the G(V ) traces do not show two separate
coherence peaks. The difference in the amplitude of the peaks is due to a
lower orbital depairing.
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Supplementary Figure 14: Top: The spin up and spin down DOS of a super-
conductor with RSO � ∆ (blue), and the same for RSO � ∆ (red). Bottom:
If the GV curves of two SIS junctions - one couples two Zeeman split super-
conductors (blue), and the other one couples a Zeeman split superconductor
with a non-split one (red).
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Supplementary Figure 15: The tunneling differential conductance G(V )
color-map as a function of the magnetic field for an Al sample (left), and
an Al/Pt sample. The black lines are the G(V ) traces at H = 2T.
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Supplementary Figure 16: The G(V ) curve of J1 at H = 1T which shows
the ”splitting” of the coherence peaks at |eVdet| = |∆ ± µBH + ∆D|, which
is explained in detail in the section 1.2.3. The small Josephson contribution,
close to V = 0, can be modeled as a Gaussian peak and subtracted from the
data, as shown in the inset. The trace on the right scale is from a previous
device with a Zeeman-split detector, also at H = 1T.
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2 Supplementary Discussion

2.1 Measurement of the number of QP’s at high injec-
tion

In this chapter the validity of the claim that the quasiparticles relax solely
by the thermalization at the ends of the wire is verified. First a theoretical
argument is given and than the relevant measurements are presented.

A slight generalization of equations 13 and 16 reads:

D∗(E)∇2f(E) = Icoll(f, E) (29)

where the D∗(E) is the energy dependent diffusion matrix, f(E) a vector
describing the different distribution modes, and Icoll(E) takes into account
all of the different relaxation and scattering mechanisms.

The charge and spin relaxation processes, as well as an effective electron-
electron interaction, conserve the number of quasiparticles. On the other
hand the electron-phonon interaction will decrease the QP population through
recombination. As a consequence at timescales shorter than the recombina-
tion time

∫∞
∞ Icoll(f, E)dE = 0 vanishes for any distribution function f .

If most of the quasiparticles are injected at high energies (i.e. E � ∆),
where D∗ is diagonal and proportional to D0 (the normal state diffusion
coefficient), one can simplify equation 29 by integrating over energy and
disregarding the dependence at low energies, one gets:

D∇2f = 0 (30)

To obtain a physical solution from the previous equation one must impose
the proper boundary conditions, at the injector and at the ends of the wire.

As, at high energies, the number of quasiparticles is proportional only to
f as the density of states is constant, according to the equation 30 one should
expect a linear spatial dependence/decay of the number of quasiparticles.

As discussed in the section 1.2.2 the ID(eVD = ∆ + ∆D) probes the total
number of quasiparticles in the wire. A measurement of this quantity as a
function of the injection current is shown in figure 17, where the data has been
re-scaled by the junction resistance and normalized to a unit slope at high
injection for J1. The number of quasiparticles close to the injector (data from
the detector J1) has the following dependence on current: at low injection
currents there is a rapid growth of the quasiparticle population, followed by
a leveling off in the region Iinj = 10 − 50nA, after which there is again a
linear dependence with a smaller slope than at low injection. The number
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of quasiparticles measured by J2 and J3 is smaller, in the beginning it has a
concave shape and above Iinj = 50nA it also becomes linear. At high injection
currents, when the energy dependence of the diffusion coefficient doesn’t
play such a big role anymore, as well as when the electron-electron time is
finite (resulting in a pseudo-thermal distribution function), the number of
quasiparticles is linear with the injection current. The same holds true for
the other two detectors J2 and J3 (also in figure 17.
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Supplementary Figure 17: The number of quasiparticles measured by each
of the detectors at H = 0. The data is normalized such that the linear,
high injection, part of the J1 trace have a unit slope. The black dashed
lines are linear extrapolations to zero. The dotted vertical line indicates
eVinj ≈ 1.33∆0 and the dash-dot line indicates eVinj ≈ 2∆0.

In this high injection regime the relation becomes NQP = k(x)Iinj, where
only the slope of the curve depends on the position. If we take the slope
itself to be a measure of the number of quasiparticles present in the wire,
and plot it versus the position of the detector, we find that it extrapolates
to zero at the end of the wire (figure 18). Based on this we can safely argue
that the quasiparticles relax to the equilibrium state by thermalization and
recombination within the reservoirs at the end of the wire.
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Supplementary Figure 18: An SEM micrograph of the sample showing a
wider view, as well as an inlay showing the linear decay of the number of
quasiparticles as a function of space and it’s extrapolation to zero at the
reservoir.

2.2 Nonthermal QP distribution at H = 1T

Based on the theory, presented in section 1.1, and as argued in the main
text, quasiparticle injection from a normal-metal tunnel junction into a su-
perconductor results in a non-thermal distribution function, characterized
by a large number of quasiparticles at the gap, E = ∆, with nonequilibrium
quasiparticles up to E = eVinj. This is shown at zero magnetic field in figure
3 of the main text: panel c shows the experimental data, while panel d shows
the theoretical model. To highlight this step-like feature in the detector G(V )
trace the equilibrium G(V, Iinj = 0) trace is subtracted from the data (see the
black trace in panel b), as the step height is small compared to the nontrivial
equilibrium trace (due to the Josephson effect). This allows the step to be
observed easily, but it also introduces some artefacts in the data - a purple
(no QPs present) region is also found at Vdet ≈ 120µeV almost regardless of
the injection current. This is precisely the voltage at which a peak appears in
the equilibrium G(V ) trace (black line in panel b). As quasiparticles are in-
jected the gap, ∆, of the superconductor is reduced, modifying the Josephson
coupling, which both reduces the height and slightly moves this background
peak.
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To show that this nonthermal distribution function persists at higher
fields a figure, similar to the one shown in panel c of figure 4 in the main
text, is shown here with the NIS trace overlaid on top (see figure 19). At
this field (H = 1T) the Josephson current is almost completely suppressed,
resulting in a trivial background. Additionally, the depairing introduced by
the magnetic field smears out both the superconductor and the detector DOS,
resulting in a smaller QP peak at E = ∆. Thus it is possible to directly see
the same two regions, with QPs below E = eVinj (increased conductance -
light blue color), and no QPs above E = eVinj (dark blue color), without
subtracting the equilibrium trace. The line separating the two regions is
again the NIS I(V ) curve (overlaid on top).

Supplementary Figure 19: The G(V ) trace of detector J1 at H = 1T (color-
plot), with the injector I(V ) curves overlaid on top (dashed white lines). One
can identify two regions: below E = eVinj with quasiparticles present (light
blue color) and above with no quasiparticles detected (dark blue color).

2.3 Pseudo-thermal QPs far away from the injector

The nonthermal distribution function observed with J1, presented in the
main text at H = 0 and at H = 1T in 2.2, is in contrast with the behavior
observed at the other two detectors J2 and J3, shown in figure 20. At these
distances the peak at eV = ∆−∆D is still present but is much less prominent,
and at all injection currents which show an increased number of QPs they
cannot be confined to a finite energy/voltage range. This is more in line with
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a pseudo-thermal distribution function with a long (exponentially decaying)
tail, in which a cut-off energy is not well defined.

Supplementary Figure 20: The sub-gap G(V ) curve of detector J2 (left) and
detector J3 (right) as a function of the injection current (H = 0T). The
injection currents are Iinj = 0nA (black), Iinj ≈ 13nA (blue), Iinj ≈ 40nA
(green), Iinj = 120nA (red.

To show this in a clearer way we compare the number of quasiparticles
close to E = ∆ and the total, which is shown in figure 21 for all three
detectors. The two traces from J1 are identically equal up to Iinj ≈ 20nA,
which corresponds to Vinj ≈ 1.4∆0, and separate after that. Even at the
highest injection shown in the figure more than 75% of the quasiparticles
remain in the vicinity of the gap edge. The J2 and J3 traces, on the other
hand, show a large number of quasiparticles at higher energies, roughly 50%
of the total. Again this can be understood in terms of a pseudo-thermal
distribution function with a long tail.
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Supplementary Figure 21: The total number of quasiparticles measured with
the detectors (full traces) and the number of quasiparticles close to supercon-
ducting gap ∆ (the QP signal integrated over 40µV < V < 100µV, dashed
traces) for all three detectors as a function of the injection current. The
traces are normalized such that the linear high injection part of the J1 trace
has a slope of unity.

2.4 Spin-resolved QP detection

The same spectroscopic measurements as the ones presented at H = 0 and
H = 1T in the main text can be performed at other magnetic fields. The
fundamental difference betweenH = 0 and finite fields is that the distribution
functions for the two spin species will not necessarily be the same: when the
injector is biased such that ∆ − µBH < Vinj < ∆ + µBH the DOS of the
superconductor behaves as an almost perfect spin filter and quasiparticles
of one spin species are preferentially injected/excited. On top of this, as
the detector electrode is not spin split (due to the Pt monolayer on top)
one should expect to see two peaks in the detector G(V ), the first at eV =
∆ − µBH − ∆D and the other one at eV = ∆ + µBH − ∆D which probe
the two spin states separately, allowing for a spin sensitive spectroscopic
study without the need for a spin polarized barrier. Supplementary figure
22 shows the G(V ) curve of the detector for Iinj = 40nA and Iinj = 5nA,
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which corresponds to the maximum spin polarized current at higher fields, as
a function of the applied magnetic field. For clarity the traces are offset such
that eVdet = ∆−∆D is at Vdet = 0. At the higher of the two currents, when
both spin up and spin down electrons are injected, two peaks are visible,
separated by 2µBH as indicated by the vertical black lines.

Supplementary Figure 22: The detector G(V ) at Iinj = 40nA and Iinj = 5nA
for different fields, showing the detection of both spin down and spin up
quasiparticles. The traces are offset such that the (dominant) spin down
peak is at Vdet = 0 and the G(V ) at Iinj = 0 is subtracted. The right panel
shows the injector G(V ) curves at the same field as on the left. The circle
and the diamond show the injection voltage at which Iinj(Vinj) = 5nA and
Iinj(Vinj) = 40nA respectively.

2.5 Differentiating between the fT and the fL3 modes

As both of these modes contribute to the charge imbalance in a superconduc-
tor one cannot distinguish between them by just measuring the voltage across
a nearby normal metal probe, as was done previously [20]. The distinction
between the two can, however, be made by performing a spectroscopic mea-
surement: as shown in the section 1.1.4 the fT mode is dominantly present
at low magnetic fields and at high injection energies, while the spin-energy
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mode fL3 is localized within ∆ − µBH < E < ∆ + µBH and becomes more
visible with increasing filed, but dies off close to Hc.

To verify that the odd signal shown in the main text is indeed due to the
spin-energy the following analysis was performed. The left panel of figure
23 shows the G(V ) of detector J1 at H = 0T for Iinj = ±120nA (the figure
is presented in a similar fashion as in 22, offset such that the QP peak is
at zero and the equilibrium trace is subtracted). Above the QP peak there
is a difference between the traces, which changes sign with the sign of the
injection current and detection voltage (only the positive part of the trace
is shown here for clarity), indicating the presence of a charge imbalance
induced by the fT mode (fL3 = 0 at H = 0 in our experiment). The odd
component of the trace can be integrated over the regions marked in the
figure (the negative peak at ≈ 200µV is related to the Josephson current
and is therefore omitted), and the result is shown on the right panel of figure
23. The same panel also shows the results of a similar procedure done for
H = 1T (integrated in the region 90µV ≤ Vdet ≤ 210µV), which shows no
asymmetry, signifying that the contribution of the fT mode at H = 1T is
negligible.

Together with the results shown in the main text, this shows that the
charge imbalance observed at finite fields and close to the gap edge of the
superconductor is associated with the presence of the fL3 mode excited by
quasiparticle injection into a Zeeman split superconductor through an NIS
junction.
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Supplementary Figure 23: A set of G(V ) curves from the detector J1 at
H = 0T. For each of the injection currents there are two traces: one for
a nominally positive current (red) and the other for the negative current
(blue). An odd component, corresponding to a charge imbalance can only
be observed above I ≈ 40nA and starting from high energies, in accordance
with the properties for the fT mode.
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