Supplementary Information: Connecting shear localization with the long-range correlated polarized stress fields in granular materials

Wang et al.

Supplementary Figures

Supplementary Figure 1. Shear localization and particle-scale stress changes. Spatial distributions of **a**, local shear strain $\epsilon_{xx} - \epsilon_{yy}$, **b**, particles rotations (blue circles indicate clockwise rotations, red circles indicate counterclockwise rotations) and c, D_{\min}^2 . Spatial distributions of particle-scale stress changes for three components ${\bf d},\ p=\frac{1}{2}$ $\frac{1}{2}(\sigma_{xx}+\sigma_{yy}),$ e, $\frac{1}{2}$ $\frac{1}{2}(\sigma_{xx}-\sigma_{yy}),$ f, $\frac{1}{2}$ $\frac{1}{2}(\sigma_{xy} + \sigma_{yx})$. All of these quantities are measured from $\gamma = 0\%$ to $\gamma = 0.75\%$, the same as those in main text. Scale bar = 10 d, where d is the diameter of small particle.

Supplementary Figure 2. Autocorrelation map of local shear strain ϵ_{xx} − ϵ_{yy} . The local shear strain is measured from $\gamma = 0\%$ to $\gamma = 0.75\%$. The map is averaged over six independent runs. $\langle C \rangle$ denotes the correlation function.

Supplementary Figure 3. Correlations between particle rotations and other quantities. a, For counterclockwise rotations R_+ and free volume $v_f = (S_i \pi r_i^2$) $\cdot (\pi r_i^2)^{-1}$, S_i is the voronoi area of disk i and r_i is its radius. $C(v_f, R_+) = -0.34$. **b**, For clockwise rotations $R_$ and v_f . $C(v_f, R_-) = -0.19$. **c**, For R_+ and contact number z. $C(z, R_+) = 0.15$. d, For R_− and z. $C(z, R_-) = 0.15$. e, For R₊ and deviatoric shear stress τ (one half of the difference between two eigenvalues of a stress tensor). $C(\tau, R_+) = 0.08$. f, For R_- and τ . $C(\tau, R_-) = 0.16$. g, For R_+ and the ratio of the deviatoric shear stress over pressure $\tau \cdot p^{-1}$. $C(\tau \cdot p^{-1}, R_+) = -0.15$. h, For R_- and $\tau \cdot p^{-1}$. $C(\tau \cdot p^{-1}, R_-) = -0.13$.

Supplementary Figure 4. Correlations between particle rotations and $\tau_{1,i}(\alpha)$ versus angle α , for different cutoffs q_c of particle rotations.

Supplementary Figure 5. Finite size analyses of stress correlation functions. Finite size analyses of angle-averaged correlation functions **a**, $\langle \bar{C}_{\tau_1}(r) \rangle$ = $\pi^{-1} \int_0^{2\pi} d\theta \cos(2\theta) \langle C_{\tau_1}(r,\theta) \rangle$ and **b**, $\langle \bar{C}_{\tau_2}(r) \rangle = \pi^{-1} \int_0^{2\pi} d\theta \cos(4\theta) \langle C_{\tau_2}(r,\theta) \rangle$, for system sizes of $L = 20$ d, 40 d and 60 d. The black lines indicate a power law of r^{-2} , as a guide to the eye.