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Supplementary Text 

Quantifying extensive functional connectivity 

At present, there is no standard practice for measuring the strength of functional 

connectivity (FC) [1]. The present study uses global signal regression (GSR) for denoising [2] and 

to enhance spatial specificity. This maneuver essentially zero-centers the correlation distribution 

[3]. FC (positive or negative) reflects the extent to which a signal observed in one region shares 

variance with signals in other regions. Furthermore, the strongest anti-correlations manifest 

between large-scale allocentric and egocentric systems (traditionally, “task-positive” and “task-

negative,” respectively) [3, 4]. The antagonistic relationship between these systems is a 

significant feature of brain functional organization [5-8] and, hence, warrants consideration. 

Accordingly, we defined FC strength as mean absolute value correlation (Figs. 4 & S4A). 

Alternatively, we may compute the unweighted (i.e., binary) graph metric of FC degree 

[9]. This metric reports the number of correlations exceeding some (arbitrary) threshold. Following 

a prior investigation of the relationship between fMRI spectral content and FC topology [10], we 

computed FC degree as the number of pairwise correlations > +0.3. Similar to absolute value FC 

strength (Fig. S4A), FC degree indicated strongly positive associations with intrinsic timescale, 

with significant individual-specificity (within- vs. between-subject ACF decay:FC degree p < .001) 

(Fig. S4B). Thus, our major intrinsic timescale:FC results (Fig. 4) are also obtained by analyzing 

only the strongest positive correlations. 

Crucially, both absolute value FC strength and FC degree indicate that association cortex 

exhibits the most extensive FC, which is predicted from structural connectivity at micro- and 

macro-structural scales [12]. Moreover, the observed timescale:FC relationship agrees with prior 

work that has modeled and/or observed an association between slow timescales and extensive 

FC [10, 11]. A similar phenomenon appears to manifest at a cellular scale [13, 14]. An intuitive 

explanation for this fundamental relationship is that the summation of inputs to a cell or region 

has the effect of a low-pass filter, to an extent that depends on the number of inputs (i.e., extent 

of connectivity) [10]. 



 

 

3 

 

One may also consider measuring the strength of FC by computing mean signed (i.e., 

non-absolute value) FC. However, following GSR, the approximately equal number of positive 

and negative correlations complicates treatment of FC as a signed quantity when computing 

mean FC. Computing mean signed FC in our global signal-regressed data, we observe overall 

weak and negative correlations between FC strength and intrinsic timescale, and non-significant 

individual specificity (p = .26) (Fig. S4C). The strong dependence of mean signed FC on use of 

GSR has been demonstrated previously [15] (see also the section entitled “Considerations for 

Using Global Brain Connectivity (GBC)” in the Supplementary Appendix of [16]). 

A recent study computed mean signed FC – referred to as “global brain connectivity 

(GBC)” – in non-GSR fMRI data [17]. GBC was found to be highest in sensorimotor regions and 

weakest in multimodal association areas. The initial study to employ the GBC measure (also 

without GSR) [18] observed a cortical topography that more closely aligns with the conventional 

view of increased functional and structural connectivity in association areas [19]. It is possible that 

these discrepancies result from other preprocessing steps, e.g., low-pass filtering (used in [18]). 
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Supplementary Methods 

fMRI processing 

Functional data were preprocessed to reduce artifact, maximize cross-session 

registration, and resample to an atlas space. For each MSC subject a mean of field maps 

collected over multiple sessions was applied to images from all sessions for distortion correction, 

as described in detail elsewhere [20]. All scans underwent correction for odd-even slice intensity 

differences stemming from interleaved acquisition of slices within a volume, correction for within-

volume slice-dependent time shifts, intensity normalization to a whole brain mode value of 1000, 

and within- and between-run rigid body correction for head movement. Transformation to 

Talairach atlas space [21] was computed by registering the mean intensity image from a single 

BOLD session via the average T1-weighted image and average T2-weighted image, and 

subsequent BOLD sessions were linearly aligned to this first session. This atlas transformation 

was combined with mean field distortion correction and resampling to 3 mm isotropic atlas space 

in a single step. 

 Atlas-transformed, volumetric time series were further processed to reduce artifact. First, 

temporal masks were created to flag motion-contaminated frames. Such frames were identified 

by outlying values of framewise displacement (FD), a scalar index of instantaneous head motion, 

computed as the sum of the magnitudes of the differentiated translational (three) and rotational 

(three) motion parameters [22]. Several MSC subjects exhibited power spectral peaks at the 

respiratory frequency especially in the phase-encoding direction (y; anterior-to-posterior) [23]. 

Because this oscillatory artifact did not obviously corrupt the data and occurred above 

frequencies of interest (>0.1 Hz), we low-pass filtered the y-motion time course at 0.1 Hz in all 

MSC subjects prior to computing FD to prevent inflation of FD values and superfluous data loss 

[24, 25]. Frames with FD exceeding 0.5 mm were replaced by linear interpolation to yield 

continuous time series that could be filtered while mitigating the spread of motion artifact to 

surrounding frames [26]. Interpolated BOLD time series, as well as motion parameters [27] were 

next passed through a zero-phase second-order Butterworth low-pass filter (𝑓 < 0.1 Hz) to 

mitigate high-frequency artifact. 
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 Next, the filtered BOLD time series underwent nuisance regression. For GSP subjects, 

an atlas white matter and ventricle mask were treated as nuisance compartments and the mean 

and first derivative of signals from these regions and from the whole brain (global signal), as well 

as the filtered six realignment estimates, were regressed from the filtered time series. For the 

MSC subjects, filtered time series underwent regression of the global signal as well as principal 

components derived from subject-specific masks of white matter and ventricles (segmented via 

FreeSurfer [28, 29]) and extra-axial space [30] (as defined by a thresholded temporal standard 

deviation image), and from the six filtered motion parameters. Component-based regression of 

MSC data is described in detail elsewhere [31]. Interpolated time points were re-censored using a 

temporal mask for all analyses, except where continuous time series were required (i.e., 

generating power spectra (Fig. S1) and the spectral normalization control analysis (see 

Comparison with functional connectivity in main text Methods)). 

 Processed time series were transformed to MNI152 space prior to surface mapping. For 

each subject, the atlas-transformed T1-weighted image was nonlinearly warped to the MNI152 

template using FSL’s FNIRT [32] and the resulting transform was applied to BOLD runs. 

Generation of individual cortical surfaces for MSC dataset 

 As described previously [23], each MSC subject’s anatomical surface was generated 

from their average T1-weighted image in native volumetric space using FreeSurfer’s “recon-all” 

processing pipeline. The pipeline entailed brain extraction and segmentation (hand-edited for 

accuracy), generation of white matter and pial surfaces, inflation of surfaces to a sphere, and 

spherical registration of the original surface to the “fsaverage” [28, 33-37]. The fsaverage-

registered left and right hemispheres were placed in correspondence with one another by 

applying deformation maps from a landmark-based registration of left and right fsaverage 

surfaces to a hybrid left-right fsaverage surface (‘fs_LR’) ([38]). These deformation maps were 

combined with those for resampling to a resolution of 164,000 vertices per hemisphere (164k 

fs_LR) and downsampling to a resolution of ~4,000 vertices per hemisphere (‘4k fs_LR’). These 

various surfaces in native volumetric space were then transformed to MNI152 atlas volumetric 

space using Caret tools [39]. 
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Surface processing and CIFTI creation 

 Processed BOLD time series were converted to CIFTI format, which projects data from 

cortical voxels to a surface while retaining volumetric time series from the subcortex and 

cerebellum [40]. CIFTI creation proceeded as follows: BOLD time series from each subject were 

sampled to their native mid-thickness surfaces (created by averaging the white and pial surfaces) 

using the “ribbon-constrained” sampling procedure [41] from Connectome Workbench. Once 

sampled to the native surface, time courses were deformed and resampled from the individual’s 

original surface to a ~4,000 vertex (per hemisphere) fs_LR surface in a single step using the 

deformation map generated above. GSP volume data were sampled directly to the Conte69 atlas 

mid-thickness surface using the ribbon-constrained sampling procedure and subsequently 

downsampled to the 4k fs_LR surface. Downsampling to ~6 mm spacing was performed to 

improve SNR and reduce computational demand. Surface time series were subsequently 

geodesically smoothed along the respective subject’s (or for GSP, the atlas) cortical surface, as 

described in Glasser et al. [41], with a 2D Gaussian kernel (σ = 4.25). For display purposes only, 

spectral maps were upsampled to ~32k, ~2 mm resolution surfaces and geodesically smoothed 

(σ = 1.70). All (surface) computations were performed at 6 mm resolution. 

Surface time series were combined with volumetric subcortical data into the CIFTI format 

using Connectome Workbench [40], creating full brain time courses excluding non-gray matter 

tissue. Volumetric time series were smoothed using a structure-constrained procedure [41] (σ = 

2.55) following nonlinear alignment to the MNI152 atlas. 

 

Network parcellation 

 Cortical, striatal, and cerebellar parcellations were obtained from Buckner et al. [42-44] 

and resampled to the 4k surface (cortex) or 3 mm resolution (subcortex). Low SNR regions in 

medial prefrontal cortex and anterior and ventral portions of the temporal lobe [45] were excluded 

(gray regions in Fig. 1B; 461/7,320 total cortical vertices), as previously (e.g., [20]), on the basis 

of a mean signal map. The limbic network was excluded from analysis due to its overlap with low 

SNR regions in cortex [42] and striatum [44], and with white matter in the cerebellum [43]. The 
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visual network in the cerebellum and visual and dorsal attention networks in the striatum were 

also omitted from the present analyses as little-to-no representation of these networks has been 

identified in these structures on the basis of FC [43, 44, 46, 47]. The above criteria retained 

6,398/7,320 (87.4%) of cortical vertices, 911/988 (91.0%) of striatal gray matter voxels, and 

5,403/5,669 (95.3%) of cerebellar gray matter voxels. To generate a comparable parcellation for 

the thalamus, we applied a similar winner-take-all strategy as in Buckner et al. [43] to 1,139 

individuals from the original parcellation dataset (i.e., GSP). This resulted in a parcellation broadly 

consistent with known functional organization of the thalamus as well as published functional 

parcellations at the level of fMRI (e.g., [46, 48-50]; Fig. 3). This parcellation is publicly available at 

https://github.com/RaichleLab. 

 

Intrinsic timescale estimation 

To obtain a model-free estimate of intrinsic timescale while allowing for the exclusion of 

high-motion time points, we used a previously described approach for computing lagged (auto-) 

covariance using blocks of contiguous time points [31]. This method was applied to low-pass 

filtered time series (<0.1 Hz) [51], as fMRI SNR declines steeply above 0.1 Hz [52, 53]. 

The Pearson correlation coefficient, 𝑟, for zero-lag correlation between continuous 

signals, 𝑥1(𝑡) and 𝑥2(𝑡), is given by: 

𝑟𝑥1𝑥2
=

1

𝜎𝑥1
𝜎𝑥2

1

𝑇
∫ 𝑥1(𝑡) ∙ 𝑥2(𝑡)𝑑𝑡 , (1) 

where σ𝑥1
and σ𝑥2

are the temporal standard deviations of the zero-mean signals 𝑥1 and 𝑥2 and 𝑇 

is the interval of integration. By generalizing this equation to accommodate temporal delays, 𝜏, 

between the signals, correlation (or covariance, for simplicity) can be computed as a function of 

delay in seconds. Thus, 

𝑐𝑥1𝑥2
(𝜏) =

1

𝑇
∫ 𝑥1(𝑡 + 𝜏) ∙ 𝑥2(𝑡)𝑑𝑡 (2) 

defines the cross-covariance function. In the special case 𝑥1 =  𝑥2, Eq. (2) defines the 

autocovariance function (ACF) 𝑐𝑥(𝜏). 

https://github.com/RaichleLab
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In practice, we first construct the ACF in the time domain at discrete multiples of the TR 

(i.e., at the sampling interval) (see [31] for further detail). A single ACF for each session is 

obtained by summing unnormalized auto-covariance over blocks (𝑏) of contiguous frames, and 

subsequently normalizing based on the total number of time points in a session contributing to a 

given ACF lag. Thus, 

𝑐𝑥𝑏
(∆) = ∑ 𝑥𝑏(𝑡 + ∆) ∙ 𝑥𝑏(𝑡)

𝑁𝑏− ∆

𝑡=1
, (3) 

𝑐𝑥(∆) =  
1

𝑁∆

∑ 𝑐𝑥𝑏𝑥𝑏

𝐵

𝑏=1
, (4) 

where ∆ is the temporal shift in units of TRs, 𝑡 indexes frames within the block, 𝑁𝑏 is the total 

number of frames within the block, 𝑁∆ is the total number of frames contributing to the ACF 

estimate at a particular temporal shift, and 𝐵 is the total number of blocks. Time series are set to 

zero-mean prior to Equation (4) by subtracting the mean computed over the maximum number of 

realizations (i.e., all non-censored frames from the time series). Finally, 𝑐𝑥(∆) is normalized by 

𝑐𝑥(0) to yield autocorrelation (rather than autocovariance), such that 𝑐𝑥(0) = 1. 

 𝑐𝑥(∆) was computed over ∆ ∈ [-4, 4] in the GSP dataset (TR = 3.0 s) and ∆ ∈ [-6, 6] in the 

MSC dataset (TR = 2.2 s). Performing minimal time shifts reduces the minimum duration required 

for a block of contiguous frames to contribute to each point of the ACF, which maximizes data 

usage [31]. Finally, the precise abscissa corresponding to 𝑐𝑥 =  .5 (i.e., half of the ACF FWHM) 

was estimated by computing the zeros of a spline fit to the ACF using the MATLAB “fnzeros” 

function [54]. Custom MATLAB code for intrinsic timescale estimation as described in this paper 

is publicly available at https://github.com/RaichleLab/lag-code. 

For power spectra presented in Figure S1, Welch’s power spectral density estimate was 

computed for each cortical vertex and averaged within each of the six networks across all 10 30-

minute sessions from low-motion MSC subjects 1-6. Power spectra in Figure S1A were computed 

prior to denoising (i.e., following frame alignment and detrending but prior to any censoring, 

filtering or regression) while spectra in S1B were computed after the full denoising procedure 

described above. For computing spectra in S2B only, censored frames (i.e., framewise 

displacement >0.5 mm) were linearly interpolated. 
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Fig. S1. Power spectral density of rsfMRI time series across the cortex. Mean group-averaged 
power spectra for each canonical network (A) before and (B) after denoising (see SI Methods). 
Spectra are not normalized by total power (variance). Note that regression leads to a flattening of 
lower frequencies in the absence of explicit high-pass filtering. 

 
  



 

 

10 

 

Fig. S2. Cortical and subcortical timescale organization in secondary dataset. (A) Intrinsic 
timescale computed for cortical and non-neocortical structures, including striatum and thalamus 
(middle) and cerebellum (right) (separate scale used for each structure), as in Fig. 2, but in the 
secondary dataset (see main text Methods). (B) Canonical large-scale functional networks as 
defined by Buckner et al. [42-44] (see main text Methods). (C) Mean intrinsic timescale (ACF 
decay) computed within each network for each brain structure analyzed. Mean and standard error 
(error bars) computed across subjects (N = 10). 
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Fig. S3. Individual cortical maps of intrinsic timescale and FC strength. For each MSC 

subject, intrinsic timescale and FC strength were quantified by ACF decay and mean FC 

magnitude, respectively (see main text Methods). Subject-wise spatial correlations between these 

measures are presented in Fig. 4B. 
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Fig. S4. Intrinsic timescale:FC relationships using different measures of FC. (A) Intrinsic 

timescale:FC relationships, where FC is quantified as mean absolute value FC strength (same as 

main text Fig. 4). (B) Same as (A), but with FC quantified as degree (number of correlations > 

+0.3). (C) Same as (A), but with FC quantified as mean non-absolute value FC strength. Thus, 

equal treatment of positive and negative correlations (A) or analysis of only strong positive 

correlations (B) yield results consistent with theoretical predictions and indicate individual 

specificity; allowing positive and negative correlations to cancel out (C) does not. See 

Supplementary Appendix, “Quantifying extensive functional connectivity” for further information. 
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Fig. S5. Relationship between intrinsic timescale and FC strength after accounting for 

spectral variability. (A) Correlations between intrinsic timescale and FC strength, as in Fig. 4B. 

(B) Correlations between intrinsic timescale and FC strength following spectral normalization (see 

main text Methods). (C) Scatter plot depicting correlation values (i.e., all 100 r values between 

each individual’s intrinsic timescale and FC strength maps) before and after spectral 

normalization. As expected, spectral normalization decreases correlations overall; however, 

changes are minimal. Hence, spectral variability does not materially contribute to the relationship 

between intrinsic timescale and FC strength in Fig. 4B. 
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Fig. S6. Comparison with a previously published cortex-wide map of fMRI spectral content. 

(A) MSC group-averaged spectral content estimated as in [10] (compare with their Fig. 1B). Thus, 

for each vertex, spectral content was estimated as the slope (α) of the log-linear representation of 

the power spectrum from 0.01 to 0.2 Hz (fit by least-squares regression). α maps were computed 

for each individual (after averaging power spectra over all 10 sessions), Z-scored, and averaged 

across all 10 individuals. (B) Same as in (A), but with log-linear fit restricted to 0.01 to 0.1 Hz. 

Excluding frequencies above 0.1 Hz yields greater correspondence with results of the present 

study (main text, Fig. 1). 
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