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Supplementary Information Text 

 

Materials 

 25 

Unit of Analysis. We compile data at the municipality level, i.e. Brazil’s lowest administrative unit. 

We confine analyses to rural municipalities because ZH policies implemented in rural and urban areas 

differ in their implementation, mechanisms, and effectiveness (1, 2), and because small rural farmers 

are vital for national food security. Small farmers produce 70% of the food consumed in Brazil but also 

suffer disproportionately from food insecurity (2). We use the OECD definition of urbanisation, 30 

excluding municipalities with human population densities above 150 inhabitants/km² (3), as the official 

Brazilian definition overestimates the distribution of urban areas (4). 

During our study period 41 municipalities split into two or more municipalities. In these cases, 

we recalculate data for the end of the study period to match the original municipality boundaries at the 

start of the study period using two approaches. If data were available for each of the new municipalities 35 

we summed these and then recalculated data based on the older municipality boundaries. Alternatively 

we calculated weighted means based on municipality area for average slope, average elevation, and 

drought incidence; and by population size for census derived infant mortality and life expectancy. 

Municipalities which merged during our study period (four for the 2004-2013 analyses and 45 for the 

2000-2010 analyses) had to be excluded because the change in municipality borders (multiple 40 

municipalities merged to create single municipalities) were such that 2010 or 2013 (endpoint) values 

could not be accurately assigned baseline values. See Table S10 for more details of specific model 

exclusions and Table S1 for final sample sizes.  

 

Outcome variables. We use eight response variables to cover key dimensions of food availability, 45 

multi-dimensional poverty, health and natural vegetation loss. Our models include values at the start of 

program implementation to control for baseline conditions. 

 

Food production. We use daily per capita kilocalorie and protein production. We use these two 

measures to make a distinction between food quantity (kilocalories) and food quality (protein) (5). Both 50 

measures are based on annual municipal agricultural production data from the national statistics office 

IBGE (6). We combine twelve main Brazilian agricultural products, and convert each quantity produced 

(kg/tonnes) into kilocalorie and protein metrics using standard Brazilian and/or US product 

macronutrient/food energy values (7, 8). We use the average of these two values when both are available 

(Table S5). We then convert to daily per capita values based on the municipality’s population size in 55 

the focal year (using data from IBGE: https://www.ibge.gov.br/). The agricultural data does not include 
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subsistence food production, but this is a small and declining proportion of total production due to the 

shift towards a more modernized market oriented agricultural systems (9).  

 

Multi-dimensional poverty (MPI). We use data from the 2000 and 2010 demographic census to 60 

generate a multi-dimensional poverty measure, which we refer to as multi-dimensional poverty 

(census). Our measure combines equally weighted data on health, education, and living standards based 

on the recommendations of Alkire and Foster (10). Because household-level data are not available as 

part of the census micro-data, we use the geometric mean from all census households to generate our 

combined multi-dimensional poverty measure. This general approach follows the method used to 65 

calculate Brazil’s official Municipal Human Development Index (MHDI) (11), which is closely 

correlated with our measure (r = 0.90 and 0.84 for 2000 and 2010, respectively), despite the underlying 

dimensions being somewhat different. We do not, for instance, include a financial income variable and 

rather include information on living standards given it is a more direct measure of deprivation of 

capabilities in line with the rationale of the MPI (10). For the education dimension we focus solely on 70 

primary and lower secondary school attendance, which is compulsory in Brazil, as this is a main focus 

of ZH programs (9). Fig. S3 illustrates relationships between the multi-dimensional poverty (census) 

and MHDI dimensions. Whilst the need to use the geometric mean (due to data availability) prevents 

us from assessing changes in the number of people below set poverty thresholds (10), our index provides 

a strong indicator of temporal change in multi-dimensional poverty. In addition, we use data from the 75 

Brazilian National Primary Information System (SIAB) for 2004 and 2013 (12), which we refer to as 

multi-dimensional poverty (SIAB) to assess multi-dimensional poverty change in the poorer sectors of 

society. SIAB contains information for all families targeted by The Family Health Program. This is the 

national decentralised primary health care program aimed at providing health care coverage especially 

in deprived areas (13). The multi-dimensional poverty (SIAB) measure combines equally weighted data 80 

on health, education, and living standards but uses slightly different variables for each dimension than 

those used by multi-dimensional poverty (census) due to differences in primary data collection (see 

Table S6). Our two poverty measures are thus related but not directly equivalent. 

 

Child malnutrition and infant mortality. We use child malnutrition and infant mortality as measures 85 

of food insecurity and health (14). Our measures of infant mortality are derived from both the national 

census and SIAB. The national census does not include child malnutrition measure and these data are 

derived solely from SIAB. Our malnutrition data combines data on underweight new-borns and 

underweight children (between 12 and 24 months). We combine these two measures using the 

geometric mean. We avoid double counting children weighed more than once at age one by selecting 90 

records for only four months a year, selecting the two wettest and two driest months per municipality 

per year to avoid a temporal bias, based on fine-scale monthly municipal rainfall data (15). Our measure 

of infant mortality is the number of annual infant deaths (children <1 year) per 100,000 live births. We 
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use data from both SIAB and the national demographic census as this allows us to consider infant 

mortality both in poorer sectors of society, and the entire municipal population. We define child 95 

malnutrition per 10,000 children, and infant mortality per 100,000 live births, rather than the more 

standard per 1,000 and 100, respectively, in order to retain more information when modelled using a 

Poisson modelling framework which does not allow decimal values. 

 

Natural vegetation cover. We use a 30m resolution Landsat-derived remote sensing product published 100 

by The Brazilian Annual Land Use and Land Cover Mapping Project v2 (16). Our measure focuses 

specifically on natural vegetation change for each of the six Brazilian biomes (Amazon rainforest, 

Cerrado, Caatinga, Pantanal, Atlantic Forest, and Pampa). The MapBiomas dataset maps vegetation 

cover according to 28 vegetation classes: we use 12 classes to construct our area under natural 

vegetation (Table S7). We calculate area of natural vegetation in each municipality and validate these 105 

estimates by comparison with alternative datasets, i.e. Terra Class for the Amazon and Cerrado, 

PMDBBS for the Caatinga and Cerrado, and SOS Atlantic Forest (Table S8). We only consider pixels 

that have been observed in both years and also ensure that the majority of each municipality in the 

analysis is consistently observed by excluding 17 municipalities where less than 50% of the total area 

was observed in either 2004 or 2013 due to cloud cover. As a robustness test we also consider a more 110 

stringent threshold and exclude municipalities with >5% cloud cover in either 2004 or 2013.     

 

Treatment variables - ZH policy implementation. We use data on annual municipal investments 

obtained via government managed online platforms (www.dados.gov.br and www.mds.gov.br) of the 

four main ZH sub-programs: PRONAF, PAA, PNAE and BF. All four sub-programs grew steadily 115 

since inception (Fig. S4), and show large spatial variation in investment across Brazil (Fig. S1). We 

exclude other minor sub-programs because they lack data at a municipal level and are much more 

limited in geographical spread. Information on the number of beneficiaries is publicly available for 

some ZH sub-programs, but this variable is not defined in a consistent way as one beneficiary could 

represent one individual, one co-operative that contains multiple farmers (but an unknown number of 120 

farmers or people) or one family that contains an unknown number of family members. It is thus 

impossible to use such data to capture the number of individuals in a municipality targeted by the ZH 

program or its sub-programs. A financial value capturing ZH program investment is thus more 

appropriate for quantifying spatial variation in investment. 

 We measure ZH investment as the summed per capita financial investment allocated to each 125 

municipality from the four sub-programs between 2004 and 2013. The ZH program was officially 

launched in 2003. However, we focus the majority of our analysis from 2004 onwards because 

investment levels in the program’s first year were small (17, 18) and major changes to ZH’s largest sub-

program, BF, were implemented in 2004 (19). PAA investment is included from 2006 onwards 

(inclusive) due to insufficient data availability but investment prior to 2006 was minimal (Fig. S4). For 130 
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analyses using outcome variables spanning 2000 to 2010, we match investment to the same time frame 

and measure ZH as summed ZH sub-program investment from 2000 to 2010. Investment values are 

expressed as 2013 values (in units of R$1000 per capita; using population data from IBGE) using 

Brazil’s inflation index IGP-DI.  

 135 

Confounding variables. We extract data on 15 biophysical and socio-economic factors that are used 

to calculate covariate balance generalized propensity scores and thus limit potential non-random 

treatment allocation bias by reducing the correlation between treatment and potential confounding 

factors. The variables are also used as control variables in our regression models. Here we describe each 

variable and the rationale for inclusion. 140 

 

i) Total municipal area. Administrative area can significantly influence social and environmental 

outcomes in impact estimation studies (20), and has been linked to implementation efficiency of BF 

(21). Municipal area data are taken from IBGE (https://www.ibge.gov.br/). 

 145 

ii) States. States in Brazil have substantial decision-making power, heterogeneous economies, and 

receive different amounts of federal financial support (9) which could influence the effectiveness of ZH 

investment.  

 

iii) Ecological biome. Brazil can be divided into six ecologically distinct biomes (Amazon rainforest, 150 

Cerrado, Caatinga, Pantanal, Atlantic Forest, and Pampa). These differ substantially in ecological and 

biophysical conditions and degree of protection (22), with significant implications for agricultural 

production and rural livelihoods and interpretation of the effects of natural vegetation loss. We calculate 

the percentage land cover of each biome within each municipality using official biome boundaries (23). 

When using biome as a predictor in models of food security, health and multi-dimensional poverty 155 

outcomes we assign a specific biome to each municipality if ≥ 80% of a municipality’s area falls within 

a single biome, and assign each of the 253 municipalities that did not meet this criterion to one of seven 

transition categories (e.g. Cerrado/Atlantic forest) creating a 13 level factor (Biome 13cat). When 

modelling natural vegetation we classified each municipality as the biome which comprised the 

majority of land cover (creating a 6 level factor; Biome 6cat) as use of the transition categories adversely 160 

affected model convergence.   

 

iv) Population density. Population pressure is a key driver of land-use change and can have substantial 

effects on land-use practices, access to resources and ultimately, livelihoods (24). We measure baseline 

population density using population estimates and municipal area data from IBGE. 165 
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v) GDP per capita from public services. Financial support for local institutions can have substantial 

effect on livelihoods and wellbeing. We measure baseline levels of per capita municipal spending on 

public administration including areas of health, education and social security (25). We deflate these 

values relative to 2013, expressed per capita (in R$1,000 units) using population data from IBGE. 170 

 

vi) Electoral patterns.  

Electoral patterns can influence public spending (26–28), and thus influence our treatment allocation. 

This could arise if parties that are in power invest more in regions in which they have a high share of 

the vote (to reward voters) or potentially increased investment in regions where vote share is lower (to 175 

encourage more votes in subsequent elections). These mechanisms could apply to national elections, as 

ZH investment is partly dependent on financial transfers to municipalities from federal government. 

They could also apply, however, in elections held at the municipality level as municipalities have 

substantial autonomy in deciding social policies and budget (29). We thus calculate three measures of 

electoral patterns using data from the Superior Electoral Court data repository (30): V1) Average 180 

municipal vote share (%), per municipality, in the presidential elections for the winning candidate, V2) 

Sum of years (over the focal period of our analysis) the municipality’s mayor is from the same party as 

that of the current president, and V3) Sum of years the municipality’s mayor is from a main party in 

Brazil. For V3 we create one variable for each of six major parties in Brazil (PMDB, PSDB, PFL, PTB, 

PP, and PT), as together they made up 70% and 67% of all mayor positions in the 2000-2010 and 2004-185 

2013 periods, respectively. Elections are generally held in the fall therefore we only expect vote share 

for a winning party in one year, e.g. 2000, to have an influence on treatment allocation in the subsequent 

year, i.e. 2001. The contribution of each year to these three metrics is weighted by the proportion of 

investment that relates to that year, i.e. electoral patterns that could influence investment levels in years 

when investment in ZH is higher have greater weight. Relationships were consistently limited between 190 

investment and V2 (largest Spearmans’ rho coefficient = 0.051) and V3 (largest Spearmans’ rho 

coefficient = 0.149), but much larger correlations arose between investment and V1 (largest Spearmans’ 

rho coefficient = 0.712: Table S9), and we thus select V1 as the most important variable to control for 

electoral patterns. 

 195 

vii – ix) Land use. To account for any influence of the agricultural sector on our outcome variables we 

control for Area under crop production- (6) and Area under pasture at baseline (31). Area under crop 

production at baseline respectively refers to year 2000 and 2004 for the 2000-2010 and 2004-2013 

models. Area under pasture is measured in 2006, a few years after our baselines as data for earlier years 

were not available. We use the 2006 census data rather than MapBioma’ data because a large proportion 200 

of Brazil’s farm area is classified as “agriculture or pasture” in the MapBiomass dataset (24% in version 

3, accessed February 2019 www.mapbiomas.org/stats) thus creating considerable uncertainty in 

estimates of the amount of crop and pasture land.  

http://www.mapbiomas.org/stats
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We also control for the area of small-scale farms, i.e. area by farms <50 ha at baseline (31), again only 

available for 2006. We adopt this size threshold rather than the frequently used 2 hectare threshold 205 

because this excludes a substantial proportion of smallholder agriculture (32).  

 

x) Remoteness. We control for remoteness, i.e. municipal travel time to a major city, which we use as a 

proxy for municipal access to larger markets and health services. We adapt the algorithm used by the 

Joint Research Centre of the European Commission (33), and incorporate information on land cover 210 

(34), transportation routes (35), and slope and elevation (36), to arrive at the fastest travel time from 

each municipality centroid to a major city, following Oldekop et al. (37). We use cities with at least 

50,000 inhabitants as this is where large markets and adequate health services tend to be found (38, 39). 

Note that these travel times are correlated with travel times to both smaller and larger cities: 10,000 (r 

= 0.94), 150,000 (r = 0.86) and 250,000 inhabitants (0.74).  215 

 

xi) Drought intensity. Drought could have adversely impacted our baseline and current food security 

measures (40–42). We calculate an average municipal drought index using the global Standardised 

Precipitation-Evapotranspiration Index (SPEI)(43). This continuous index ranges from -2 (extremely 

dry) to +2 (extremely wet) and is a standardized variable (mean zero and unit variance) expressed as 220 

the deviation of the current climatic balance (precipitation minus evapotranspiration potential) from the 

long-term (1901-2013) climatic balance. We use the average drought index per municipality, for three 

years spanning both sides of our baseline and endpoint years and then subtract the baseline index from 

the endpoint index to create a single measure which effectively captures the change in drought intensity 

over the period in which we measure the change in our outcome variables. 225 

 

xii) Agricultural credit. We also consider possible effects of other farming assistance programs. We 

control for the amount of rural agricultural credit per capita (that is not PRONAF credit) regulated by 

the Brazilian Central Bank (44) allocated to each municipality for the full period in which we measure 

change in our outcome variables (2000-2010 and 2004-2013). We deflate these values relative to 2013, 230 

expressed per capita (in R$1,000 units) using population data from IBGE.  Rural credit can influence 

food security (45, 46) and land use change (47). 

 

xiii-xiv) Slope and elevation. We calculate and control for average slope (in degrees) and average 

elevation (in meters) per municipality using the global digital elevation model v2 (36), on the basis that 235 

both contribute to agro-ecological conditions which affect food production, natural vegetation cover 

and livelihoods (48). 

 

xv) Conservation policies. We control for Area under protection (at baseline) when we model the effect 

of ZH investment on natural vegetation cover, based on previous studies showing the influence of 240 



8 

 

protection on deforestation (20, 49). Boundaries of all designated protected areas, i.e. IUCN categories 

I-VI and indigenous areas, were obtained from the World database on Protected Areas 

(www.wdpa.org). We only consider protected areas established by 2004, but note that the area under 

protection by 2004 is highly correlated to the area under protection by 2013 (r = 0.97).  

 245 

Methods 

 

Covariate Balancing Generalized Propensity Score. We create Covariate Balancing Generalized 

Propensity Score weights (CBGPS) using the “CBPS” package (50) to capture potential treatment 

selection bias, i.e. dependence between treatment assignment and outcome given covariates (predictor 250 

variables), which if left untreated can bias the estimated effects of interest (51). The approach builds on 

previous methods of impact estimation using observational data, is shown to increase the robustness to 

model misspecification, and is applicable to a continuous treatment variable such as our measures of 

ZH investment (50). 

The covariate balancing CBGPS method (50) offers both a parametric and non-parametric 255 

calculation to generate covariate balancing weights. In the parametric calculation a generalized 

propensity score is estimated by modelling treatment (i.e. level of ZH investment) as the function of 

pre-treatment covariates. Then inverse probability weights, whose aim is to ensure the lowest possible 

correlation between treatment and covariates, are created on the basis of the generalized propensity 

score. The non-parametric calculation does not directly estimate a generalized propensity score in the 260 

first instance but rather uses an empirical likelihood approach to choose inverse probability weights 

which ensure minimal correlation between treatment and covariates (for more detail see (50)).  

We use both approaches and retain the weights that result in the greatest improvements in 

balance, i.e. the lowest correlation between investment (treatment) and confounding variables. We 

create distinct weights for each individual regression model, and use the same predictor variables to 265 

create the covariate balancing weights as those used in the subsequent adjusted regression model (see 

Table S1 for a full list of predictor variables used).  

The weights resulted in great reductions in treatment-covariate correlations in all our regression 

models, and an average treatment-covariate correlation for each model of 0.07 (compared to an original 

average treatment-covariate correlation of 0.14) (Fig. S5). 270 

 

Model structure and variable transformations. The appropriate model structure for each outcome 

variable was decided by fitting four potential theoretical distributions (normal, log-normal, Poisson and 

Negative binomial) to each outcome using R’s “fitdistrplus” package (52). Daily per capita Kcalorie 

and protein production, multi-dimensional poverty (census), multi-dimensional poverty (SIAB) and 275 

natural vegetation cover fit a log-normal distribution and are subsequently modelled using ordinary 

least squares (OLS) regressions after transforming the dependent variables to log base ten. The 

http://www.wdpa.org/
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investment variable and continuous covariates (except drought intensity and electoral patterns) are also 

transformed to log base ten, as this yields improved fit of linear relationships and Gaussian distributions 

of resultant model residuals. For the variables that include zero we add a constant of half of the 280 

minimum value before applying log transformations. Model diagnostics revealed the presence of 

outliers and we thus use R’s “robustbase” package with the MM-estimator to conduct robust regressions 

that reduce the influence of outliers on model outputs (53). This frequently used technique has a high 

statistical efficiency and can cope with multiple outliers without breaking down (54). The MM-

estimator also provides standard errors which are robust against  heteroscedasticity and autocorrelation 285 

(54).  

Child malnutrition (SIAB), infant mortality (census) and infant mortality (SIAB) were count 

data and exhibited over-dispersed Poisson distributions, tested using R’s “AER” package (55). We 

modelled Infant mortality (SIAB) and Child malnutrition (SIAB) using a quasi-Poisson model and 

Infant mortality (census) using a negative binomial model. The choice between the two model structures 290 

was based on the outcome’s mean-variance structure (56), selecting quasi-Poisson models when there 

was a linear relationship between the mean and variance. A robust MM-estimator cannot be calculated 

for Quasi-Poisson and Negative Binomial models. We thus follow the suggestion from Coxe et al. (57) 

and use another measure of influence, DFBETAS, to conduct analyses that are equivalent to robust 

regressions. DFBETAS can be calculated for each regression coefficient to “assess the number of 295 

standard deviations by which an individual changes each regression coefficient” p. 130 (57). Based on 

the most theoretically important variable for us – the investment variable – we run robust models which 

exclude highly influential points for the investment regression coefficient, defined as DFBETAS above 

the recommended DFBETAS cut-off of 2/sqrt (n) (57, 58).  

 300 

Interaction terms. State and biome predictors are coded using deviation coding (also known as effect 

coding). State- investment and biome- investment interaction terms are retained when 95% confidence 

intervals (CIs) for the added parameter(s) exclude zero, and when there is improvement in model fit, 

judged for most models by a decrease in model’s AIC value (of at least 2 AIC points) and judged in 

robust models calculated with an MM-estimator by adjusted  R2 values (59). State-investment 305 

interactions were retained when modelling per capita Kcalorie-, per capita protein and multi-

dimensional poverty (census) as a function of summed ZH, PRONAF and BF investment, when using 

all data and when excluding lower quality data, as well as when modelling multi-dimensional poverty 

(SIAB) as a function of PRONAF investment using all data, and multi-dimensional poverty (SIAB) as 

a function of BF investment when excluding lower quality data.  Biome-investment interactions were 310 

retained when modelling natural vegetation cover as a function of summed ZH, BF and PRONAF 

investment. All state and biome interaction effects are expressed relative to the main investment 

parameter which expresses the average effect across Brazil.  

 



10 

 

Visualising investment impacts. We use the resultant regression equations from core models to 315 

quantify the impact of investment by calculating the predicted value of our outcome variables under 

three scenarios i) a spatially uniform negligible investment level (defined as the 1st percentile 

investment value, thus ensuring we predict inside the range of our data), ii) the actual investment 

received in each municipality, and iii) spatially uniform investment levels equating to the 50th 

percentile investment level. We then generate maps of relative impact of actual investment (defined as 320 

percentage change in predicted outcome between a negligible and actual investment) (Fig. 1). Because 

ZH investment was highly spatially heterogeneous (Fig S1), we also generate maps of relative impact 

under a spatially uniform investment level (defined as percentage change in predicted outcome between 

a negligible and a 50th percentile investment level) (Fig. S2). This mapping approach helps to visualise 

spatial variation in the effectiveness of investment whilst accounting for heterogeneity in the magnitude 325 

of investment. 

 

Robustness tests. We run robustness tests to look for potential sources of sampling bias or data quality 

issues, lack of independence amongst observations (spatial autocorrelation), and lack of independence 

between the treatment variable and error term (endogeneity). Checking for spatial autocorrelation and 330 

endogeneity also provide information on the potential presence of unmeasured confounders (60, 61). 

 

Data Quality. We re-run models excluding municipalities for which there was uncertainty about data 

quality, defined as: i) municipalities larger than 10,000 km2 as larger municipalities are more likely to 

have unrepresentative socio-economic data (62); ii) for models using SIAB data (child malnutrition, 335 

infant mortality and multi-dimensional poverty) municipalities that did not meet the ten quality criteria 

set by Brazil’s Ministry of Health for SIAB data (63) (e.g. municipalities with small sample sizes in the 

microdata (e.g. <100 families/350 people registered with data), limited temporal data (e.g. 

municipalities with 0 families attended to in a month), or non-logical data (e.g. >1000 infant deaths per 

1000 live births) (see Table S10 for a full list of criteria), and iii) for natural vegetation cover models, 340 

municipalities in which cloud cover in the natural vegetation dataset covered more than 5% of the 

surface area in either 2004 (the baseline) or 2013 as this could reduce the accuracy of natural vegetation 

cover estimates.   

The number of municipalities excluded due to possible quality issues range from 98 to 1,847 

depending on the outcome variable (Table S10). Exclusions based on municipality size, employed to 345 

all models, exclude 0-61% of municipalities in a state with the largest effects in northern and centre-

western states. Exclusions based on high cloud cover, employed to the natural vegetation cover models, 

affect 12 of 16 states situated in the north or north-east, and one state elsewhere (Rio Grande do Sul in 

the south) reducing state sample sizes by between 1 and 75%. The largest exclusions occur in models 

using SIAB data (multi-dimensional poverty-, child malnutrition-, and infant mortality) based on the 350 

Ministry of Health’s quality criteria, with 15 to 100% of municipalities being excluded per state. Whilst 
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Amapa (in the north) was the only state from which all municipalities were excluded there is no marked 

geographical variation in the percentage of municipalities that are excluded. When combining data 

quality criteria robustness models excluded 77.0% and 99.7% of the Amazon and Pantanal biomes’ 

area, thus generating significant spatial bias. We thus exclude these biomes from the robustness models 355 

assessing change in natural vegetation cover.  

 In a quarter of the models (6 of 24) inference varies between core and robustness models (i.e. 

the PRONAF and per capita Kcalorie production and natural vegetation change models, BF and SIAB 

derived multi-dimensional poverty model, the BF infant mortality (SIAB) model, and when assessing 

the impact of overall ZH and BF investment on natural vegetation change in the Caatinga) we discuss 360 

discrepancies in the main text (although the impact on our inference is rather limited). In all other cases 

inference from the robustness and core models was extremely similar and we focus on the results from 

the core model as this enables us to visualise modelled impacts across Brazil. There were occasional 

small differences, however, in the precise location and extent of areas in which treatment impacts are 

significant and non-negligible. Specifically, i) in one state (Para in the north) the effect of PRONAF 365 

investment on per capita protein production changes from a predicted increase in outcome in the core 

model to a predicted reduction in the robustness model; and ii) in one state (Mato Grosso in the central 

west) the effect of BF investment on per capita protein production changes from a predicted reduction 

in outcome in the core model to a predicted increase in the robustness model). 

 370 

Spatial autocorrelation. We assess the presence of spatial autocorrelation, given that this can violate 

the assumption of independence in classical statistics and influence results (64). Spatial autocorrelation 

also indicates that spatially determined unmeasured confounders may be present, further facilitating 

assessment of endogeneity (61). We test for spatial autocorrelation using two-sided Moran’s I tests 

implemented in R’s “spdep” package (65) on all core model residuals and model residuals from the 375 

covariate balancing stage (CBGPS). As only the parametric, and not the non-parametric, CBGPS 

models can provide residuals (50) we follow Oldekop et al. (66) and create our own propensity score 

models, i.e. in our case linear regressions where investment is the function of predictor variables, and 

test for spatial autocorrelation in the residuals of these models. We do so using first a simple spatial 

neighbourhood matrix that classifies municipalities as neighbours if they share a common border. We 380 

then use a distance based neighbourhood matrix that generates a weight matrix based on inverted 

euclidian distance between each municipality centre, though capped at 0.75 of the maximum given the 

extreme sizes of some Brazilian municipalities.  

Moran’s I values for 78% of our models were not statistically significant. Where Moran’s I 

values were significant they were very close to zero (range -0.027 to 0.031; Table S11). We thus 385 

conclude that our model inference is not biased by spatial autocorrelation and that there is no evidence 

that spatially determined unmeasured confounders influence our outcomes variables.   
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Endogeneity. Endogeneity between model error terms and investment variables can influence causal 

inference and such endogeneity is typically caused by unmeasured confounding variables (60).  A 390 

Hausman test can be used to test for endogeneity. This requires identifying the omitted variable that 

generates endogeneity, but this is rarely possible in observation studies (as is the case for our models), 

and selection of appropriate instrumental variables – which is often difficult (60). In the absence of the 

Hausman test we follow Oldekop et al.(66), and assess whether the error term (model residuals) and 

investment variable are correlated running a series of non-parametric Spearman’s rho correlation tests. 395 

The correlation coefficients (Spearman’s rho) between model residuals and the model investment 

variable are very low for all core models and range from -0.085 to 0.049 (Table S12). Thus, we conclude 

there is no evidence of endogeneity between our investment variables and model error term, providing 

further evidence that it is unlikely that unmeasured confounders influence or bias our results. 

 400 
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Supplementary Tables 

 

Table S1. Model variables for the Zero Hunger (ZH)-, Bolsa Familia (BF)- and PRONAF models 

Outcome Treatment  Confounding variables n 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  

log10(Kcal 
(pc)) 

log10(ZH)* State      
B 

      
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
 

 
4,940 log10(BF)* State              

log10(PRONAF)* State          

log10(Protein 
(pc)) 

log10(ZH)* State      
 
  

  
    

  
 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

  
 

 
4,940 log10(BF)* State        B      

log10(PRONAF)* State          

log10(Multi-
dim. poverty 

(census)) 

log10(ZH)* State      
  

  
B 

    
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

  
 

 
4,976 log10(BF)* State              

log10(PRONAF)* State          

log10(Multi-
dim. poverty 

(SIAB)) 

log10(ZH)      
  

  
B 

    
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

   
3,786 log10(BF)* State              

log10(PRONAF)* State          

Child 
malnutrition 

(SIAB) 

log10(ZH)      
  

  
  

    
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

   
3,828 log10(BF)* State          B    

log10(PRONAF)          

Infant 
mortality 

(census) 

log10(ZH)      
  

  
  

    
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

   
4,976 log10(BF)         B     

log10(PRONAF)          

Infant 
mortality 
(SIAB) 

log10(ZH)      
  

  
  

    
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

   
4,305 log10(BF)         B     

log10(PRONAF)          

log10(Natural 
vegetation 

(km2)) 

log10(ZH)*Biome (6cat)        
  

    
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

  
  

 
4,924 log10(BF)*Biome (6cat)           B   

log10(PRONAF)*Biome 
(6cat) 

         

Pc = per capita. B = baseline conditions of the outcome variable. N = model sample size. Outcome years correspond to 2010 for multi-dimensional poverty (census) and Infant mortality (census) (with 
corresponding baseline (B) values from 2000), all other outcomes for year 2013 (with B values from 2004). Three treatments are tested separately, i.e. total municipal ZH (sum of BF, PRONAF, PAA 
and PNAE), BF and PRONAF investment per capita from baseline to endpoint year. The confounding variables, whose inclusion in each model are indicated by ticks/B, are 1. ZH investment that is 
not captured in the sub-program (included in the BF and PRONAF models only), 2. State, 3. Biome (13cat), 4. Biome (6cat), 5. Kcal (pc), 6. Protein (pc), 7. Multi-dimensional poverty (census or SIAB), 
8. Infant mortality (census or SIAB), 9. Child malnutrition (SIAB), 10. Natural vegetation (km2), 11. GDP Public administration (pc), 12. Crop area (ha), 13. Pasture area (ha), 14. Small-scale farm area 
(ha), 15. Drought intensity, 16. Rural credit (pc), 17. Remoteness (Minutes), 18. Elevation (meter), 19. Slope (degree), 20. Municipal area (km2), 21. Population density, 22. Electoral patterns, and 23. 
Protected area (km2). Some models include an interaction term between treatment and state or biome (indicated by *). For the natural vegetation models Biome (6cat) is used instead of Biome (13cat), 
because the latter variable had too small sample sizes across the seven transition-biome categories for the models to run successfully with biome interaction effects. Time-variant confounding variables 
which might risk being influenced by the treatment are set at the baseline year to minimize influence from investment. Some exceptions exist, i.e. data for 13. Pasture area, and 14. Small-scale farm 
area are only available for 2006. Also, 7. baseline multi-dimensional poverty (census), which corresponds to year 2000, is used as a baseline confounding variable for the 2004-2013 Kilocalorie-, 
Protein- and Natural vegetation models as opposed to multi-dimensional poverty (SIAB) (which corresponds to year 2004) because the geographical coverage of multi-dimensional poverty (census) 
better matches the coverage of these outcome variables). Confounding variable 16. Rural credit incorporates data for the whole time-period as it is likely unaffected by treatment. Likewise 15. Drought 
intensity, incorporates three years spanning our baseline and endpoint years. All continuous variables besides the outcome for Infant mortality and Child malnutrition, and the Drought intensity 
confounding variable are transformed to log base 10. 
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Table S2. Descriptive statistics for all Zero Hunger (ZH)-, Bolsa Familia (BF)- and PRONAF model 

variables.  
Variable Description Time 

frame 
Mean SD 

Dependent variables (and corresponding baseline values):  
 

 

Kcal  
(pc/day) 

Kilocalories produced per capita per day (pc/day) in 2013 and 
2004 

Endpoint 157,902 442,278 

Baseline 84,420 240,796 

Protein  
(gram pc/day) 

Grams of protein produced per capita per day in 2013 and 2004 Endpoint 1,975 5,665 

Baseline 1,410 3,916 

Multi-dim. poverty 

(census) 
Multi-dimensional poverty index for the entire population in 2010 
and 2000 

Endpoint 0.058 0.031 

Baseline 0.116 0.06 

Multi-dim. poverty 
(SIAB)  

Multi-dimensional poverty index in the poorer sectors of society in 
2013 and 2004 

Endpoint 0.059 0.039 

Baseline 0.07 0.04 

Underweight 
children (SIAB) 

Geometric mean of number of underweight children at birth- and 
age 12-24 months per 10,000 children in the poorer sectors of 
society 2013 and 2004 

Endpoint 253 290 

Baseline 665 458 

Infant mortality 
(census) 

Number of infant (<1 year) deaths per 100,000 live births for the 
entire population in 2010 and 2000 

Endpoint 1,958 717 

Baseline 3,393 1,388 

Infant  
mortality (SIAB) 

Number of infant (<1 year) deaths per 100,000 live births in the 
poorer sectors of society in 2013 and 2004 

Endpoint 2,255 11,072 

Baseline 2,547 2,589 

Natural vegetation 
cover (km2) 

Total area (km2) under natural vegetation in 2013 and 2004 Endpoint 1,078 5,331 

Baseline 1,103 5,402 

Treatment variables:  
 

ZH (R$/pc) Total per capita ZH investment in Brazilian Reals, i.e. sum of per 
capita BF, PRONAF, PAA and PNAE for 2000-2010; and 2004-
2013 

Total 2,550; 
3,829 

 

2,704; 
3,948 

BF (R$/pc) Total BF investment per capita for 2004-2010; and 2004-2013 Total 692; 
1,216 

398; 
696 

PRONAF (R$/pc) Total PRONAF investment per capita for 2000-2010; and 2004-
2013 

Total 1,716; 
2,439 

2,796; 
4,118 

Confounding variables:  
 

 

Multi-dim. poverty 
(census) 

Census based multi-dimensional poverty index for year 2000 Baseline 0.116 0.06 

GDP Public 
Service (R$/pc) 

GDP from public services per capita for years 2000; and 2004 Baseline 1,533; 
1763 

535; 
554 

Kcal  
(pc/day) 

Kilocalories produced per capita per day for years 2000; and 2004 Baseline 66,397; 
84,420 

201,853; 
240,796 

Crop area (ha) 
 

Total crop area for years 2000; and 2004 Baseline 9,643; 
11,322 

21,258; 
26,845 

Election pattern 
(% vote share) 

Average municipal vote share for the winning presidential 
candidate (%) for 2000-2010; and 2004-2013, with contribution of 
each years’ vote share weighted by the proportion of investment 
for that year 

2000-2010 
ZH 
BF 

PRONAF 
2004-2013 

ZH 
BF 

PRONAF 

 
59 
59 
59 

 
11 
13 
10 

   

 60 13 

 60 
60 

13 
14 

Pasture area (ha) Total pasture area for year 2006 Baseline 31,003 81,712 

Small-scale farm 
area (< 50 ha) 

Total hectare farms <50 hectare for year 2006 Baseline 8,379 
 

8,627 

Remoteness 
(min.) 

Travel time in minutes from the municipality centroid to the nearest 
city with pop => 50,000 in 2010 

 187 
 

410 

Drought intensity 
 

Drought intensity, based on SPEI for baseline and endpoint 
periods (see SI Appendix for detailed description) 

Total 1.4;  
0.37 

2; 
2.24 

Credit (R$/pc) Total rural non-PRONAF agricultural credit for 2000 – 2010; and 
2004 – 2013 

Total 7,280; 
9,427 

12,708; 
16,306 

Elevation (m) Average elevation within each municipality  456 281; 

Slope (degree) Average slope within each municipality  8.2 3.8; 

Pop.Density Total population per km2 for years 2000; and 2004 Baseline 30; 31 29; 30 

Municipality area 
(km2) 

Area within municipality boundaries in 2000; area within 
municipality boundaries in 2004; and area that was cloud free in 
both 2004 and 2013 within 2004 municipality boundaries 

Baseline 1,630; 
1,619; 
1,573 

5,939; 
5,902; 
5,712 

Protected area 
(km2) 

Total area classified as strictly protected-, sustainable use 
protected areas and indigenous. area at baseline year 2004 

Baseline 300 
 

2407 

State 26 levels (Federal District excluded because urban)   

Biome 13 levels (6 pure biome and 7 transition zones)   

Dependent variables and their baseline variable values are based on model sample sizes ranging 3,808-4,976 municipalities. 

Treatment and confounding variable values are based on the largest 2000-2010 and 2004-2013 model sample (n = 4,976 and 
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4,940, respectively). Confounding variables with single values are based on the largest model sample in which the variable is 

used.  
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Table S3. Quality dataset robustness check model impacts of Zero Hunger (ZH), Bolsa Familia (BF) and PRONAF per 

capita investment  

 
 

ZH BF PRONAF 

Outcome Coef±S.E. P Int. R2 Coef±S.E. P Int. R2 Coef±S.E. P Int. R2 

Kcalories (per capita) 0.01±0.02 0.629 2E-08 0.94 0.02±0.02 0.212 1E-20 0.93 0.02±0.01 0.148 7E-12 0.94 

Protein (per capita) 0.08±0.02 3.E-07 2E-42 0.96 0.09±0.02 3.E-05 1E-17 0.96 0.04±0.01 0.002 9E-103 0.96 

Multi-dim. poverty (census) -0.01±0.01 0.022 2.E-04 0.74 0.04±0.01 8.E-07 3E-08 0.77 -0.02±0.005 4.E-05 3E-10 0.76 

Multi-dim. poverty (SIAB) 0.02±0.01 0.116 
 

0.61 0.03±0.03 0.202 5.E-04 0.61 -0.02±0.02 0.230 
 

0.60 

Child Malnutrition (SIAB) 0.04±0.04 0.334 
 

n/a 0.15±0.07 0.025 
 

n/a -0.01±0.03 0.683 
 

n/a 

Infant Mortality (census) 0.01±0.24 0.983 
 

0.13 0.03±0.27 0.898 
 

0.14 0.01±0.22 0.962 
 

0.17 

Infant Mortality (SIAB) 0.07±0.06 0.241 
 

n/a 0.11±0.07 0.147 
 

n/a -0.04±0.05 0.439 
 

n/a 

Natural Veg. (km2) -0.01±0.004 0.005 9.E-05 0.99 -0.03±0.01 0.007 0.040 0.99 -0.01±0.004 0.169 3.E-05 0.99 

Model coefficients are reported ± one standard error. Interaction terms (Int.) show p-values for the interactions between investment and state in all models, 
except for the natural vegetation model in which the interaction is with biome type. When interaction terms are not significant we report results from models 
that only contain main effects. State and biome have been encoded with deviation (effects) coding, thus for models with an interaction the main effects 
expressed here represent the average effect of investment across Brazil. Daily per capita kilocalorie and protein production, multi-dimensional poverty 
and area of natural vegetation are modelled using robust OLS, whilst infant mortality (census) is modelled using a Negative Binomial model, and infant 
mortality- and child malnutrition (SIAB) are modelled with a Quasi-Poisson model. Model r2 for infant mortality (census) is calculated using McFaddens 
pseudo-R2 and is thus not comparable to those from OLS models. No pseudo-r2 is available for Quasi-Poisson models. All models have been adjusted to 
achieve covariate balance using the CBGPS method (50). 
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Table S4. Robustness check model of the impact of Bolsa Familia (BF) per capita (pc) investment on 

education 

 

 BF 

Outcome Coef±S.E. P Interaction term R2 

Education (census) 0.08±0.07 0.263 2.E-10 0.34 

Education (SIAB) -1.11±1.12 0.320 2.E-08 0.11 

Due to a heavy negative skew in the Education (census) dependent variable, an Ordered Quantile (ORQ) normalization 
transformation was carried out. This transformation was identified as the best transformation (out of 7 standard transformations) 
using R’s package “bestNormalize”. Model coefficients are reported ± one standard error. Interaction terms  report p-value for the 
interaction term between investment and state. In the Education (census) model 7 states showed a significant effect of BF 
investment on school attendance (Para, Rondonia, Alagoas and Bahia with significant increases, and Goias, Mato Grosso do 
Sul, and Parana with significant reductions). In the Education (SIAB) model 4 states showed a significant effect of BF investment 
on school attendance (Parana and Santa Catarina with significant increases, and Bahia and Piaui with significant reductions) 
State has been encoded with deviation (effects) coding, thus for models with an interaction the main effects expressed here 
represent the average effect of investment across Brazil. Both education models are modelled using covariate balance (CBGPS) 
adjusted robust OLS models. 

 

Table S5. Nutrient values used to convert production of (a) kg and (b) number of animals to 

corresponding quantities in kilocalories and grams of protein 

 

Agro-Livestock    products Kcal 
FBA/USP 
estimate 

Kcal 
USDA 

estimate 

Kcal value 

used 

Protein 
FBA/USP 
estimate 

Protein 
USDA 
estimate 

Protein value 
used 

(a) 

Sugarcane  -  3,750 3,750 -  0 0.00 

Soyabeans  3,630 4,460 4,045 405 360 382.50 

Maize -  3,650 3,650 -  90 90.00 

Rice 3,400 3,650 3,525 78.1 70 74.05 

Cassava 1,330 1,600 1,465 13 10 11.50 

Milk 650 600 625 29.7 30 29.85 

(b) Kg meat/ 
animal 

      

Cattle  134.5a 1,388 2,340 1,864 200.7 190 195.35 

Buffalo 218.5b -  1,090 1,090 -  210  210.00 

Chicken 1.7c 2,090 -  2,090 171 -  171.00 

Sheep 6.5d 1,090 -  1,090 207.4 -  207.40 

Goat 5.8e -  1,090 1,090 -  210 210.00 

Pig 45.4f 1,720 1,850 1,788 198.7 195 196.85 

Twelve main agro-livestock products in Brazil are converted from (a) kg and (b) number of animals to corresponding quantities 
in kilocalories and grams of protein. For (b) each livestock type is first assigned an average weight of meat, and based on 
appropriate quantities in a Brazilian context converted from number of animals to kg, sources used being a(67), b(68), c(69), 
d(70), e(71), and f(72). Nutrient values are taken from the Brasilfoods (7) and USDA database (8), the average of the two used 
when possible, expressed here as kilocalories and grams of protein per kg 
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Table S6. Data included to create the multi-dimensional poverty indices Multi-dimensional poverty 

(census) and Multi-dimensional poverty (SIAB).  

 Multi-dimensional poverty (census) Multi-dimensional poverty(SIAB) 

Health 

Infant mortality  
(infant deaths per 1,000 births) 

Infant mortality 
(infant deaths per 1,000 births) 

Life expectancy deprivation  
(deviation from expected living age w/global min 
and max years): 1-((LifeExpectancy-20)/(85-20)) 

Child malnutrition 
(underweight per 100 

weighted) 

Underweight at birth 
(per 100 weighed) 

Underweight age 1-2 
(per 100 weighed) 

Education 
No school attendance  

(% 7-14 year olds that do not attend primary 
school) 

No school attendance  
(% 7-14 year olds that do not attend primary school) 

Living 
standards 

No electricity  
(% people  without access to electricity) 

No electricity 
(% people* without access to electricity) 

Unsafe water  
(% people without piped water) 

Unsafe water 
(% people* without piped water) 

Inadequate sanitation  
(% people* without public system or septic tank) 

Inadequate sanitation 
(% people* without public system or tank) 

No assets 
(% people without 

access to:) 

TV  

Inadequate walls 
(% people*living in houses with inadequate walls such 

as cardboard, plastic and straw) 

Radio 

Telephone 

Car 

Fridge/freezer 

Washing machine 

Data included to create multi-dimensional poverty (census) is based on the Brazilian demographic census (73) while multi-
dimensional poverty (SIAB) on the national primary information system (SIAB) (12). All variables besides Life expectancy 
deprivation is expressed as the proportion of people. *indicates an original measure of %-households has been converted to %-
people based on average people per household per municipality published by IBGE. Each variable is negatively loaded and 
scaled between 0-1, and subsequently combined through geometric means to make higher order compound variables, the final 
indices ranging 0-1 where 1 equals complete multi-dimensional poverty 

 

 

Table S7. Vegetation cover categories from MapBiomas used to create an overall natural vegetation 

classification 

 

MapBiomas categories New categories 

Forest, Natural forest formations, Dense forest, Open forest, 
Mangrove forest, Flooded forest, Degraded forest, Secondary 

forest, Natural non-forest formations, Non-forest natural wetlands, 
Grasslands*, and Other non-forest natural formations 

 
 

Natural vegetation 

Planted forest, Agro-livestock use, Pasture, Pasture in natural 
grasslands, Other pasture, Agriculture, Annual crops, Semi-
perennial crops (Sugarcane), Crop mosaics, Agriculture or 
pasture, Non-vegetative areas, Beaches and dunes, Urban 

infrastructure, Other non-vegetative areas, and Water bodies 

 
 
 

Other 

Non observed Non observed 

Vegetation cover categories are taken from MapBiomas v2(16), and the overall natural vegetation classification created used to 
analyse the impact of Zero Hunger, Bolsa Familia and PRONAF investment on municipal area under natural vegetation. *Natural 
grasslands, i.e. not including pasture 
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Table S8. Robustness check validating the accuracy of natural vegetation cover estimates per biome 

from MapBiomas (MB), using alternative data sources.   

Biome 
Alternative 
land use 

 
 

Resolution 
Year 

% cover of 
natural 

vegetation 
from Map 
Biomass 

% cover of 
natural 

vegetation 
from 

alternative 
data source 

Spearman's rho 
correlation coefficients 

comparing Map Biomass 
and alternative data 

sources’ estimates of 
natural vegetation cover 

per municipality  

N 

Amazon Terra Class 30 m 2014 83 86 0.992 399 
Cerrado Terra Class 1:250,000 2013 56 55 0.977 809 
Cerrado PMDBBS 1:250,000 2002 58 57 0.969 833 
Caatinga PMDBBS 1:250,000 2002 64 54 0.899 898 
Atlantic 
Forest 

SOS Mata 
Atlantica 

1:250,000 
2013 28 14 0.865 2448 

The accuracy of the 30 m resolution fine-scale natural vegetation maps of MapBiomas v2(16) is validated by considering the 
extent of natural vegetation categorized by MapBiomas (MB) compared to alternative vegetation maps within four main Brazilian 
biomes (Amazon, Cerrado, Caatinga and Atlantic Forest). TerraClass has a minimum detected area of approximately 6.25 ha 
(74).  First, we compare estimates of natural vegetation cover (%) as a proportion of total biome area using data from all 
municipalities. The discrepancy in natural vegetation cover for the Atlantic Forest is most likely caused by the lower resolution of 
the alternative map (SOS Mata Atlantica) and subsequent inability to pick up on the many small and fragmented natural vegetation 
areas typical for this biome. Second, Spearman’s rho correlations are calculated for  the two estimates of natural vegetation cover 
(km2) per municipality, N refers to the number of municipalities included in these analyses. Pre-processed Terra Class data for 
the Amazon were not available so we only use municipalities for which both data sources had extremely similar estimates of 
municipality size (<1% difference).  

 

Table S9. Correlation coefficients and associated P values for relationships between ZH-, BF and 

PRONAF investment and electoral patterns in Brazil 
  

ZH BF PRONAF 

Time frame Party Spearman’s rho P Spearman’s rho P Spearman’s rho P 

V1: Average municipal vote share (%) in presidential elections for the winning candidate 

2000-2010 
 

-0.076 8E-08 0.648 0E+00 -0.342 2E-136 

2004-2013 
 

0.064 6E-06 0.712 0E+00 -0.285 7E-93 

V2: Sum of years the municipality is governed by the same party as the current president 

2000-2010 
 

-0.051 0.0003 -0.046 0.001 -0.026 0.068 

2004-2013 
 

-0.004 0.775 -0.041 0.004 0.003 0.861 

V3: Sum of years the municipality is governed by a main party in Brazil 

2000-2010 PMDB 0.097 9E-12 -0.113 2E-15 0.122 8E-18 

2004-2013 PMDB 0.091 2E-10 -0.111 6E-15 0.117 2E-16 

2000-2010 PSDB -0.147 2E-25 -0.059 3E-05 -0.089 4E-10 

2004-2013 PSDB -0.154 2E-27 -0.088 7E-10 -0.077 8E-08 

2000-2010 PFL -0.001 0.953 0.149 4E-26 -0.057 0.0001 

2004-2013 PFL 0.009 0.517 0.150 4E-26 -0.057 0.0001 

2000-2010 PTB -0.028 0.053 0.057 0.0001 -0.038 0.007 

2004-2013 PTB -0.021 0.144 0.056 0.0001 -0.034 0.017 

2000-2010 PP 0.120 3E-17 -0.101 1E-12 0.121 1E-17 

2004-2013 PP 0.117 2E-16 -0.109 2E-14 0.145 1E-24 

2000-2010 PT -0.009 0.528 -0.046 0.001 0.017 0.219 

2004-2013 PT -0.004 0.775 -0.041 0.004 0.003 0.861 

Data on electoral patterns from the presidential elections (V1) and municipal elections (V2 and V3) for the time frames of the 

analysis (2000-2010 and 2004-2013) are taken from the Superior Electoral Court data repository (30).The contribution of each 

year to these three metrics is weighted by the proportion of investment that relates to that year, i.e. electoral trends in years 

when investment in ZH is higher have greater weight. Spearman’s Rho correlations between the electoral variables and ZH-, 

BF- and PRONAF investment variables show clear signs of a relationship with V1 (highlighted in bold), but no relationship with 

V2 and V3, thus V1 is selected as a control variable. 
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Table S10. Criteria, thresholds and rational used to exclude municipalities (M) from specific models to reduce bias in model estimates.  

 

  Criteria Threshold Rational for exclusion Models affected M excluded  

C
o

re
 m

o
d

e
ls

 

1.1 Inconsistent municipality borders Merging municipalities for time periods 
2004-2013 and 2000-2010 

Spatial inconsistency All 4 – 45 
 

1.2 Inconsistent municipality borders Border change 2000–2004 Spatial inconsistency Kilocalorie, Protein and 
Natural vegetation 

128 

2 Urban municipalities > 150 inhabitants/km² Not target municipalities All 407 – 438 
3 Unidentifiable municipality IDs Mis-spelled names Erroneous reporting All 3 – 20 
4 Non-observed municipal area due to cloud cover > 50% Spatial inconsistency Natural vegetation 17 
5 Missing information Missing predictor variable information Predictor variable inconsistency All 55 – 1307 

R
o

b
u

s
tn

e
s
s
  
m

o
d

e
ls

 

6 Municipality size (km2) > 10000 Sampling bias All 98 – 130 

 
 
 
 
 
7 

Families registered < 100 Bias due to small sample size  
 
 
 
Child malnutrition 
(SIAB), 
Infant mortality (SIAB) , 
Multi-dimensional 
poverty (SIAB) 

 
 
 
 
 
 
566 – 1847 
 

People registered < 350 Bias due to small sample size 

People registered within in all age groups 0 Bias due to small sample size 

Families attended to each month 0 Temporal bias 

Monthly medical visits to people with pregnancy, 

hypertension, diabetes, tuberculosis and leprosy 

< 10% Temporal bias 

Deviation between sum of people of all ages and 

total people registered 

> 10% Erroneous reporting 

Infant mortality rate (deaths per 1,000 born) > 1,000 Erroneous reporting 

Average people per family < 2 or > 8 Erroneous reporting 

Sex ratio < 0.5 or > 2 Erroneous reporting 

Average monthly visits per family < 0.2 or > 4 Erroneous reporting 

8 Non-observed municipal area due to cloud cover > 5% Spatial inconsistency Natural vegetation 323 

Number of municipalities excluded per criteria vary across model sample sizes because they rely on data for different time periods, i.e. 2000-2010 and 2004-2013, and have slight variations in 
model covariates. The reported number of municipalities excluded are based on a sequential exclusion. According to criteria 1.1, municipalities which merged to form single municipalities within a 
time period were excluded. The additional exclusions in criteria 1.2 for the kilocalorie, protein and natural vegetation models occur because these models include a control variable adjusted to 
municipality borders for year 2000 (the census derived multi-dimensional poverty index), while all other data is adjusted to 2004 municipality borders. Thus all municipalities with border 
discrepancies between 2000 and 2004 had to be excluded. Criteria seven is based on formal suggestions for SIAB data (63). 
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Table S11. Two-sided Moran’s I test on ZH-, BF- and PRONAF model residuals show no signs of spatial autocorrelation. 

 
 

Zero Hunger BF PRONAF 
 

Border Distance Border Distance Border Distance 

Model Moran’s I P Moran’s I P Moran’s I P Moran’s I P Moran’s I P Moran’s I P 

CBGPS residuals 

Kcalories (per capita) -0.0177 0.051 -0.0057 0.069 -0.0002 0.997 0.0028 0.316 -0.0097 0.289 -0.0078 0.012 

Protein (per capita) -0.0160 0.078 -0.0039 0.221 -0.0002 0.999 0.0033 0.251 -0.0065 0.481 -0.0056 0.076 

Multi-dim. povertyCensus -0.0134 0.135 -0.0023 0.496 -0.0223 0.013 -0.0031 0.340 -0.0088 0.331 -0.0016 0.639 

Multi-dim. povertySIAB 0.0313 0.006 0.0007 0.718 0.0063 0.571 -0.0007 0.861 0.0112 0.323 -0.0021 0.473 

Child MalnutritionSIAB -0.0095 0.439 -0.0048 0.095 -0.0107 0.377 -0.0035 0.236 0.0073 0.523 -0.0061 0.032 

Infant MortalityCensus 0.0006 0.928 -0.0022 0.520 -0.0188 0.047 -0.0083 0.008 -0.0168 0.074 -0.0047 0.158 

Infant MortalitySIAB -0.0167 0.122 -0.0108 0.001 -0.0272 0.011 -0.0103 0.001 0.0037 0.710 -0.0065 0.042 

Natural Veg. (km2) 0.0151 0.088 -0.0005 0.911 -0.0036 0.708 0.0042 0.146 -0.0053 0.570 -0.0049 0.125 

Outcome residuals 

Kcalories (per capita) 0.0210 0.018 0.0070 0.018 0.0180 0.042 0.0064 0.029 0.0194 0.029 0.0067 0.024 

Protein (per capita) -0.0038 0.691 -0.0020 0.553 -0.0069 0.455 -0.0035 0.284 -0.0047 0.615 -0.0002 0.998 

Multi-dim. povertyCensus -0.0129 0.153 -0.0016 0.648 -0.0108 0.232 -0.0006 0.887 -0.0079 0.383 -0.0007 0.856 

Multi-dim. povertySIAB 0.0009 0.920 -0.0009 0.803 0.0015 0.880 0.0005 0.784 0.0004 0.953 -0.0017 0.579 

Child MalnutritionSIAB -0.0070 0.573 -0.0009 0.831 -0.0070 0.538 0.0061 0.010 -0.0034 0.795 -0.0006 0.906 

Infant MortalityCensus -0.0110 0.241 -0.0038 0.250 -0.0005 0.979 -0.0061 0.052 0.0149 0.104 0.0010 0.699 

Infant MortalitySIAB -0.0148 0.172 -0.0036 0.264 -0.0006 0.971 0.0008 0.729 0.0224 0.029 0.0015 0.557 

Natural Veg. (km2) 0.0071 0.415 0.0092 0.002 0.0057 0.513 0.0073 0.013 0.0054 0.534 0.0071 0.016 

Two-sides Moran’s I tests were run on model residuals from the covariate balancing models where CBGPS weights were created (CBGPS residuals) and on residuals from the subsequent CBGPS 

weighted regression models (Outcome residuals). The Moran’s I tests were run twice and based on distinct spatial neighbourhood matrices, i) a neighbourhood matrix based on touching 

municipality borders (labelled Border in the table), and ii) a neighbourhood matrix defined as the inverse distance between each municipality centroid, which was capped at 0.75 of the maximum 

distance (labelled Distance in the table). No signs of spatial autocorrelation were found, as even significant Moran’s I values (P < 0.05, highlighted in bold) have Moran’s I values very close to 0 
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Table S12. A semi-formal test for endogeneity(66) show no signs of endogeneity between the error 

term and ZH-, BF and PRONAF investment variables 

 
 

ZH BF PRONAF 

Model Spearman’s 
rho 

Spearman’s 
rho 

Spearman’s 
rho 

Kcalories (per capita) 0.005 -0.024 0.008 

Protein (per capita) 0.009 -0.013 0.010 

Multi-dim. poverty (census) -0.003 0.003 -0.001 

Multi-dim. poverty (SIAB) 0.002 0.001 0.002 

Child Malnutrition (SIAB) -0.014 -0.070 -0.066 

Infant Mortality (census) -0.012 -0.080 0.049 

Infant Mortality (SIAB) -0.049 -0.032 -0.085 

Natural Veg. (km2) -0.006 -0.032 -0.006 

The semi-formal test for endogeneity is based on Spearman’s Rho correlations between the error term (model residuals) and 

the ZH-, BF- and PRONAF investment variables. All Spearman’s rho values are very low and show no signs of endogeneity 
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Supplementary Graphs 

 

 
 

Fig. S1. Total investment per capita in Brazilian reals (R$) from 2004-2013 for the main Zero Hunger 

sub-programs a Bolsa Familia, b PNAE, c PRONAF and d PAA, available at 

www.dados.gov.br/www.mds.gov.br, showing great spatial variation in investment within and 

across programs. Grey areas indicate municipalities not included. Dark borders show administrative 

region borders 

 

 

http://www.dados.gov.br/
http://www.mds.gov.br/
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Fig. S2. Relative impact of Zero Hunger, Bolsa Familia and PRONAF investment given a spatially 

uniform investment level (column 1-3) on daily per capita kilocalorie production, daily per capita 

protein production, multi-dimensional poverty in the entire population (Census), multi-dimensional 

poverty in the poorer sectors of society (SIAB), child malnutrition in the poorer sectors of society 

(SIAB) and natural vegetation cover (km2) (row 1-6). Relative impact is defined as the relative change 

between outcome given a spatially uniform negligible (1st percentile value) program investment level 

and a spatially uniform median program investment level investment level. Relative impact calculations 

are based on robust multivariable regression models of a covariate-balanced sample (Table 1) that take 

confounding factors into account including interactions between investment and state, or (in the natural 

vegetation cover model) investment and biome. States and biomes with significantly different outcomes 

to the overall effect are indicated by thick black borders; thin black border show region borders (row 1-

5) and ecological biome borders (row 6). We use a normative colour scheme, with blue indicating 

beneficial and red non-beneficial impacts, grey areas signify municipalities not included in the analysis 

because they were urban, or has insufficient data or fall within the model reference state/biome for 

which no model statistics are available
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Fig. S3. High consistency between multi-dimensional poverty (census) (MPI) overall and its three 

dimensions Health, Education and Living Standard for 2000 and 2010 (top 3 rows), and the Brazilian 

Municipal Human Development Index (MHDI) (when negatively loaded) and its three dimensions 

Longevity, Education and Income (bottom 3 rows).  The largest discrepancies are found in Education 

as MPI only considers education for children age 7-14 and the MHDI the whole population 

(Spearmans’s rho for education is 0.65 and 0.39, for 2000 and 2010, respectively). The other dimensions 

show great similarities (r = 0.78-0.99). Overall the MPI and MHDI correlate well with r = 0.9 and 0.84 

for 2000 and 2010, respectively   
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Fig. S4. Annual investments in the four main Zero Hunger (ZH) sub-programs Bolsa Familia (BF), 

PRONAF, PNAE and PAA available at www.dados.gov.br/www.mds.gov.br, showing a gradual 

increase in annual investments and predominance of BF and PRONAF to a summed ZH investment. 

Horizontal lines indicate investment values included in the respective 2000-2010 and 2004-2013 

analyses. All values are expressed in billion Reals (R$) and adjusted for inflation with base year 2013 

 

 

 
 

Fig. S5. Great covariate balance achieved following the Covariate balancing generalized propensity 

score (CBGPS) method from Fong et al. (50). Orange circles shows average absolute Pearson 

correlation between the Zero Hunger, Bolsa Familia and PRONAF investment variable and model 

covariates (predictor variables) for all models when CBGPS weights are included in the model. Blue 

circles are the unweighted average correlations. Lines represent error bars. 

http://www.dados.gov.br/
http://www.mds.gov.br/
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