Differentially expressed full-length, fusion and novel isoforms transcripts-based signature of well-differentiated keratinized oral squamous cell carcinoma

SUPPLEMENTARY MATERIALS

Α		
(i)		
CLUSTAL O(1.2	.4) multiple sequence alignment	
IL37_Ref IL37_OT	MSFVGENSGVKMGSEDWEKDEPQCCLEDPAGSPLEPGPSLPTMNFVHTSPKVKNLNPKKF MSFVGENSGVKMGSEDWEKDEPQCCLEDPAVSPLEPGPSLPAMNFVHTSPKVKNLNPKKF ***********************************	60 60
IL37_Ref IL37_OT	SIHDQDHKVLVLDSGNLIAVPDKNYIRPEIFFALASSLSSASAEKGSPILLGVSKGEFCL SIHDQDHKVLVLDSGNLIAVPDKNYIRPEIFFALASSLSSASAEKGSPILLGVSKGEFCL ************************************	120 120
IL37_Ref IL37_OT	YCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFIFYRAQVGSWNMLESAAHPGWFICTS YCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFIFYRAQVGSWNMLESAAHPGWFICTS ************************************	180 180
IL37_Ref IL37_OT	CNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD218CNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD218***********************************	

(i) CLUSTAL O(1.2.4) multiple sequence alignment

RAB24_Ref RAB24_OC RAB24_OT	MSGQRVDVKVVMLGKEYVGKTSLVERYV MSGQRVDVKVVMLGKEYVGKTSLVERYV	HDRFLVGPYQNTIGAAFVAKVMSVGDRTVTLG HDRFLVGPYQNTIGAAFVAKVMSVGDRTVTLG MSVGDRTVTLG *********	60 60 11
RAB24_Ref RAB24_OC RAB24_OT	IWDTAGSERYEAMSRIYYRGAKAAIVCY IWDTAGSERYEAMSRIYYRGAKAAIVCY IWDTAGSERYEAMSRIYYRGAKAAIVCY ******	DLTDSSSFERAKFWVKELRSLEEGCQIYLCGT DLTDSSSFERAKFWVKELRSLEEGCQIYLCGT DLTDSSSFERAKFWVKELRSLEEGCQIYLCGT ******	120 120 71
RAB24_Ref RAB24_OC RAB24_OT	KSDLLEEDRRRRRVDFHDVQDYADNIKA KSDLLEEDRRRRRVDFHDVQDYADNIKA KSDLLEEDRRRRRVDFHDVQDYADNIKA ******	QLFETSSKTGQSVDELFQKVAEDYVSVAAFQV QLFETSSKTGQSVDELFQKVAEDYVSVAAFQV QLFETSSKTGQSVDELFQKVAEDYVSVAAFQV ******	180 180 131
RAB24_Ref RAB24_OC RAB24_OT	MTEDKGVDLGQKPNPYFYSCCHH MTEDKGVDLGQKPNPYFYSCCHH MTEDKGVDLGQKPNPYFYSCCHH	203 203 154	

(i)

CLUSTAL O(1.2.	4) multiple sequence alignment	
NAA10_Ref	MNIRN	5
NAA10_OC	MNIR	4
NAA10_OT	MSGLRWVGSGDLRGAHSCSCAPGVVQSQIVTVPAQPRGRGPSRPTGSRLLTRGHRRLRLS	60
NAA10_Ref	ARPEDLMNMQHCNLLCLPENYQMKYYFYHGLSWPQLSYIAEDENGKIVGE	55
NAA10_OC	NARPEDLMNMQHCNLLCLPENYQMKYYFYHGLSWPQLSYIAEDENGKIVGYVLA	58
NAA10_OT	AFHCPPSLQPEDLMNMQHCNLLCLPENYQMKYYFYHGLSWPQLSYIAEDENGKIVGYVLA ************************************	120
NAA10_Ref	EDPDDVPHGHITSLAVKRSHRRLGLAQKLMDQASRAMIENFNAKYVSLHVRKSNRAA	112
NAA10_OT	KMEEDPDDVPHGHITSLAVKRSHRRLGLAQKLMDQASRAMIENFNAKYVSLHVRKSNRAA	180
NAA10_OC	KMEEDPDDVPHGHITSLAVKRSHRRLGLAQKLMDQASRAMIENFNAKYVSLHVRKSNRAA ***********************************	118
NAA10 Ref	LHLYSNTLNFQISEVEPKYYADGEDAYAMKRDLTQMADELRRHLELKEKGRHVVLGAIEN	172
NAA10 OT	LHLYSNTLNFQISEVEPKYYADGEDAYAMKRDLTQMADELRRHLELKEKGRHVVLGAIEN	240
NAA10_OC	LHLYSNTLNFQISEVEPKYYADGEDAYAMKRDLTQMADELRRHLELKEKGRHVVLGAIEN ************************************	178
NAA10 Ref	KVESKGNSPPSSGEACREEKGLAAEDSGGDSKDLSEVSETTESTDVKDSSEASDSAS 229	
NAA10_OT	KVESKGNSPPSSGEACREEKGLAAEDSGGDSKDLSEVSETTESTDVKDSSEASDSAS 297	
NAA10_OC	KVESKGNSPPSSGEACREEKGLAAEDSGGDSKDLSEVSETTESTDVKDSSEASDSAS 235	

С

D

(i) CLUSTAL O(1.2.4) multiple sequence alignment

SPAG7 OT	MADLLGSILSSMEKPPSI	LGDQETRRKAREQAARLKI	LQEQEKQQKVEFRKRMEKE\	/SDFI	60
SPAG7_OC	MADLLGSILSSMEKPPSI	LGDQETRRKAREQAARLKI	LQEQEKQQKVEFRKRMEKE\	/SDFI	60
SPAG7 Ref	MADLLGSILSSMEKPPSI	LGDQETRRKAREQAARLKI	LQEQEKQQKVEFRKRMEKE\	/SDFI	60
—	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****	
SPAG7 OT	QDSGQIKKKFQPMNKIEI	RSILHDVVEVAGLTSFSF	GEDDDCRYVMIFKKEFAPSDE	EELDS	120
SPAG7_OC	QDSGQIKKKFQPMNKIEI	RSILHDVVEVAGLTSFSF	GEDDDCRYVMIFKKEFAPSDE	EELDS	120
SPAG7 Ref	QDSGQIKKKFQPMNKIEI	RSILHDVVEVAGLTSFSF	GEDDDCRYVMIFKKEFAPSDE	EELDS	120
—	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****	
SPAG7 OT	YRRGEEWDPQKAEEKRKI	LKELAQRQEEEAAQQGPV	/VSPASDYKDKYSHLIGKGA#	AKDAA	180
SPAG7_OC	YRRGEEWDPQKAEEKRKI	LKELAQRQEEEAAQQGPVV	/VSPASDYKDKYSHLIGKGA#	AKDAA	180
SPAG7 Ref	YRRGEEWDPQKAEEKRKI	LKELAQRQEEEAAQQGPVV	/VSPASDYKDKYSHLIGKGA#	AKDAA	180
—	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****	
SPAG7 OT	HMLQANKTYGCGEATVRI	LGVAGRGAWMWQEGSGGMI	RYGFLGPPTLLSAPSARGQ	234	
SPAG7 OC	HMLQANKTYGCVPVANKI	RDTRSIEEAMNEIRAKKRI	LRQSGEELPPTS	227	
SPAG7 Ref	HMLQANKTYGCVPVANKI	RDTRSIEEAMNEIRAKKRI	LRQSGEELPPTS	227	
—	* * * * * * * * * *	*	*		

Position

(i)

E

CLUSTAL O(1.2.4) multiple sequence alignment

Supplementary Figure 1: (A) Analysis of the amino acid sequences of the IL37 wild-type and OT isoform. (i)The amino acid sequence of the OT was aligned with the IL37 wild-type by NCBI protein blast. Hydropathicity of the (ii) wild- type and (iii) the OT isoform was predicted by ProtParam and ProtScale, respectively. (B) Analysis of the amino acid sequences of RAB24 wild-type, OC and OT isoform. (i) The amino acid sequence of OC and OT isoform was aligned with the RAB24 wild-type by NCBI protein blast, and deletion of 45 amino acid sequence was found. Hydropathicity of (ii) wild-type, (iii) OC and (iv) OT isoform, (box indicates the deleted 45 AA) of RAB24 was predicted by ProtParam and ProtScale, respectively. (C) Analysis of the amino acid sequences of NAA10 wild-type, OC and OT isoform. (i) The amino acid sequence of the OC and OT isoform was aligned with the NAA10 wild-type by NCBI protein blast, and insertion of 69 amino acid sequence was found. Hydropathicity of (ii) wild-type, (iii) OC and (iv) OT isoform, box indicates the inserted 69 AA) of NAA10 was predicted by ProtParam and ProtScale, respectively. (D) Analysis of the amino acid sequences of SPAG7 wild-type, OC and OT isoform.

Hydropathicity of (ii) wild-type, (iii) OC and (iv) OT isoform of SPAG7 was predicted by ProtParam and ProtScale, respectively. (E) Analysis of the amino acid sequences of UCHL3 wild-type, OC and OT isoform. (i) The amino acid sequence of the OC and OT isoform was aligned with the UCHL3 wild-type by NCBI protein blast, and insertion of 36 amino acid and deletion of 64 AA sequence was found (A). Hydropathicity of (ii) wild-type, (iii) OC and (iv) OT isoform, (box indicates the inserted and deleted AA) of UCHL3 was predicted by ProtParam and ProtScale, respectively.

Supplementary Figure 2: Molecular karyogram of OT-10, OT-11, OT-18, OT-19, OT-23 and OT-24 tumor samples and OC-2, OC-6, and OC-22 control samples processed via OncoScan array and analyzed with tumor Scan (TuScan) and BioDiscovery's SNP-FASST2 algorithm using Nexus Express for OncoScan software version 7.5 (Biodiscovery, Inc., CA USA).

Supplementary Table 1: (A) Details of keratinized OSCC collected from different anatomical sites (buccal mucosa; tongue and alveolous) of oral cavity. Histopathological classification, Level of differentiation, and involvement of node have also been included. (B) Details of oral control samples collected from different anatomical sites. See Supplementary Table 1

Supplementary Table 2: Details of enzymes found in KEGG pathway database from Homo sapiens. See Supplementary Table 2

Supplementary Table 3: Identified differentially expressed (more than 2 fold) isoforms between high quality 20, 600 and 10, 637 FL isoform reads in OC and OT respectively through G-FOLD Tool using default parameters. See Supplementary Table 3

Supplementary Table 4: (A) Differential expression of 34 transcripts and five housekeeping genes in 42 tumour samples (15 histo-pathologically characterized formalin fixed paraffin embedded keratinized tumor samples and fresh 27 oral tumor samples as well as four control samples. (B) 25 most relevant pathways sorted by *p*-value of validated 34 transcripts in 42 tumor samples (15 histo-pathologically characterized FFPE keratinized. (C) Percentage Expression Fusion transcripts in 23 OT and 15 FFPE keratinized OSCC samples compared to 4 oral control samples. See Supplementary Table 4

Supplementary Table 5: Validation of isoforms through Multiple alignment of identified and validated 33 novel full-length transcripts isoforms with RefSeq (NCBI Reference Sequence Database. See Supplementary Table 5

Supplementary Table 6: List of 33 full length novel transcript isoforms showing exonic-insertion, -deletion or -fusion in pooled-OC, pooled-OT samples and NM IDs. See Supplementary Table 6

Supplementary Table 7: (A) Highly significant gene-level differentially expressed coding and noncoding transcript clusters between 16 OT and 4 OC-samples, using one-way between-subject ANOVA algorithm and default filtering criteria (Abs FC \geq 2 and ANOVA *p*-value \leq 0.001). (B) Highly significant (*p*-value \leq 0.001) differential pathways at gene level between 16 OSCC and 4 Control samples. See Supplementary Table 7

Supplementary Table 8: (**A**) Physicochemical properties of the wild-type, Oral Control and Oral Tumor isoforms of IL37, RAB24, NAA10, SPAG7 and UCHL3. (**B**) Secondary structures of the IL37, RAB24, NAA10, SPAG7 and UCHL3 in wild-type, OC and OT samples. See Supplementary Table 8