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Appendix E1 

Image Preprocessing 
Images were extracted from DICOM files and were inverted if the image type on DICOM was 
labeled as MONOCHROME1. Since image resolution is not uniform among radiographs, we 
applied bicubic spline interpolation to obtain a fixed resolution of 0.2 × 0.2 mm2. We applied 
global contrast normalization (1) and histogram truncation between the fifth and 99th percentiles 
to reduce the impact of noise (10). From interpolated images, individual knee images were 
extracted from bilateral posteroanterior fixed-flexion knee radiographs. We extracted 1024 by 
1024 pixels from radiographs covering either the left or the right knee joint using the center of 
bounding boxes provided by Tiulpin et al (10) and accessed from a github repository 
(https://github.com/MIPT-Oulu/DeepKnee/tree/master/Dataset). These bounding boxes were 
generated using a model based on support vector machines and necessary manual corrections on 
mislabeled bounding boxes. The resulting image arrays were replicated to 3 channels to mimic 
RGB input requirement on ResNet models and they were saved in HDF5 format to be used in 
model training and evaluation, 

Deep Learning Model 
Residual network (ResNet) architectures have been successfully employed in a range of image 
recognition tasks providing accurate classification. We used a publicly available ResNet with 34 
layers (ResNet34) model (23) that is pretrained on ImageNet2012 dataset using 1.28-million 
images that reports a top-1 error of 26.7% and a top-5 error of 8.58%. Transfer learning on the 
pretrained ResNet34 model was performed by fine-tuning the weights of this network with knee 
radiographs. The output represented the probability of TKR within nine years given an input 
radiograph. The probability of TKR within nine years was a risk factor in the statistical analysis. 
We implemented our deep learning models based on ResNet34 architecture with changes on the 
average pooling layer and fully connected layer. Kernel size of the average pooling operator was 
changed from 7 to 28 to enable the use of original resolution image of size 1024 × 1024. The 
fully connected layers size was changed from 1000 to 2 for all models to identify the binary 
classification of patients with TKR versus controls. An additional fully connected layer of size 5 
was added on the DL-TL-MT model to identify the KL-grade of the radiograph. These final 
classification layers were randomly initialized (2) and they used a softmax activation function to 
compute two separate probabilities (multitask learning): i) ( | )p y x , the probability of TKR ( )y  
and ii) ( | )p KL x , the probability of KL-grade (KL) given an input knee radiograph ( )x . 

Model training was performed by updating the weights of these networks with knee 
radiographs using a cross-entropy loss functions on TKR and KL-grade prediction tasks. The 
adaptive moment estimation (Adam) optimizer (3) with default running average and eps 
parameters were used. Grid search for learning rate was used between 1e-2 and 1e-5 with a 10-
fold decrease; the optimal learning rate used in the study was 1e-4. Batch size of 8 was used for 
200 epochs. The model selection was performed based on the best accuracy on predicting the 
TKR on a validation set within 200 epochs. Random cropping to extract 896 × 896 pixel images 
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and random horizontal flipping were used for data augmentation during training. For validation, 
we used center cropping. 

Model Selection and Evaluation 
To identify an optimal model, we implemented a seven-fold nested cross-validation (CV) 
scheme to optimize hyperparameters of the learning algorithm. The purpose of nested CV is to 
identify learning parameters that generalize well across the population samples we learn from in 
each fold. In nested CV, stratified random sampling used to partition the 728 patients and 
controls in the matched subcohort into seven disjoint groups, with each having 52 TKR patients 
and 52 controls, and the patients in each fold were consistent among all our trained models. Each 
of the seven groups served as a test set to assess the performance of a prediction model (outer 
loop). DL models were identified using 624 patients and controls (trained and validated). The 
prediction model was derived using a set of hyperparameters applied to the training set of 520 
patients and controls from the other five groups combined and validated on set of 104 patients 
and controls (inner loop). In this way, six separate prediction models were derived for each test 
set, with each model applied to predict the TKR outcome of patients and controls in a test set 
with data independent of that used to derive models. DL models were tested on the 104 patients 
and controls not used for either training or validation of the models. The test set does not 
contribute data to the derivation of the “best fit” model, and as such the test data are indeed 
independent of the data used to fit the model. In each test set, TKR probability and KL-grade 
predictions were averaged from six models (developed within inner loop) and they are used in 
statistical analysis. The results reported in this work were from an independent group of patients 
and controls who were not used for training/validating models. The use of nested CV eliminated 
the bias that can be introduced by conventional CV due to hyperparameter tuning implemented 
during training. 

“TestSets” folder under code repository (https://github.com/denizlab/oai-xray-tkr-klg) 
provides .csv files that provides subject IDs for each patent and control who are included seven 
separate groups for nested CV. Filenames match with the “Test Set Numbers” defined in Table 5 
of the paper. In addition to the subject IDs from OAI study, separate columns identify TKR 
status of patients (0: controls, 1:patients underwent TKR within 9 years from baseline), knee side 
(0: Left Knee, 1: Right knee), KL grade from the patient's knee and strata (from case-control 
matching). 

Visualization of Regions Affecting Prediction of DL models 
We employed visualization tools to identify the regions in which the trained DL models use to 
make a decision with high impact. Gradient-weighted class activation mapping (Grad-CAM 
(27)) method was used for interpreting convolutional network behavior. Given the desired output 
class, Grad-CAM provides a heat map of where the network is more activated and “focused on” 
without the need for retraining the existing network. Grad-CAM generates a heat map by 
calculating the weighted average of activations from all kernels after the last layer of 
convolution. The weight is determined by back-propagating the selected class through fully 
connected layers until they reach the layer where the activations are aggregated. The weight also 
goes through a ReLU function to filter out negative values for a clear representation of positively 
activated areas. The weighted average is then overlaid on top of the original images for 
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visualization. We calculated heatmaps from each model trained in the inner CV and heatmaps 
are spatially averaged to obtain a single heatmap used in Figure 4. 
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