Gene	Oligonucleutide	Source	Identifier
B2M	Forward: CTGACCGGCCTGTATGCTAT	This paper	N/A
	Reverse: CCGTTCTTCAGCATTTGGAT		
IL-6	Forward: AGCCAGAGTCCTTCAGAGAGAT	This paper	N/A
	Reverse: GAGAGCATTGGAAATTGGGGT		
OPTN	Forward: AGCCTCGCAGTATTCCGATT	This paper	N/A
	Reverse: GTCCAGAAGATGCTCTCCCAAGA		
Rplp0	Forward: GCAGCAGATCCGCATGTCGCTCCG	This paper	N/A
	Reverse: ACCAGACGGTTCAGTTCTGC		
SOCS3	Forward: TAGACTTCACGGCTGCCAAC	This paper	N/A
	Reverse: CGGGGAGCTAGTCCCGAA		
Lys-7	Forward: ATCCAGGGATTGACTGCAAG	This paper	N/A
	Reverse: TCATTTCCAATGTTGCTCCA		
Lys-3	Forward: CCAATGGCTGTGAGAATTGA	This paper	N/A
	Reverse: CCTGTCTCCATGGTCCAAAT		
Hsp-	Forward: TCTTGGACGAACTCACTGGA	This paper	N/A
16.41	Reverse: TCCATGTTCCGATTTTGTTTC		
Thn-1	Forward: TGGTTTCAAGCTCAATGCTG	This paper	N/A
	Reverse: ATCCGTCGACAAGGGATACA		
Thn-2	Forward: CCAACTTACGGCTGGACAAT	This paper	N/A
	Reverse: CTGGGAGGTTGTATCCATCG		
Lys-10	Forward: ATGGCCTGCTAATCATGCTC	This paper	N/A
	Reverse: GCCGAAAGCTACGAATTTTG		
Сур-	Forward: GCAAGTGCAAAAGGAAAAGC	This paper	N/A
13a5	Reverse: AAAGGTAGTTTACGACCATCTTTGA		
Abtm-1	Forward: ATGGAAAAGCTCCCGAATTT	This paper	N/A
	Reverse: GAGCTCCAGTTTGACGGTTC		
Сур-	Forward: GAAAACCCGCTGAAGTTTGA	This paper	N/A
35a4	Reverse: ATGGTCTCTTTCCGATGCTG		
Clec-	Forward: ACGGTGCTCTTCTTGCAGAT	This paper	N/A
60	Reverse: ACCGTAGCGGTAGGAGTGAA		
Clec-	Forward: CCGCCTGTCCTAGCAGTAAG	This paper	N/A
74	Reverse: GCCCAATCCAAAAGTTTTCA		
<i>Cdc-42</i>	Forward: GGCAAAGGAATTGAAAGCAG	This paper	N/A
	Reverse: GGGGGCTAAGAAAATTTGGA		
Crp-2	Forward: CCATGAAGTTGATCCGCGAG	This paper	N/A
	Reverse: TCCTCCAGTAACGACACCAC		
Fmo-2	Forward: TGTCACTTGTTTTGAGGCGT	This paper	N/A
	Reverse: TGTGACGGAGCTTGATATGC		
Ilys-3	Forward: ACGTCGGATCCCTTTCTTGT	This paper	N/A
	Reverse: TGTGGTTACGAGCCATCACT		
Asm-3	Forward: CAATGCGAATCCAACAAATG	This paper	N/A
	Reverse: TCGACATTGTTGATCGTTGC		
Spp-1	Forward: ACTCGCATTCTTCCGTGTCT	This paper	N/A

Table S4, related to Figures 1, 2, 3, 5, and 6: List of primers used

	Reverse: GCAACAGCATAGTCCAGCAA		
Spp-2	Forward: GATGGATCTGCGGATAAGGA	This paper	N/A
	Reverse: CTTGCACACATCCTTTGGTG		
Tth-1	Forward: AGAATGTTTTGCCGACCAAG	This paper	N/A
	Reverse: TGTTGATCTTGTCGGTGAGC		
<i>Ttr-45</i>	Forward: CACATCACCAGCCAAAAATG	This paper	N/A
	Reverse: GAGTCCTGGCTTCAACTTGC		
Gpdh-1	Forward: CACATCACCAGCCAAAAATG	This paper	N/A
	Reverse: GAGTCCTGGCTTCAACTTGC		

Figure S1, related to Figure 1: Transcriptional profile of *flcn-1* prior to stress overlaps with profiles of wild-type animals infected with pathogens and correlates with a pathogen resistance phenotype.

(A, B) Venn diagrams showing the overlap of genes upregulated in *flcn-1(ok975)* animals at basal level and genes upregulated in wild-type animals following treatment with *S. aureus* from (Irazoqui et al., 2010a) (A) or *P. aeruginosa* from (Troemel et al., 2006) (B). Comparisons were performed using the "compare two lists" online software and the significance and ES (enrichment scores) were obtained using "nemates" software.

Figure S2, related to Figure 2: Role of *hlh-30* downstream of *flcn-1*.

(A) Venn diagrams showing the overlap of genes upregulated in *flcn-1(ok975)* animals at basal level and downregulated in *hlh-30 (tm1978)* mutant nematodes. Comparisons were performed using the "compare two lists" online software and the significance and ES (enrichment scores) were obtained using "nemates" software. (B) Percent survival of indicated strains to 400 mM NaCl stress. Refer to Table S2S9 for details on number of animals utilized and number of repeats Statistics obtained by Mantel-Cox analysis on the pooled curve.

Figure S3, related to Figure 5: RNA Seq heat map and gene ontology analysis in wild-type and *aak-1(tm1944)*; *aak-2(ok524)* at basal level and upon *S. aureus* infection.

(A) Heat map showing differential gene expression in wild-type and *aak-1(tm1944)*; *aak-2(ok524)* mutant animals grown on OP50 or exposed to *S. aureus* for 4 h. Red color indicates genes that are differentially upregulated while blue color indicates gene sets that are downregulated in comparison to untreated wild-type animals. RNAseq data were analysed by Novogene Inc. using DEGseq 1.12.0 (B) Nuclear translocation of HLH-30 in *aak-2(ok524)*; *hlh-30::GFP* at basal level and upon S. aureus infection. Data represent the mean \pm SEM with 3 independent repeats, n \geq 30 animals/condition for every repeat. Significance was determined using student's t-test.