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S.1. Sample Preparation and Powder X-ray Diffraction Patterns of (Cu1/2Au1/2)CN,  

(Ag 1/2Au1/2)CN and (Cu1/3Ag1/3Au1/3)CN  

 

 

Caution! Cyanide materials are toxic and must be handled with care. The addition of acid to soluble 

cyanides liberates highly toxic gaseous HCN. Both gaseous HCN and the aqueous washings, which 

contain HCN, were destroyed using alkaline hypochlorite. 

 

All starting materials, LT-CuCN, AgCN, AgNO3, AuCN and KCN, were used as supplied by 

Aldrich. 

 

(Cu1/2Au1/2)CN was precipitated on addition of acid to a solution of the parent cyanides in aqueous 

potassium cyanide, as previously described.1 LT-Copper cyanide (0.86 g, 9.6 mmol), gold cyanide 

(2.14 g, 9.6 mmol) and potassium cyanide (2.50 g, 38.4 mmol) were dissolved in 50 mL of deionised 

water. The resulting solution was vigorously stirred under a steady flow of nitrogen gas and 1 M 

nitric acid (40 mL, 40 mmol) was added to precipitate a pale-yellow solid. The precipitate was then 

washed in deionised water (500 mL), filtered and dried in air overnight. The sample was further dried 

prior to use by heating under vacuum at 80 °C for 14 h.    

 

(Ag1/2Au1/2)CN was precipitated on addition of Ag+ ions to a solution containing [Au(CN)2]
−, as 

described previously.1 A solution of [Au(CN)2]
− was prepared by dissolving gold cyanide (1.59 g, 7 

mmol) with potassium cyanide (0.46 g, 7 mmol) in 50 mL of deionised water. A silver nitrate 

solution, prepared by dissolving AgNO3 (1.2 g, 7 mmol) in 50 mL water, was added to the rapidly 

stirred [Au(CN)2]
− solution, immediately producing an off-white precipitate. After stirring for a 

further 10 minutes, the solid was filtered, rinsed well with water and dried as described above.    

 

(Cu1/3Ag1/3Au1/3)CN was precipitated on addition of acid to a solution of the parent cyanides in 

aqueous potassium cyanide, as previously described.2 LT-Copper cyanide (0.179 g, 2 mmol), silver  

cyanide (0.268g, 2 mmol), gold cyanide (0.446 g, 2 mmol) and potassium cyanide (0.651 g, 10 mmol) 

were added to 8 mL of deionised water.  The resulting solution was vigorously stirred under a steady 

flow of nitrogen gas and 1 M nitric acid (11 mL, 11 mmol) was added to precipitate a cream solid. 

The precipitate was then repeatedly washed in deionised water (20 mL aliquots), filtered and dried 

as described above. 
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Figure S1a. PXRD patterns measured at room temperature of (a) HT-CuCN, (b) (Cu1/2Au1/2)CN, 

and (c) AuCN and indexed on the basis of the AuCN structure type. AuCN has a hexagonal unit 

cell with a ~ 3.39 and c ~ 5.07 Å at room temperature. 

  

 

Figure S1b. PXRD patterns measured at room temperature of (a) AgCN, (b) (Ag1/2Au1/2)CN and (c) 

AuCN and indexed on the basis of the AuCN structure type. AuCN has a hexagonal unit cell with a 

~ 3.39 and c ~ 5.07 Å at room temperature. 
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Figure S2. Powder X-ray diffraction patterns of AuCN and (Cu1/3Ag1/3Au1/3)CN measured at room 

temperature and indexed on the basis of the AuCN structure type. AuCN has a hexagonal unit cell 

with a ~ 3.39 and c ~ 5.07 Å at room temperature. 
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S.2. Mathematical Proof that Maximum Average Number of Heterometallic Nearest Neighbor 

Interactions on a Hexagonal Lattice is Four 

Consider the regular hexagonal tiling of the plane, and suppose that each hexagon is colored either 

black or white.  We investigate the average number, defined in a natural way, of oppositely colored 

neighboring tiles, and we show that this average cannot exceed 4.  

Let X denote the set of all tiles. Given a two-coloring c of the tiling and a finite set 𝑉 ⊆ 𝑋 we write 

𝑎𝑐(𝑉) for the average number, taken over tiles 𝑥 ∈ 𝑉, of tiles y adjacent to x such that 𝑐(𝑥) ≠ 𝑐(𝑦).  

For each tile 𝑥 ∈ 𝑉 we define 

𝑢𝑐(𝑥) = limsup
𝑛→∞

𝑎𝑐(𝑉𝑛(𝑥))        and        𝑙𝑐(𝑥) = liminf
𝑛→∞

𝑎𝑐(𝑉𝑛(𝑥)), 

where 𝑉𝑛(𝑥), 𝑛 ≥ 0, is the hexagonal region consisting of all tiles which are at distance at most n 

from x.  We may interpret 𝑢𝑐(𝑥) as a local upper average and 𝑙𝑐(𝑥) as a local lower average number 

of unlike neighbors in the two-coloring c for the base point 𝑥 ∈ 𝑋.  By considering a two-coloring c 

in which there are concentric hexagonal regions of alternating averages and sufficiently rapidly 

growing thickness, we see that it is possible to have 𝑢𝑐(𝑥) > 𝑙𝑐(𝑥) for some tiles 𝑥 ∈ 𝑋.  We say 

that a two-coloring c is regular if 𝑢𝑐(𝑥) = 𝑙𝑐(𝑥) for all 𝑥 ∈ 𝑋, and otherwise we call the two-coloring 

irregular.  More specifically, we call a two-coloring c weakly irregular if 𝑢𝑐(𝑥) = 𝑙𝑐(𝑥) for some 

𝑥 ∈ 𝑋 and 𝑢𝑐(𝑥) > 𝑙𝑐(𝑥) for some 𝑥 ∈ 𝑋, and we call the two-coloring strongly irregular if 𝑢𝑐(𝑥) >

𝑙𝑐(𝑥) for all 𝑥 ∈ 𝑋.  If 𝑢𝑐(𝑥) = 𝑙𝑐(𝑥) for some tile 𝑥 ∈ 𝑋 then we denote the common value by 𝑎𝑐(𝑥), 

which we may interpret simply as the average number of unlike neighbors in the two-coloring c for 

the base point 𝑥 ∈ 𝑋.  Our first result shows that we have a dichotomy, and also that our notion of 

average is well adapted to the case of periodic colorings. 

Proposition: For any two-coloring c we have 𝑢𝑐(𝑥) = 𝑢𝑐(𝑦) and 𝑙𝑐(𝑥) = 𝑙𝑐(𝑦) for all 𝑥, 𝑦 ∈ 𝑋.  In 

particular, every two-coloring is either regular or strongly irregular.  Furthermore, every periodic 

two-coloring c is regular and for all 𝑥 ∈ 𝑋 we have 𝑎𝑐(𝑥) = 𝑎𝑐(𝑄), where 𝑄 ⊆ 𝑋 is any finite 

rhombus whose parallel translates generate the whole two-coloring c. 

Proof: Here and in what follows we view the regular hexagonal tiling as an infinite planar 6-regular 

graph G with vertex set 𝑉(𝐺) = 𝑋.  Let 𝐸(𝐺) be the set of edges in G.  Given a two-coloring c of X 

we obtain a bipartite subgraph 𝐺𝑐 of G with 𝑉(𝐺𝑐) = 𝑋 and edge set 𝐸(𝐺𝑐) = {𝑥𝑦 ∈ 𝐸(𝐺) ∶ 𝑐(𝑥) ≠

𝑐(𝑦)}.  For a vertex 𝑥 ∈ 𝑋 we write 𝑑𝑐(𝑥) for the degree of x in the subgraph 𝐺𝑐.  Letting 𝐷𝑐(𝑉) =

∑ 𝑑𝑐(𝑥)𝑥∈𝑉  for any finite set 𝑉 ⊆ 𝑋 we have 𝑎𝑐(𝑉) = |𝑉|−1𝐷𝑐(𝑉).  Moreover, for each 𝑥 ∈ 𝑋 and 

𝑛 ≥ 0 we have 𝑉𝑛(𝑥) = {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑛}, where the distance 𝑑(𝑥, 𝑦) between two vertices 

𝑥, 𝑦 ∈ 𝑋 is given by the length of a shortest path in G between the two vertices.  Now let 𝑥 ∈ 𝑋.  For 

a suitable subsequence we have 𝑎𝑐(𝑉𝑛𝑘
(𝑥)) → 𝑢𝑐(𝑥) as 𝑘 → ∞.  Let 𝑦 ∈ 𝑋 and set 𝑟 = 𝑑(𝑥, 𝑦).  
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Since 𝑉𝑛(𝑥) ∪ 𝑉𝑛(𝑦) ⊆ 𝑉𝑛+𝑟(𝑥) for 𝑛 ≥ 0 and 𝑉𝑛−𝑟(𝑥) ⊆ 𝑉𝑛(𝑥) ∩ 𝑉𝑛(𝑦) for 𝑛 ≥ 𝑟, we see that for 

𝑛 ≥ 𝑟 we have 

|𝐷𝑐(𝑉𝑛(𝑥)) − 𝐷𝑐(𝑉𝑛(𝑦))| ≤ 𝐷𝑐(𝑉𝑛+𝑟(𝑥)) − 𝐷𝑐(𝑉𝑛−𝑟(𝑥)). 

Now 

𝐷𝑐(𝑉𝑛+𝑟(𝑥)) ≤ 𝐷𝑐(𝑉𝑛(𝑥)) + 6|𝑉𝑛+𝑟(𝑥) ∖ 𝑉𝑛(𝑥)|  

and  

𝐷𝑐(𝑉𝑛−𝑟(𝑥)) ≥ 𝐷𝑐(𝑉𝑛(𝑥)) − 6|𝑉𝑛(𝑥) ∖ 𝑉𝑛−𝑟(𝑥)|, 

and therefore 

|𝑎𝑐(𝑉𝑛(𝑥)) − 𝑎𝑐(𝑉𝑛(𝑦))| ≤
6

|𝑉𝑛(𝑥)|
(|𝑉𝑛+𝑟(𝑥)\𝑉𝑛(𝑥)| + |𝑉𝑛(𝑥)\𝑉𝑛−𝑟(𝑥)|) 

for all 𝑛 ≥ 𝑟.  Since |𝑉𝑛(𝑥)| = 3𝑛(𝑛 + 2) + 1, 𝑛 ≥ 0, it follows easily that 𝑎𝑐(𝑉𝑛𝑘
(𝑦)) → 𝑢𝑐(𝑥) as 

𝑘 → ∞.  In particular, 𝑢𝑐(𝑦) ≥ 𝑢𝑐(𝑥).  By symmetry we obtain that 𝑢𝑐(𝑥) ≥ 𝑢𝑐(𝑦), and hence 

𝑢𝑐(𝑥) = 𝑢𝑐(𝑦), as required.  Essentially the same argument shows that 𝑙𝑐(𝑥) = 𝑙𝑐(𝑦) for all 𝑥, 𝑦 ∈

𝑋, and in particular every two-coloring c is either regular or strongly irregular. 

Now suppose that the two-coloring c is periodic.  Then there exist 𝑚 ≥ 1 and an 𝑚 × 𝑚 rhombus 

𝑄 ⊆ 𝑋 whose parallel translates generate the whole two-coloring c.  Fix 𝑥 ∈ 𝑋 and note that 

𝑎𝑐(𝑉𝑘𝑚(𝑥)) = 𝑎𝑐(𝑄) for all 𝑘 ≥ 1.  Given 𝑛 ≥ 𝑚 let 𝑘 ≥ 1 be such that 𝑘𝑚 ≤ 𝑛 < 𝑘𝑚 + 𝑚.  Then 

|𝑎𝑐(𝑉𝑛(𝑥)) − 𝑎𝑐(𝑄)| ≤ (𝑎𝑐(𝑉𝑛(𝑥)) + 𝑎𝑐(𝑄)) (
|𝑉𝑘𝑚+𝑚(𝑥)|

|𝑉𝑘𝑚(𝑥)|
− 1). 

Since 𝑎𝑐(𝑉𝑛(𝑥)) ≤ 6 for all 𝑛 ≥ 0 and moreover 

lim
𝑘→∞

|𝑉𝑘𝑚+𝑚(𝑥)|

|𝑉𝑘𝑚(𝑥)|
= 1, 

it follows that 𝑎𝑐(𝑉𝑛(𝑥)) → 𝑎𝑐(𝑄) as 𝑛 → ∞.  Hence the two-coloring c is regular and 𝑎𝑐(𝑥) =

𝑎𝑐(𝑄) for all 𝑥 ∈ 𝑋.  Q.E.D. 

Given a two-coloring c of the hexagonal tiling we let 𝑈(𝑐) = 𝑢𝑐(𝑥) and 𝐿(𝑐) = 𝑙𝑐(𝑥), where 𝑥 ∈ 𝑋 

is any tile.  These definitions make sense by the above Proposition, and we may interpret 𝑈(𝑐) as a 

global upper average and 𝐿(𝑐) a global lower average number of unlike neighbors in the two-coloring 

c.  It is clear that 0 ≤ 𝐿(𝑐) ≤ 𝑈(𝑐) ≤ 6 for all two-colorings c, and by the Proposition we see that 

𝑈(𝑐) = 𝐿(𝑐) if and only if c is regular.  Furthermore, it is easy to achieve 𝑈(𝑐) = 𝐿(𝑐) = 0 for 

instance by considering any two-coloring c which has only finitely many tiles colored in one of the 

two colors.  By considering the regular two-coloring c involving infinite stripes of alternating color, 

we see that 𝑈(𝑐) = 𝐿(𝑐) = 4 is possible, too, and by considering a two-coloring c with growing 
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concentric regions which are alternately monochromatic and striped we may also achieve 𝑈(𝑐) = 4 

and 𝐿(𝑐) = 0.  Values strictly between 0 and 4 can also be achieved but, as the next result shows, 

values strictly greater than 4 cannot. 

Theorem: For any two-coloring c we have 0 ≤ 𝐿(𝑐) ≤ 𝑈(𝑐) ≤ 4. 

Proof: We need to prove only the upper bound on 𝑈(𝑐).  We proceed as before and use the same 

notation as in the proof of the Proposition.  Fix 𝑥 ∈ 𝑋 and let 𝑛 ≥ 0.  For 𝑒 ∈ 𝐸(𝐺) we write 𝑤𝑛(𝑒) 

for the number of endpoints of e which lie in 𝑉𝑛(𝑥) and we let 𝐸𝑛 = {𝑒 ∈ 𝐸(𝐺) ∶ 𝑤𝑛(𝑒) ≥ 1}.  

Furthermore, let 𝑇𝑛(𝑥) denote the set of all triangles in G which have at least two vertices lying in 

𝑉𝑛(𝑥).  Emanating from the corners of the hexagonal region 𝑉𝑛(𝑥) there are 6 edges 𝑒 ∈ 𝐸𝑛 which 

satisfy 𝑤𝑛(𝑒) = 1 and lie in no triangle Δ ∈ 𝑇𝑛(𝑥).  All other edges 𝑒 ∈ 𝐸𝑛 lie in exactly 𝑤𝑛(𝑒) 

triangles Δ ∈ 𝑇𝑛(𝑥).  Thus 

𝐷𝑐(𝑉𝑛(𝑥)) = ∑ 𝑤𝑛

𝑒∈𝐸𝑛

(𝑒)𝕝𝐸(𝐺𝑐)(𝑒) ≤ 6 + ∑ |𝐸(Δ) ∩ 𝐸(𝐺𝑐)|.

Δ∈𝑇𝑛(𝑥)

 

Now the graph 𝐺𝑐, being bipartite, contains no triangles, so in particular |𝐸(Δ) ∩ 𝐸(𝐺𝑐)| ≤ 2 for all 

Δ ∈ 𝑇𝑛 .  Since |𝑇𝑛(𝑥)| = 6𝑛(𝑛 + 1) it follows that 

𝑎𝑐(𝑉𝑛(𝑥)) =
𝐷𝑐(𝑉𝑛(𝑥))

|𝑉𝑛(𝑥)|
≤

6 + 2|𝑇𝑛(𝑥)|

3𝑛(𝑛 + 1) + 1
= 4 +

2

3𝑛(𝑛 + 1) + 1
. 

Hence 

𝑈(𝑐) = 𝑢𝑐(𝑥) ≤ limsup
𝑛→∞

(4 +
2

3𝑛(𝑛 + 1) + 1
) = 4. 

Q.E.D. 
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S.3. Periodic Structural Models for (M1/2Au1/2)CN (M = Cu, Ag) (Models A – J) in Table 1  

 

Note: Figures show packing in the metal layers only. All models have cyanide ordering with 

the carbon end of the ligand bound to gold. 

 

Key as in Table 1: Au atoms, yellow spheres; Cu or Ag atoms, blue spheres  

 

 

Model A P6/mmm{2} 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Metal Layer A                                                                Metal Layer B                                                                   
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Model B Am2m{8} 

 

Model C Cmmm {12} 

 

 

 

 

 

Metal Layer A:                                 Metal Layer B: 

Composition Cu2Au1                        Composition Cu1Au2 
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Model D Pmmm{12} 

 

 

Model E Pmmm{8} 

 

 

 

 

 

Metal Layer A:                                                   Metal Layer B: 

Composition Cu3Au1                                          Composition Cu1Au3 
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Model F C2/m{16} 
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Model G Immm {4} 

 

Model H Pmnm {12} 
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Model I Amam{8} 

 

 

Model J P6/mmm{6} 

 

 

 

 

Metal Layer A:                                                   Metal Layer B: 

Composition Cu2Au1                                          Composition Cu1Au2 
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S.4. Total Energy Calculations for (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN 

DFT-based calculations were performed to investigate the relative energetic stabilities of several 

models (A – J) of (M1/2Au1/2)CN (M = Cu, Ag). 

Calculations were carried out first without approximating possible weak interactions (aurophilic 

and/or argentophilic), then two DFT-based van der Waals’ approaches were considered. The three 

calculation types are labelled no-vdW, vdW-1 and vdW-2, respectively. 

Calculated energies are negative. In the following tables, by “scaled” energy it is meant that the 

lowest energy is taken as a reference: E(scaled) = |E0| – |Ei|; where E0 is the lowest energy per 

formula unit of a given structure, and Ei is the energy per formula unit of each of the model 

structures (i = A – J). 

The energy differences between some structural models are very small, so more than one model 

could possibly be considered as being energetically stable with respect to the others. 

Including vdW interactions does not alter the stability of the model structures with respect to each 

other. 

The effect of interchanging C and N atoms in the metal-cyanide chains is also explored. 

Interchanging the C and N atoms does not alter the stability of the model structures with respect to 

each other. However, the bonding sense –NC–Au–C≡N–M– is found to be energetically more 

stable than –CN–Au–N≡C–M–. 
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Computational Details: 

 

Total-energy calculations of the studied models were performed using the projector-augmented wave 

formalism [1, 2] of the Kohn-Sham density functional theory [3, 4] within the generalized gradient 

approximation (GGA), implemented in the Vienna ab-initio simulation package (VASP) [5]. [Note: 

Relativistic effects are included in the construction of the projector augmented wave-based 

pseudopotentials used in the VASP code [1, 2, 5, 6]. VASP performs a fully relativistic calculation for 

the core-electrons and treats valence electrons in a scalar relativistic approximation.] 

The GGA was formulated by the Perdew–Burke–Ernzerhof (PBE) density functional [7]. The 

Gaussian broadening technique was adopted and all results were well converged with respect to k-

mesh and energy cutoff for the plane-wave expansion. A plane-wave energy cutoff of 700 eV was 

used, and the integrations over the Brillouin zone were sampled using grids of k-points generated by 

the Monkhorst-pack method [8]. The break condition for the self-consistent field (SCF) loop was set 

to 10-8 eV. Given the weak and dispersive nature of the aurophilic and/or argentophilic effects, 

stemming from closed d-shell dispersive weak interactions (where applicable), they can be described 

by van der Waals’ type interactions. Standard Kohn-Sham-based DFT lacks the description of static, 

long-ranged, dispersion forces [9]. Therefore, a vdW-type correction should be considered within the 

present DFT framework. In VASP, various vdW-based schemes, accounting for the London-like R-6 

behavior, originating from nonlocal electron correlation [10, 11], are available. Two vdW 

approximations, based on the representative significance of their conceptual implementation, were 

explored. The first vdW approach is based on the Grimme method [12] (vdW-1). The second is a 

density functional where the non-local correlation functional approximately accounts for dispersion 

interactions [13, 14] - presently we adopt the one called optPBE-vdW [15] (vdW-2). The validity of 

such treatment can further be supported by other works in the literature [16-19].  
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Table S1. Scaled energies for (Cu1/2Au1/2)CN, i.e., the energy difference (per (Cu1/2Au1/2)CN 

formula unit) between each model (A – J) and model (J) with chain ordering in the sense     

–N≡C–Au–C≡N–Cu–.  

(Cu1/2Au1/2)CN with chain ordering in the sense –N≡C–Au–C≡N–Cu– 

Structural 

Model 
Space group F.U./U.C. $ ΔE/F.U.# / eV 

   no vdW vdW-1 vdW-2 

A P6/mmm{2} 2 0.0472 0.0713 0.0461 

B Am2m{8} 8 0.0251 0.0425 0.0238 

C Cmmm{12} 12 0.0199 0.0324 0.0183 

D Pmmm{12} 12 0.0189 0.0320 0.0174 

E Pmmm{8} 8 0.0177 0.0259 0.0160 

F C2/m{16} 16 0.0161 0.0269 0.0145 

G Immm{4} 4 0.0085 0.0118 0.0065 

H Pmnm{12} 12 0.0078 0.0097 0.0057 

I Amam{8} 8 0.0077 0.0101 0.0056 

J P6/mmm{6} 6 0.0000 0.0000 0.0000 

$ F.U./U.C. Formula Unit per Unit Cell.  

# ΔE/F.U. Energy per Formula Unit   

 

Note: Without applying a vdW correction, the most stable model is J (P6/mmm{6}) and the least 

stable is A (P6/mmm{2}). This conclusion does not change when vdW effects are included using 

the two different approximations, vdW-1 and vdW-2. 
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Figure S3. The scaled energies per formula unit of (Cu1/2Au1/2)CN for the different crystallographic 

models (A – J) as a function of number of nearest-neighbor heterometallic atoms calculated using 

the three DFT schemes: no-vdW (blue), vdW-1(orange)  and vdW-2 (black) (Table S1). 
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Table S2. Scaled energies for (Ag1/2Au1/2)CN, i.e., the energy  difference (per (Ag1/2Au1/2)CN 

formula unit) between each model (A – J) and model (I) with chain ordering in the sense            –

N≡C–Au–C≡N–Ag–.  

 

(Ag1/2Au1/2)CN with chain ordering in the sense –N≡C–Au–C≡N–Ag– 

Structural Model Space group F.U./U.C.$ ΔE/F.U.# / eV 

   no vdW vdW-1 vdW-2 

A P6/mmm{2} 2 0.5423 0.0461 0.0426 

B Am2m{8} 8 0.0155 0.0198 0.0159 

C Cmmm{12} 12 0.0114 0.0143 0.0116 

D Pmmm{12} 12 0.0097 0.0130 0.0101 

E Pmmm{8} 8 0.0108 0.0118 0.0109 

F C2/m{16} 16 0.0072 0.0098 0.0074 

G Immm{4} 4 0.0008 0.0012 0.0008 

H Pmnm{12} 12 0.0003 0.0000 0.0003 

I Amam{8} 8 0.0000 0.0000 0.0000 

J P6/mmm{6} 6 0.0019 0.0007 0.0018 
 

$ F.U./U.C. Formula Unit per Unit Cell.  

# ΔE/F.U. Energy per Formula Unit   

Note: In the absence of a vdW correction, the most stable model is (I) (Amam{8}) and the least 

stable is (A) (P6/mmm{2}). This does not change when including vdW effects using the two 

different approximations, vdW-1 and vdW-2. In addition, applying vdW interactions to model (A) 

stablilizes the structure greatly. 

 

 



SI-21 
 

 

 Figure S4. The scaled energies per formula unit of (Ag1/2Au1/2)CN different crystallographic models 

(A – J) as a function of number of nearest-neighbor heterometallic atoms calculated using the three 

DFT schemes: no-vdW (blue), vdW-1(orange)  and vdW-2 (black). (Table S2). 

 Note: The relative energy of (Ag1/2Au1/2)CN with N = 0 calculated without van der Waals’ 

interactions is extremely high (+~0.54 eV) and the point is therefore excluded from the plot. 
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Table S3. Comparison of total energies per formula unit for (Cu1/2Au1/2)CN on interchanging C and N atoms along the chains. 

 

                                                                                        (Cu1/2Au1/2)CN 

Total Energies per (Cu1/2Au1/2)CN formula unit /eV 

 no vdW vdW-1 vdW-2 

Structural 

Model 
-NC-Au-CN-   -CN-Au-NC-   

ΔE 
-NC-Au-CN-   -CN-Au-NC-   

ΔE 
-NC-Au-CN-   -CN-Au-NC-   

ΔE 

A -20.0214 -19.6976 -0.3244 -20.8870 -20.5541 -0.3329 -14.2608 -13.9424 -0.3184 

B -20.0435 -19.7140 -0.3295 -20.9158 -20.5837 -0.3321 -14.2831 -13.9601 -0.3230 

C -20.0487 -19.7164 -0.3323 -20.9258 -20.5928 -0.3333 -14.2886 -13.9628 -0.3258 

D -20.0496 -19.7175 -0.3321 -20.9263 -20.5935 -0.3328 -14.2895 -13.9640 -0.3255 

E -20.0509 -19.7169 -0.3340 -20.9324 -20.5985 -0.3339 -14.2909 -13.9633 -0.3276 

F -20.0525 -19.7191 -0.3334 -20.9313 -20.5983 -0.3330 -14.2925 -13.9657 -0.3268 

G -20.0601 -19.7227 -0.3374 -20.9465 -20.6122 -0.3328 -14.3004 -13.9696 -0.3308 

H -20.0608 -19.7235 -0.3371 -20.9486 -20.6142 -0.3344 -14.3012 -13.9704 -0.3308 

I -20.0609 -19.7235 -0.3374 -20.9481 -20.6138 -0.3343 -14.3013 -13.9705 -0.3308 

J -20.0686 -19.7336 -0.3350 -20.9583 -20.6260 -0.3383 -14.3069 -13.9784 -0.3276 

 Average of ΔE -0.3333(40) Average of ΔE -0.3338(18) Average of ΔE -0.3267(39) 
 

The bonding sense –N≡C–Au–C≡N–Cu– in the chains is found to be energetically more stable than –C≡N–Au–N≡C–Cu–, with or without the 

inclusion of vdW interactions.  
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Table S4. Comparison of total energies per formula unit for (Ag1/2Au1/2)CN on interchanging C and N atoms along the chains. 

 

                                                                  (Ag1/2Au1/2)CN 

Total Energies per (Ag1/2Au1/2)CN formula unit /eV 

 no vdW vdW-1 vdW-2 

Model -NC-Au-CN-   -CN-Au-NC-   ΔE -NC-Au-CN- -CN-Au-NC-   ΔE -NC-Au-

CN- 
-CN-Au-NC- ΔE 

A -18.8181 -19.0700 +0.2519 -20.2882 -20.0303 -0.2579 -13.4758 -13.2314 -0.2444 

B -19.3449 -19.0813 -0.2636 -20.3146 -20.0458 -0.2688 -13.5026 -13.2445 -0.2581 

C -19.3491 -19.0821 -0.2670 -20.3201 -20.0493 -0.2708 -13.5069 -13.2456 -0.2613 

D -19.3506 -19.0831 -0.2675 -20.3213 -20.0500 -0.2713 -13.5084 -13.2467 -0.2617 

E -19.3496 -19.0816 -0.2680 -20.3225 -20.0513 -0.2712 -13.5076 -13.2453 -0.2609 

F -19.3532 -19.0839 -0.2696 -20.3245 -20.0521 -0.2724 -13.5111 -13.2477 -0.2637 

G -19.3596 -19.0851 -0.2681 -20.3331 -20.0575 -0.2756 -13.5176 -13.2494 -0.2682 

H -19.3601 -19.0856 -0.2745 -20.3343 -20.0586 -0.2757 -13.5182 -13.2500 -0.2682 

I -19.3604 -19.0858 -0.2746 -20.3343 -20.0586 -0.2763 -13.5185 -13.2502 -0.2683 

J -19.3585 -19.0847 -0.2738 -20.3336 -20.0586 -0.2750 -13.5167 -13.2491 -0.2696 

 Average of ΔE§ -0.2696(44) 

 

( 

Average of ΔE -0.2715(54) Average of ΔE -0.2624(75) 
 

The bonding sense –N≡C–Au–C≡N–Ag– in the chains is found to be energetically more stable than –C≡N–Au–N≡C–Ag–, with or without the 

inclusion of vdW interactions. [The only exception is model A in the absence of a vdW correction].   

  

ΔE§ ignoring result for model (A) 
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Table S5. Calculated Energies per (M1/2Au1/2)CN Formula Unit for the Models for 

(Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN Relative to the Model with the Lowest Energy used in 

Figure 4.  

Structural 

Model 

Space 

group 

 

No. 

heterometallic 

nearest 

neighbors in 

sheet, N 

(Cu1/2Au1/2)CN 

Relative 

Energy/eV § 

(Ag1/2Au1/2)CN 

Relative 

Energy/eV § 

A   P6/mmm{2}  0 0.0461 0.0426 

B Am2m{8}  2 0.0238 0.0159 

C  Cmmm {12} 2⅔ 0.0183 0.0116 

D Pmmm{12}  2⅔ 0.0174 0.0101 

E Pmmm{8} 3 0.016 0.0109 

F   C2/m{16} 3 0.0145 0.0074 

G   Immm {4} 4 0.0065 0.0008 

H   Pmnm {12} 4 0.0057 0.0003 

I  Amam{8} 4 0.0056 0 

J   P6/mmm{6}  4 0 0.0018 

 

§Values from DFT Calculations using vdW-2. 
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S.5. Details of Selected Structural Models for (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN   

Table  S6. Model A, Homometallic Layers 

The P/6mmm{2} model for (Cu1/2Au1/2)CN at 100 K with [–NC–Au–CN–Cu]n ordered 

chains.  

Hexagonal unit cell: a = 3.359, c = 9.914 Å 

 

Atom x y z Wyckoff position 

Au 0 0 1/2 1b 

Cu 0 0 0 1a 

C 0 0 0.3004 2e 

N 0 0 0. 1842 2e 

 

Table  S7. Model A, Homometallic Layers 

The P/6mmm{2} model for (Ag1/2Au1/2)CN at 100 K with [–NC–Au–CN–Ag]n ordered 

chains.  

Hexagonal unit cell: a = 3.375, c = 10.366 Å 

 

Atom x y z Wyckoff position 

Au 0 0 1/2 1b 

Ag 0 0 0 1a 

C 0 0 0.3085 2e 

N 0 0 0.1970 2e 
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Table S8. Model G 

The Immm{4} model for (Cu1/2Au1/2)CN at 100 K with [–NC–Au–CN–Cu]n ordered 

chains.  

Orthorhombic unit cell: a = 3.359, b = 5.818 and c = 9.914 Å 

 

 

Atom x y z Wyckoff position 

Au 0 0 0 2a 

Cu 0 0 1/2 2c 

C 0 0 0.1996 4i 

N 0 0 0.6842 4i 

 

Table S9. Model G 

The Immm{4} model for (Ag1/2Au1/2)CN at 100 K with [–NC–Au–CN–Ag]n ordered 

chains.  

Orthorhombic unit cell: a = 3.3752, b = 5.8460 and c = 10.3660 Å 

 

 

Atom x y z Wyckoff position 

Au 0 0 0 2a 

Ag 0 0 1/2 2c 

C 0 0 0.1915 4i 

N 0 0 0.3030 4i 

 

 

 

 

 

 

 

 

 

 



SI-27 
 

Table  S10. Model I 

The Amam{8} model for (Cu1/2Au1/2)CN at 100 K with [–NC–Au–CN–Cu]n ordered 

chains.  

Orthorhombic unit cell: a = 5.818, b = 6.718 and c = 9.914 Å 

 

Atom x y z Wyckoff position 

Au 1/4 0.125 1/2 4c 

Cu 1/4 0.125 0 4c 

C 1/4 0.125 0.3004 8g 

N 1/4 0.125 0.1842 8g 

 

Table  S11. Model I 

The Amam{8} model for (Ag1/2Au1/2)CN at 100 K with [–NC–Au–CN–Ag]n ordered 

chains.  

Orthorhombic unit cell: a = 5.846, b = 6.7504 and c = 10.366 Å 

 

Atom x y z Wyckoff position 

Au 1/4 0.125 1/2 4c 

Ag 1/4 0.125 0 4c 

C 1/4 0.125 0.6915 8g 

N 1/4 0.125 0.1970 8g 
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Table  S12. Model J 

The P/6mmm{6} model for (Cu1/2Au1/2)CN at 100 K with [–NC–Au–CN–Cu]n ordered 

chains.  

Hexagonal unit cell: a = 5.818, c = 9.914 Å 

 

Atom x y z Wyckoff position 

Au1 0 0 1/2 1b 

Au2 1/3 2/3 0 2c 

Cu1 0 0 0 1a 

Cu2 1/3 2/3 1/2 2d 

C1 0 0 0.3004 2e 

C2 1/3 2/3 0.1986 4h 

N1 0 0 0.1842 2e 

N2 1/3 2/3 0.3158 4h 

 

Table  S13. Model J 

The P/6mmm{6} model for (Ag1/2Au1/2)CN at 100 K with [–NC–Au–CN–Ag]n ordered 

chains.  

Hexagonal unit cell: a = 5.846, c = 10.366 Å 

 

Atom x y z Wyckoff position 

Au1 0 0 1/2 1b 

Au2 1/3 2/3 0 2c 

Ag1 0 0 0 1a 

Ag2 1/3 2/3 1/2 2d 

C1 0 0 0.6915 2e 

C2 1/3 2/3 0.1915 4h 

N1 0 0 0.1970 2e 

N2 1/3 2/3 0.6970 4h 
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S.6.  Details of Structural Models for (Cu1/3Ag1/3Au1/3)CN (models K – N) in Table 2 

Table  S14. Model K 

The P6mm model for (Cu1/3Ag1/3Au1/3)CN at 100 K with [Cu–NC–Ag–NC–Au–CN]n 

ordered chains.  

Hexagonal unit cell: a = 3.39, c = 15.01 Å [ref 16] 

 

Atom x y z Wyckoff position 

Au1 0 0 0 1a 

Ag1 0 0 0.6580 1a 

Cu1 0 0 0.3260 1a 

C1 0 0 0.1301 1a 

C2 0 0 0.5218 1a 

C3 0 0 0.8699 1a 

N1 0 0 0.2058 1a 

N2 0 0 0.4461 1a 

N3 0 0 0.7942 1a 

 

 

 
 

Figure S5. Model K. Key: Au atoms, yellow spheres; Ag atoms, silver spheres; Cu 

atoms, blue spheres; C atoms, brown spheres and N atoms, gray spheres.    



SI-30 
 

 

Table  S15. Model L 

The R3m model for (Cu1/3Ag1/3Au1/3)CN at 100 K with [Cu–NC–Ag–NC–Au–CN]n 

ordered chains.  

Hexagonal unit cell: a = 5.87, c = 15.01 Å [ref 16] 

 

Atom x y z Wyckoff position 

Au1 0 0 0.0000 3a 

Ag1 0 0 0.6580 3a 

Cu1 0 0 0.3260 3a 

C1 0 0 0.1301 3a 

C2 0 0 0.5218 3a 

C3 0 0 0.8699 3a 

N1 0 0 0.2058 3a 

N2 0 0 0.4461 3a 

N3 0 0 0.7942 3a 

 

 

 

Figure S6. Model L. Key: Au atoms, yellow spheres; Ag atoms, silver spheres; Cu 

atoms, blue spheres; C atoms, brown spheres and N atoms, gray spheres.    
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Table  S16. Model M 

The Pmm2 model for (Cu1/3Ag1/3Au1/3)CN at 100 K with [Cu–NC–Ag–NC–Au–CN]n 

ordered chains and mixed Cu-Au layers 

Orthorhombic unit cell: a = 3.39, b = 5.87, c = 15.01 Å [ref 16] 

 

Atom x y z Wyckoff position 

Au1 0 0 0  1a 

Au2 1/2 1/2 0.3260 3c 

Ag1 0 0 0.6580 1a  

Ag2 1/2 1/2 0.6680 3c 

Cu1 0 0 0.3260  1a 

Cu2 1/2 1/2 0.0000 3c 

C1 0 0 0.1301  1a 

C2 0 0 0.5218 1a  

C3 0 0 0.8699 1a  

C4 1/2 1/2 0.1958 3c 

C5 1/2 1/2 0.4561 3c 

C6 1/2 1/2 0.8042 3c 

N1 0 0 0.2058 1a  

N2 0 0 0.4461  1a 

N3 0 0 0.7942 1a  

N4 1/2 1/2 0.1201 3c 

N5 1/2 1/2 0.5318 3c 

N6 1/2 1/2 0.8799 3c 
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Figure S7. Model M. Key: Au atoms, yellow spheres; Ag atoms, silver spheres; Cu 

atoms, blue spheres; C atoms, brown spheres and N atoms, gray spheres.    
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Table  S17. Model N 

The Pmm2 model for (Cu1/3Ag1/3Au1/3)CN at 100 K with [Cu–NC–Ag–NC–Au–CN]n 

ordered chains and mixed Ag-Au layers 

Orthorhombic unit cell: a = 3.39, b = 5.87,  c = 15.01 Å [this work] 

 

Atom x y z Wyckoff position 

Au1 0 0 0 1a  

Au2 1/2 1/2 0.3420 3c 

Ag1 0 0 0.3420 1a  

Ag2 1/2 1/2 0 3c 

Cu1 0 0 0.6740  1a 

Cu2 1/2 1/2 0.6680 3c 

C1 0 0 0.1301 1a  

C2 0 0 0.4780 1a  

C3 0 0 0.8699 1a  

C4 1/2 1/2 0.2120 3c 

C5 1/2 1/2 0.4720 3c 

C6 1/2 1/2 0.8640 3c 

N1 0 0 0.2058  1a 

N2 0 0 0.5540 1a  

N3 0 0 0.7942 1a  

N4 1/2 1/2 0.1360 3c 

N5 1/2 1/2 0.5480 3c 

N6 1/2 1/2 0.7880 3c 
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Figure S8. Model N. Key: Au atoms, yellow spheres; Ag atoms, silver spheres; Cu atoms, 

blue spheres; C atoms, brown spheres and N atoms, gray spheres.    
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S.7. Additional XPDF fits for (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN   

(a)(Cu1/2Au1/2)CN in Model (I) Amam{8}  

  

 

 

Figure S9. D(r) for (Cu1/2Au1/2)CN at 100 K and fit over the range ranges r = 0.0 – 8.0 Å using 

Model (I) in Amam{8}[ RDr(0.0 – 8.0 Å) =  0.1896]. (See Table S10.).  

Note: R factor, RDr, calculated using the following: 

𝑅𝐷(𝑟) = [∑|𝑌𝑖(𝑜𝑏𝑠) − 𝑌𝑖(𝑐𝑎𝑙𝑐)|2 𝑌𝑖(𝑜𝑏𝑠)2⁄ ]
1

2⁄
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(b) (Ag1/2Au1/2)CN in Model (G) I mmm{4}, Model (I) Amam{8} and Model (J) 

P6/mmm{6}   

 

 

Figure S10. D(r) for (Ag1/2Au1/2)CN at 100 K and fits over the ranges r = 0.0 – 8.0 and r = 6.5 

– 8.0 Å using (i) Model (G) Immm{4} [RDr(0.0 – 8.0 Å) =  0.1288 and RDr(6.5 – 8.0 Å) = 
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0.1619] (black line), (ii) Model (I) Amam{8} [RDr(0.0 – 8.0 Å) =  0.1261 and RDr(6.5 – 8.0 Å) 

=  0.1827] (blue line) and (iii) Model (J) P6/mmm{6} [RDr(0.0 –8.0 Å) =  0.1347 and RDr(6.5 

– 8.0 Å) =  0.2111](red line). (See Table S9.).  

Note: R factors, RDr, calculated using the following: 

𝑅𝐷(𝑟) = [∑|𝑌𝑖(𝑜𝑏𝑠) − 𝑌𝑖(𝑐𝑎𝑙𝑐)|2 𝑌𝑖(𝑜𝑏𝑠)2⁄ ]
1

2⁄
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S.8. Solid-State NMR spectra 

 

Figure S11.  13C DEPTH spectrum of the High-Temperature form of CuCN spun at 10 kHz. 

 

Figure S12.  13C DEPTH spectrum of the Low-Temperature form of CuCN spun at 10 kHz. 
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Figure S13.  13C DEPTH spectrum of (Cu½Au½)CN spun at 10 kHz. 

 

Figure S14.  13C DPMAS spectrum of AgCN spun at 10 kHz. 
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Figure S15.  13C DPMAS spectrum of the (Ag½Au½)CN spun at 10 kHz. 

 

Figure S16.  13C DEPTH spectrum of AuCN spun at 10 kHz. 
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Figure S17.  13C DEPTH spectrum of (Cu⅓Ag⅓Au⅓)CN spun at 10 kHz. 

 

 

 


