SUPPLEMENTARY INFORMATION

Manuscript title: Inherited Salt-Losing Tubulopathies are associated with immunodeficiency due to impaired IL-17 responses

Corresponding authors:

Dr. Rhys Evans: <u>rhys.evans@ucl.ac.uk</u>; <u>rhysdrevans@gmail.com</u>; Dr. Stephen Walsh: <u>stephen.walsh@ucl.ac.uk</u>; Prof. Alan Salama: <u>a.salama@ucl.ac.uk</u>.

Supplemental Figure 1: <u>Recurrent fungal toenail affecting all toes in a patient with Bartter syndrome</u> <u>type 3 (reported during routine clinic review)</u>

- i. <u>Candida albicans</u>. Reduction in colony size with additional NaCl
- A. No additional NaCl

B. +40mM NaCl

C. +80mM NaCl

D. +160mM NaCl

- ii. <u>Corynebacterium amycolatum</u>. No effect of NaCl on growth
- A. No additional NaCl

B. +40mM NaCl

Supplemental Figure 2: <u>Representative images of *Candida albicans* and *Corynebacterium amycolatum* culture (serial dilutions neat, 10⁻¹, 10⁻², 10⁻³) in tryptone soya agar media with and without additional NaCl (+0-160mM).</u>

Supplemental Figure 3: T cell subsets in SLT patients and healthy controls

A. CD3+CD4+ cells (% of CD3+ cells): HC [n=13] 62.2% (52.5-70.4), SLT [n=10] 71.2% (57.8-73.9), p=0.23. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.
B. CD3+CD8+ cells (% of CD3+ cells): HC [n=13] 33.1% (25.5-42.4), SLT [n=10] 26.0% (21.8-35.4), p=0.15. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.
C. CD4:CD8 ratio: HC 1.9 [n=13] (1.2-2.8), SLT [n=10] 2.7 (1.6-3.4), p=0.19. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

D. CD3+CD45RA+ cells (% of CD3+ cells): HC [n=13] 41.0% (29.7-47.8), SLT [n=10] 32.9% (26.2-58.4), p=0.90. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

E. CD3+CD45RO+ cells (% of CD3+ cells): HC [n=13] 43.5% (32.5-56.6), SLT [n=10] 48.9% (28.1-60.0), p=0.72. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

F. CD3+CD4+CD45RA+ cells (% of CD3+CD4+ cells): HC [n=13] 31.3% (17.5-40.2), SLT [n=10] 28.0% (18.4-51.8), p=0.99. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

G. CD3+CD4+CD45RO+ cells (% of CD3+CD4+ cells): HC [n=13] 48.9% (44.1-68.9), SLT [n=10] 49.4% (30.6-64.6), p=0.69. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

H. CD3+CD45RA+ cells (% of CD3+CD8+ cells): HC [n=13] 66.5% (48.5-77.8), SLT [n=10] 53.0% (38.9-74.9), p=0.38. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

I. CD3+CD8+CD45RO+ cells (% of CD3+CD8+ cells): HC [n=13] 27.9% (18.3-44.9), SLT [n=10] 36.8% (24.1-55.7), p=0.40. Compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

ns – not significant (p>0.05), *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. SLT – Salt-Losing Tubulopathy; HC – healthy control. Source data are provided as a **Source data file.**

Α. Β. IFNa Stimulation IL-21 Stimulation IL-6 Stimulation Healthy Control Healthy Control 1.5K 400 500 400 1.0K 300 Count Count 300 · Count 200 200 500 100 100 0 0 105 -103 103 104 105 0 105 -103 103 104 -10³ 103 104 0 pSTAT1 pSTAT3 pSTAT3 Salt Losing Tubulopathy Salt Losing Nephropathy 1.5K 500 500 400 400 1.0K Count Count 300 300 Count 200 200 500 100 100 ο. 0 0 105 -10³ 103 10⁴ 105 10³ 10³ 105 -103 104 104 -103 0 0 pSTAT3 pSTAT3 pSTAT1 C. D. STAT1 STAT3 Calcium flux after T cell activation 2.5 2.5-Phosphorylation (expressed as ratio with healthy control) Phosphorylation (expressed as ratio with healthy control) 1.4-Normal Media 2.0 2.0 + HCT 20uM Indo-1 ratio (AU) 1.2-1.5 1.5 + HCT 100uM 1.0 1.0 + HCT 500uM 1.0-: 0.5-0.5 0.8 1-21-stimulation FN-2 stimulation H-6 stimution 0.0 0.0 0.6 200 300 400 100 Ò Time (Seconds) T cell activation F. Ε. **NCC Expression** 41.9 44.1 105 100-NCC expression (% of cell subtype) 80-104 60-NCC 103 **40** ø 0 20 -103 10.1 3.9 0 CO⁸CO⁵⁶CO¹⁹CO¹⁵C cDA* T г 105 -103 10³ 104 0 CD56

7

G.

Infection score according to SLT type Th17 p

Th17 polarisation according to SLT Type

Supplemental Figure 4: Investigation of impaired IL-17 responses - STAT1 and STAT3 phosphorylation in SLT patients, calcium flux after T cell activation in the presence of hydrochlorothiazide, NCC expression on lymphocytes, and infection score and Th17 polarisation according to SLT type

A. Representative histograms of up-regulation of pSTAT3 in CD4+ cells after stimulation with IL-6 and IL-21 in a SLT patient and a HC (red – unstimulated; blue – stimulated).

B. Representative histograms of up-regulation of pSTAT1 in CD4+ cells after stimulation with IFN α in a SLT patient and a HC (red – unstimulated; blue – stimulated).

C. Phosphorylation of STAT3 in CD4- cells after stimulation with IL-6 and IL-21, and phosphorylation of STAT1 in CD4- cells after stimulation with IFN α in SLT patients (n=13). Expressed as ratio of up-regulation in SLT compared to HC (n=4). Red line drawn at ratio of 1 represents no difference between SLT and HC.

D. Calcium flux curves (as determined using the ratiometric calcium dye Indo-1 gated on CD4+ cells) after T cell activation in normal media and in the presence of hydrochlorothiazide (HCT) 20-500uM.
 E. Sodium chloride cotransporter (NCC) expression on CD4+, CD8+, CD45+CD3-CD56+, CD19+, CD45RA-, and CD45RA+ cells. Demonstrated as percentage of cell type expressing NCC in a healthy control (the median for technical duplicates is plotted); highest expression was on CD45+CD3-CD56+ (NK) cells.

F. Representative FACS contour plot of NCC expression on NK cells (gated on CD45+CD3- cells). NCC expression is predominantly on CD56 dim as opposed to CD56 bright NK cell subsets. Cell proportions as percentages are documented within each quadrant.

G. IL-17 related infection score and Th17 polarisation according to SLT type (each individual type reflects different defective ion transporter). Compared with a Kruskal-Wallis test. Infection score according to SLT type: BS 1 n=4; BS2 n=4; BS3 n= 14; BS4 n=1; GS n=22; EAST n=2. Th17 polarisation according to SLT type: BS1 n=2; BS2 n=3; BS3 n=5; GS n=12; EAST n=2. Error bars represent interquartile range around the median.

Source data are provided as a Source data file.

Electrolyte	Concentration in XVIVO15 (measured; mmol per I)
Sodium	131
Chloride	98
Potassium	4.4
Magnesium	0.75
Calcium	1.29
Phosphate	0.92

Β.

Supplemental Figure 5: <u>Ionic concentrations in unadjusted media, and effect of changing</u> extracellular ionic concentrations on cell viability during T cell activation

A. Measured ionic concentrations in XVIVO15 media.

B. Effect of changing extracellular ionic concentration during T cell activation on cell viability in healthy control (n=2) cells. Expressed as a ratio to cell viability in normal media. Red line drawn at ratio of 1 represents no difference to normal media.

Source data are provided as a Source data file.

Α.

В.

Supplemental Figure 6: <u>Data from 7-day Th17 polarisation experiments with altered extracellular</u> <u>ionic and angiotensin II concentrations</u>

A. Effect of NaCl (0-40mM; n=1 healthy control), KCl (0-2mM; n=2 healthy controls), and MgCl₂ (0-0.8mM; n=3 healthy controls) on cell viability after PBMC activation under optimal Th17 polarising conditions. Mean of technical triplicates is plotted for NaCl effect. In other graphs the median for controls is plotted.

B. Effect of +40mM NaCl on supernatant IFNγ concentrations during 7-day culture experiments in healthy control cells (n=8). Conditions are compared with a two-sided Wilcoxon test.

C. Measured supernatant osmolality (mOsm per kg) created by different osmoles in the final supernatant of 7-day cultures plotted against Th17 and Tc17 polarisation.

D. Effect of +40mM NaCl on Th17 polarisation in stimulated whole PBMCs, stimulated isolated naïve (CD45RA+) CD4+ T cells, and stimulated isolated memory (CD45RO+) CD4+ T cells. The mean of technical replicates in a single experiment in cells form a healthy control is plotted.

E. Effect of +40mM NaCl on Tc17 polarisation in stimulated isolated naïve (CD45RA+) CD8+ T cells, and non-naïve CD8+ T cells. The mean of technical replicates in a single experiment in cells form a healthy control is plotted.

F. Sodium responsiveness of PMBCs (whole), isolated naïve CD4+ cells, and memory CD4+ cells. IL-17 expression (% of CD4+ cells) plotted in high salt conditions (+40mM NaCl) as a ratio to standard conditions. Red line drawn at ratio = 1 (i.e. no difference in IL-17 expression between conditions). Error bars represent range around the median of technical triplicates in a single experiment in cells form a healthy control.

G. IL-17 expression in CD4+ and CD4- cells (expressed as median fluorescence intensity) in PBMCs stimulated in optimal Th17 polarising conditions with and with angiotensin II (0.1-1uM). Error bars represent range around the median of technical triplicates in a single experiment in cells form a healthy control.

ns – not significant (p>0.05), *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. Source data are provided as a **Source data** file.

Α.				
	Pearson r	95% Confidence Interval	R squared	P value
Infection Score vs. Na (mmol per I)	-0.1654	-0.4321 to 0.1278	0.02737	0.2664
Infection Score vs. K (mmol per I)	-0.09249	-0.3728 to 0.2033	0.008554	0.541
Infection Score vs. Cl (mmol per I)	-0.2305	-0.4908 to 0.06760	0.05313	0.1277
Infection Score vs. HCO3 (mmol per I)	0.0489	-0.2449 to 0.3345	0.002391	0.7469
Infection Score vs. Creatinine (µmol per I)	-0.2718	-0.5185 to 0.01666	0.07388	0.0646
Infection Score vs. cCa (mmol per I)	-0.1446	-0.4203 to 0.1556	0.0209	0.3434
Infection Score vs. PO4 (mmol per I)	-0.239	-0.4950 to 0.05510	0.05713	0.1096
Infection Score vs. Mg (mmol per I)	-0.04587	-0.3450 to 0.2617	0.002104	0.773
Infection Score vs. Mean arterial pressure (mmHg)	-0.3233	-0.5634 to -0.03290	0.1045	0.0303
Infection Score vs. Systolic blood pressure (mmHg)	-0.1988	-0.4652 to 0.1006	0.03951	0.1905
Infection Score vs. Diastolic blood pressure (mmHq)	-0.3695	-0.5982 to -0.08526	0.1366	0.0125

Supplemental Figure 7: <u>IL-17 related infection score according to serum biochemical parameters</u> and disease subtypes in Salt-Losing Tubulopathy patients

A. Correlation of serum biochemical parameters to IL-17 related infection score in SLT patients (n=45). Analysed with a Pearson correlation; a two-sided p value is recorded.

B. Mean arterial pressure, diastolic blood pressure, and serum creatinine plotted against IL-17 related infection score in SLT patients (n=45).

Source data are provided as a Source data file.

Supplemental Figure 8: IL23-receptor expression and salt responsiveness of IL-17 responses in Salt-Losing Tubulopathy

A. Representative FACS dot plots of IL23 receptor (IL23-R) expression on CD4+ cells in a SLT patient and HC. Cell proportions as percentages are documented within each quadrant. **B.** Salt responsiveness (readout in media supplemented with NaCI 40mM expressed as ratio to readout in normal media) of Th17 cells in SLT patients (n=25), healthy controls (n=26), and disease controls (n=19). Red line drawn at ratio of 1 demonstrates no difference between high salt media and normal media. Groups are compared with a Kruskal-Wallis test. Error bars represent the interguartile range around the median.

C. Salt responsiveness (readout in media supplemented with NaCl 40mM expressed as ratio to readout in normal media) of Tc17 cells in SLT patients (n=25), healthy controls (n=27), and disease controls (n=19). Red line drawn at ratio of 1 demonstrates no difference between high salt media and normal media. Groups are compared with a Kruskal-Wallis test. Error bars represent the interguartile range around the median.

D. Salt responsiveness (readout in media supplemented with NaCl 40mM expressed as ratio to readout in normal media) of Th17 cells according to SLT type (BS1 = 2, BS2 = 2, BS3 = 7, GS = 12, and EAST = 2). Red line drawn at ratio of 1 demonstrates no difference between high salt media and normal media. Groups are compared with a Kruskal-Wallis test. Error bars represent the interquartile range around the median.

SLT – Salt-Losing Tubulopathy; HC – healthy control; DC – disease control; BS – Bartter syndrome; GS – Gitelman syndrome; ns – not significant (p>0.05), *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. Source data are provided as a Source data file.

Supplemental Figure 9: Monocyte analysis in Salt-Losing Tubulopathy patients.

A. Classical (CD14+CD16-), intermediate (CD14+CD16+), and non-classical (CD14-CD16+) monocyte subsets in SLT patients (n=14) and HCs (n=12). Groups are compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

B. Representative FACS dot plots of CD14 and CD16 staining in a HC and SLT patient. Cell proportions as percentages are documented within each quadrant.

C. Proportion of Lipopolysaccharide (LPS) stimulated CD14+ cells expressing TNF in SLT patients (n=14) and HCs (n=8). Groups are compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

D. Effect of 40mM NaCl (n=7 healthy controls), 2mM KCl (n=5 healthy controls), and 1mM MgCl₂ (n=5 healthy controls) on TNF expression in LPS stimulated CD14+ cells. Expressed as a ratio of TNF expression in ionic supplemented media compared to standard conditions. Red line drawn at ratio of 1 represents no difference with addition of ions.

SLT – Salt-Losing Tubulopathy; HC – healthy control. ns – not significant (p>0.05), *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.001. Source data are provided as a **Source data file.**

Supplemental Figure 10: <u>Analysis of Natural Killer (NK) cells in Salt-Losing Tubulopathy patients</u>. **A**. NK cells (CD45+CD3-CD56+CD16+ cells) expressed as a proportion of lymphocytes (CD45+ cells) in SLT patients (n=16) and HCs (n=17): HC 10.2% (5.9-13.8), SLT 7.0% (4.0-10.1), p=0.11. Groups are compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median. Red line drawn at 7% represents clinical laboratory lower limit of normal range. **B**. Ratio of CD56+CD16+ to CD56+CD16- cells in SLT patients (n=16) and HCs (n=17): HC 18.0 (13.7-24.8), SLT 11.4 (7.5-16.7), p=0.01. Groups are compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median. **C**. IFNγ expression by CD45+CD3-CD56+ cells after 4 hours IL-12 and IL-18 stimulation in SLT patients (n=15) and healthy controls (n=12): HC 28.0% (23.9-38.0), SLT 32.8% (23.0-47.5), p=0.72. Groups are compared with a two-sided Mann-Whitney test. Error bars represent interquartile range around the median.

D. Representative FACS dot plots of CD56 and CD16 staining in a SLT patient and HC (gated on single CD45+CD3-CD56+ cells, therefore CD56 gate distinguishes CD56 bright from dim). SLT patients had reduced CD16 staining on CD56+ cells, as shown. Cell proportions as percentages are documented within each quadrant.

E. NK cells in healthy controls (n=8), expressed as a proportion of lymphocytes (CD45+ cells) after stimulation (IL-12 and IL-18) with and without additional 40mM NaCI: normal media 8.7% (6.4-14.5), +40mM NaCI 10.0% (6.8-15.5), p=0.008. Change within individual subjects is plotted. Conditions compared with a two-sided Wilcoxon test.

F. IFNγ expression by healthy control (n=8) NK cells after stimulation (IL-12 and IL-18) with and without additional 40mM NaCl: normal media 31.8% (21.0-37.6), +40mM NaCl 17.6% (12.0-20.6), p=0.008. Change in individual subjects is plotted. Conditions compared with a two-sided Wilcoxon test.

ns – not significant (p>0.05), *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001; SLT – Salt-Losing Tubulopathy; HC – healthy control. Source data are provided as a **Source data file.**

Supplemental Figure 11: <u>FACS gating strategies.</u> Legends underneath each set of plots describe the gating strategy and outline the relevant figures in which the FACS analysis has been used.

i. Gating used during FACS analysis of T cell activation (Figure 2)

<u>Top panel</u>: Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FCS-A-FSC-H plot.

<u>Middle Panel</u>: Live cells were gated on a FSC-Viability dye plot; CD25 expression in CD4+ cells was determined by CD4-CD25 gating.

ii. Gating used during FACS analysis of T cell proliferation (Figure 2)

Lymphocytes were gated on a FSC-SSC plot; live cells were gated on a FSC-Viability dye plot; Ki67 expression in CD4+ cells was determined by CD4-Ki67 gating.

iii. Gating used during FACS analysis of CD4 subsets (Figures 3 and 6)

Cytokine (IFN_Y, IL-4, and IL-17) gates in CD4+ cells were determined by FMO <u>Top panel:</u> Lymphocytes were gated on a FSC-SSC plot; Single cells were gated on a FCS-A-FSC-H plot; live cells were gated on a FSC-Viability dye plot.

<u>Middle Panel</u>: Cytokine expression was determined by CD4-cytokine gating; middle panel demonstrates FMO for each cytokine.

Bottom panel: Representative staining of IFNγ, IL-4, and IL-17 against CD4 in a healthy control

iv. Gating used during FACS analysis of Th17 and Tc17 polarisation (Figures 4, 5, 7, and 8, and Supplemental Figures 6 and 8)

Gates for IL-17 were determined by fluorescence minus one (FMO)

Top panel: Lymphocytes were gated on a FSC-SSC plot; live cells were gated on a FSC-Viability dye plot.

<u>Middle Panel</u>: IL-17 expression was determined by CD4-IL-17 gating; left panel demonstrates FMO. <u>Bottom panel</u>: IL-17 expression was determined by CD8-IL-17 gating; left panel demonstrates FMO.

v. Gating used during FACS analysis of STAT1 and STAT3 phosphorylation (Figure 5 and Supplemental Figure 4)

<u>Top panel</u>: Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FSC-A-FSC-H plot; CD4 cells were then gated on a FSC-CD4 plot.

Median fluorescence staining intensity (MFI) of pSTAT1 and pSTAT3 were determined in the CD4+ population.

Bottom panel: Histograms represent pSTAT1 staining in unstimulated (left panel) and stimulated (right panel) cells. Increase in MFI was determined for each subject

vi. Gating used for FACS analysis of Calcium Flux during T cell activation (Figure 5 and Supplemental Figure 4)

<u>Top panel:</u> Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FSC-A-FSC-H plot.

Bottom panel: CD4+ cells were gated on a FSC-CD4 plot; calcium flux was determined by plotting Indo1 ratio (fluorescence at 400nM compared to 475nm) over time

vii. Gating used for FACS analysis of T cell expression of the IL23 receptor (Figure 8 and Supplemental Figure 8)

Top panel: Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FSC-A-FSC-H plot.

Bottom panel: Live cells were gated on a FSC-Viability dye plot; IL23 receptor (IL23R) expression was determined by CD4-IL23R gating

viii. Gating used for FACS analysis of T cell populations (Supplemental Figure 3)

<u>Top panel</u>: Lymphocytes were gated on a FSC-SSC plot; live cells were gated on a FSC-Viability dye plot; CD3+ cells were gated on a FSC-CD3 plot.

<u>Bottom panel</u>: CD4 and CD8 expression on CD3 cells were determined by a CD4-CD8 plot; CD45RA-CD45RO plots were then used to determine expression of CD3+CD8+CD4- (bottom middle panel) and CD3+CD8-CD4+ (bottom right panel) cells.

ix. Gating used during FACS analysis of T cell NCC expression (Supplemental Figure 4)

<u>Top panel</u>: Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FCS-A-FSC-H plot.

Bottom Panel: NCC expression on CD4 cells was determined by a CD4-NCC plot; and NCC expression on CD8 cells was determined by a CD8-NCC plot with these gates determined by FMO.

x. Gating used during FACS analysis of NK cell NCC expression (Supplemental Figure 4)

<u>Top panel</u>: Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FCS-A-FSC-H plot; CD45+ cells were gated on a FSC-CD45 plot.

Bottom Panel: CD45+CD3- cells were gated on a FSC-CD3 plot; NCC expression on CD45+CD3-CD56+ cells was determined by a CD56-NCC plot with these gates determined by FMO.

xi. Gating used for FACS analysis of monocyte subsets (Supplemental Figure 9)

<u>Top Panel</u>: Monocytes were gated on a FSC-SSC plot, and single cells on a FSC-A-FSC-H plot <u>Bottom Panel</u>: Live cells were gated on a FSC-viability dye plot; CD14-CD16 gates then determined classical (CD14+CD16-), intermediate (CD14+CD16+) and non-classical (CD14-CD16+) monocyte populations.

xii. Gating used for FACS analysis of monocyte expression of TNF (Supplemental Figure 9)

<u>Top panel:</u> Stimulated monocytes were gated on a FSC-SSC plot; single cells were gated on a FSC-A-FSC-H plot; live cells were gated on a FSC-Viability dye plot.

<u>Bottom Panel</u>: TNF expression was determined by CD14-TNF gating; bottom left panel demonstrates FMO for TNF and bottom right panel demonstrates TNF staining in a HC.

xiii. Gating used for analysis of NK cell subsets (Supplemental Figure 10)

<u>Top Panel</u>: Lymphocytes were gated on an FCS-SSC plot; single cells were gated on a FSC-A-FSC-H plot; CD45+ cells were gated on a FSC-CD45 plot.

<u>Bottom Panel</u>: CD3-CD56+ cells were gated on a CD3-CD56 plot (bottom left panel, top left quadrant); CD56 bright versus dim was then gated against CD16 to determine CD56brightCD16neg, CD56brightCD16pos, and CD56dimCD16pos cells.

xiv. Gating used for FACS analysis of NK cell expression of IFN_Y (Supplemental Figure 10)

<u>Top panel</u>: Lymphocytes were gated on a FSC-SSC plot; single cells were gated on a FSC-A-FSC-H plot; live cells were gated on a FSC-Viability dye plot.

<u>Middle panel</u>: CD45+ cells were gated on a FSC-CD45 plot; CD3- cells were gated on a FSC-CD3 plot <u>Bottom Panel</u>: IFNy expression was determined by CD56-IFNy gating; bottom left panel demonstrates FMO for IFNy and bottom right panel demonstrates IFNy staining in a HC.

Patient number 2	Age 36 26	⊢ ≤ Sex	Diagnosis Bartter (type 1) Bartter (type 1)	Gene Affected SLC12A1 SLC12A1	Nucleotide Change c.1215G>A c.1316G>A	Protein Change p.(=) p.Arg439GIn	
ω	18	Z	Bartter (type 1)	SLC12A1	c.450-451del; c.967G>A	Asp150Glufs*4; Glu32;	3Lys
4	17	Z	Bartter (type 1)	SLC12A1	c.1316G>A	p.Arg439Gln	
თ	19	Σ	Bartter (type 2)	KCNJ1	Not available		
6	18	п	Bartter (type 2)	KCNJ1	Not available		
7	33	Ζ	Bartter (type 2)	KCNJ1	Not available		
8	41	П	Bartter (type 2)	KCNJ1	c.89G>A	p.Cys30Tyr	
9	28	Μ	Bartter (type 3)	CLCNKB	Not available		
10	31	Μ	Bartter (type 3)	CLCNKB	Whole gene deletion		
11	41	П	Bartter (type 3)	CLCNKB	Whole gene deletion		
12	32	П	Bartter (type 3)	CLCNKB	c.887G>A; c.1929+1G>A	p.gly296asp	
13	34	Ν	Bartter (type 3)	CLCNKB	c.887G>A; c.1929+1G>A	p.gly296asp	
14	31	Μ	Bartter (type 3)	CLCNKB	c.1897del	p.Leu633*	
15	30	Μ	Bartter (type 3)	CLCNKB	c.875G>T	p.Cys292Phe	
16	23	Μ	Bartter (type 3)	CLCNKB	c. 1395del	p.Tyr466Metfs*	13
17	Ν	п	Bartter (type 3)	CLCNKA; CLCNKB	Partial Deletion both genes		
18	59	п	Bartter (type 3)	CLCNKB	Partial Deletion		
19	39	Μ	Bartter (type 3)	CLCNKB	Whole gene deletion		
20	34	Μ	Bartter (type 3)	CLCNKB	Not available		
21	24	п	Bartter (type 3)	CLCNKB	Whole gene deletion		
22	33	Μ	Bartter (type 3)	CLCNKB	c.1783C>T	p.Arg595*	
23	18	п	Bartter (type 4a)	BSND	c.125G>A; c.139G>A	p.Ser42Asn; p.Gly	/47Arg
24	27	R	EAST	KCNJ10	c.194G>C	p.Arg65Prc	
25	25	п	EAST	KCNJ10	c.194G>C	p.Arg65Prc	
26	52	п	Gitelman	SLC12A3	c.1000C>T; c.2221G>A	p.Arg334Trp; p.Gl	y741Arg
27	37	п	Gitelman	SLC12A3	c.2221G>A; c.2581C>T	p. Gly741Arg; p.Ar	g861Cys
28	35	R	Gitelman	SLC12A3	c.1825del; ex1_ex8del	p.Glu609Argft	s*2
29	85	Ν	Gitelman	SLC12A3	c.961C>T; c.2883+1G>T	p.Arg321Trp;	p.?
30	57	п	Gitelman	SLC12A3; WNK4	c.111T>A; c.1510C>T	p.Tyr37*; p.Gln	504*
31	41	П	Gitelman	SLC12A3	c.1196_1202dup; c.2221G>A	p.Ser402*;	'41Arg
32	64	п	Gitelman	SLC12A3	c.1928C>T; ex14del	p.Pro643Le	C
33	52	Z	Gitelman	SLC12A3	c.1664C>T; c.2882+1G>T	p.Ser555Lei	
34	36	п	Gitelman	SLC12A3	c.1261T>C; c.1930del	p.Cys421Arg p.Gln644Serfs	*28
35	47	Μ	Gitelman	SLC12A3	c.1028T>A	p.Met343Ly	S

47	46	45	44	43	42	41	40	39	38	37	36
31	43	67	39	58	35	31	62	40	39	68	33
П	П	П	П	п	п	п	Μ	П	Μ	П	П
Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman	Gitelman
SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3	SLC12A3
c.1964G>A; c.2221G>A	c.1664C>T; c.2882+1G>T	c.427A>G; c.2221G>A	c.2368+1del; ex6del	c.910A>C; c.2883+1G>T	Not available	Not available	c.1046C>T; c.1055C>A	Not available	c.2576T>C; c.2965G>A	c.1046C>T; c.1055C>A	c.237_238dup
p. Arg655His; p.Gly741Arg	p.Ser555Leu	p.Met143Val; p.Gly741Arg		p.Thr304Pro			p.Pro349Leu; p.Thr352Lys		p.Leu859Pro; p.Gly989Arg	p.Pro349Leu; p.Thr352Lys	p.Arg80Profs*35
Compound heterozygous	Compound heterozygous	Compound heterozygous	Compound heterozygous	Compound heterozygous			Compound heterozygous		Compound heterozygous	Compound heterozygous	Homozygous

Supplemental Table 1: Demographic data and genotype of Salt-Losing Tubulopathy patients (n=47)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	<u>د</u>	Number
53	20	55	8	23	6	60	34	51	46	33	53	48	38	35	Age
Μ	П	т	Μ	F	М	Т	П	Μ	Μ	F	Μ	Μ	F	Μ	Sex
Primary	TRPM6 mutation (isolated Mg wasting)	dRTA	dRTA	dRTA	FHH	FHH	FHH	Proximal tubulopathy (inherited)	Proximal tubulopathy (Wilson disease)	Proximal tubulopathy (fumarate toxicity)	Proximal tubulopathy (Wilson disease)	Proximal tubulopathy (Lowe syndrome)	Proximal tubulopathy (HNF4A mutation)	Proximal tubulopathy (fumarate toxicity)	Diagnosis
142	141	138		140		137	141	141	141	143	141	142	137	141	Na (mmol per litre)
4.2	4.1	4.7		4.2		6.4	ъ	4	4.5	3.9	4.5	4.4	3.9	4.4	K (mmol per litre)
	106	104		103		108	102	102	66	105	103	102	102	103	CI (mmol per litre)
25	22	21		24		19	25	25	25	23	22	22	16	23	HCO3 (mmol per litre)
93	42	51		52		59	62	120	152	81	111	162	211	79	Creatinin e (µmol per litre)
2.49	2.36	2.23		2.33		2.36	2.4	2.51	2.39	2.36	2.49	2.39	2.4	2.29	cCa (mmol per litre)
0.92	0.72	0.85		0.93		1.16	1.12	0.81	1.26	0.77	1.13	0.87	1.03	1.22	PO4 (mmol per litre)
0.89	0.51	0.85		0.87		0.75	0.77	0.93	0.91		0.87	0.98	0.93		Mg (mmol per litre)

-					r		
22	21	20	19	18	17	16	
31	15	75	5 1	59	19	49	
п	٤	М	п	П	М	п	
Hypokalaemia (resolved) – extra renal loss	Nephrogenic diabetes insipidus	Medullary sponge kidney	TIN	TIN	STX16 mutation (pseudohypoparathyr oidism)	STX16 mutation (pseudohypoparathyr oidism)	hyperparathyroidism
142		144	138	138	140	140	
4.4		4.2	4.2	4.3	4.7	4.1	
101		103	103	100	104	98	
27		25	26	28	23	25	
76		94	145	118	78	62	
2.45		2.39	2.42	2.38	2.24	2.43	
1.16		1.11	1.1	1.08	1.66	1.19	
0.85		0.79	0.76	0.87	0.89	0.81	
·	•		•			i	

Supplemental Table 2: Demographic and clinical data (diagnosis and serum biochemistry) of disease controls (n=22) FHH – familial hyperkalaemic hypertension; dRTA – distal renal tubular acidosis; TIN – tubulointerstitial nephritis

	Whole SLT cohort n=47	Bartter syndrome types 1,2, and 4 n=9	Bartter syndrome type 3 n=14	Gitelman and EAST syndrome n=24	P-value
Na (mmol per litre)	140 (3)	141 (4)	140 (3)	140 (3)	0.68
K (mmol per litre)	3.3 (0.6)	3.7 (0.6)	2.9 (0.6)	3.4 (0.5)	0.0045
CI (mmol per litre)	95 (4)	99 (2)	91 (4)	96 (3)	<0.0001
HCO3 (mmol per litre)	28 (4)	25 (3)	30 (4)	28 (3)	0.014
Creatinine (µmol per litre)	94 (79)	166 (140)	103 (63)	62 (14)	0.0005
cCa (mmol per litre)	2.43 (0.13)	2.41 (0.12)	2.41 (0.14)	2.45 (0.12)	0.59
PO4 (mmol per litre)	1.11 (0.20)	1.19 (0.25)	1.13 (0.21)	1.06 (0.16)	0.20
Mg (mmol per litre)	0.70 (0.17)	0.79 (0.18)	0.75 (0.16)	0.64 (0.16)	0.05

Supplemental Table 3: <u>Serum biochemistry in the Salt-Losing Tubulopathy (SLT) Cohort</u> (n=47). Values reported are mean and standard deviation. Variables are compared between BS types 1,2, and 4 ('antenatal BS/loop phenotype'; n=9), BS type 3 ('classical BS/mixed loop and distal tubule phenotype'; n=14), and GS/EAST syndrome ('distal tubule phenotype'; n=24) with a one-way analysis of variance. Source data are provided as a **Source data file**.

	Salt-Losing Tubulopathy n=47	Disease Control n=19	P-value
Na (mmol per litre)	140 (138-142)	141 (138-142)	0.54
K (mmol per litre)	3.3 (2.9-3.8)	4.3 (4.1-4.5)	<0.0001
CI (mmol per litre)	95 (91-99)	103 (102-104)	<0.0001
HCO3 (mmol per litre)	29 (26-30)	24 (22-25)	<0.0001
Creatinine (µmol per litre)	71 (57-88)	81 (62-120)	0.21
cCa (mmol per litre)	2.42 (2.37-2.51)	2.39 (2.36-2.43)	0.09
PO4 (mmol per litre)	1.08 (1.00-1.23)	1.10 (0.87-1.16)	0.42
Mg (mmol per litre)	0.70 (0.58-0.79)	0.87 (0.79-0.92)	0.0004

Supplemental Table 4: <u>Serum biochemistry in Salt-Losing Tubulopathy patients (n=47) and</u> <u>disease controls (n=19)</u>. Values reported are median and interquartile range, and are compared between groups with a two-sided Mann-Whitney test. Source data are provided as a **Source data file**.

Total number of skin abscesses in lifetime	None (0)	1-2 <mark>(2)</mark>	3-4 (4)	>4 (8)
Total number x-ray proven pneumonias in lifetime	None (0)	1 (2)	2 (4)	3 (6)
Other serious infections (requiring hospital admission or intravenous antibiotics)	None (0)	Severe (4)		
Number of upper respiratory tract infections (tonsillitis, sinusitis and otitis) in worst year	0-2 (0)	3 (1)	4-6 (2)	>6 (or tonsillectomy) (4)
Fungal infection?	None (0)	Oral, vaginal (<i>Candida</i>) (1)	Fingernail (2)	Systemic (4)

Supplemental Table 5: <u>Scoring system used to assess infection related to IL-17 defects</u> (points attributed to each answer in red parentheses). Based on infection related criteria and scores used in the Hyper-IgE syndrome diagnostic criteria.

Study Reference	Salt-Losing Tubulopathy Cohort in this study	Autosomal Dominant Hyper-IgE Syndrome in the USIDNET Registry. Gernez et al. J Allergy Clin Immunol Pract 2018.	Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Toubiana J et al. Blood 2016.
Location	United Kingdom	North America	International (62% European)
Genetic cause of chronic mucocutaneous candiasis	NA	STAT3 deficiency (Autosomal Dominant Hyper-IgE Syndrome)	STAT1 gain-or-function
Number of patients in cohort	47	85	274
Demographics	Median age 35 (time of study); 55.3% female	59% male; 62.4% Caucasian	Median age 22 (time of study); M:F ratio 1.03
Bacterial Infections			
Any bacterial infection	79%		74%
Abscess	21%	74%	28% (recurrent skin infections including cellulitis, abscess, and paronychia)
Lower Respiratory Tract Infection	17%	72%	47%
Upper respiratory tract infection	49%	48.8% sinusitis; 42.7% otitis; 11.7% tonsillectomy	44%
Urinary Tract Infection	36%	2.4% pyelonephritis	2.9% recurrent pyelonephritis
Other severe bacterial infection	6.4% appendicitis/diverticulitis; 6.5% skin infection; 4.3% recurrent gastroenteritis; 2.1% sepsis	18.2% cellulitis, 7.3% sepsis, 6.1% meningitis, 5.8% lymphadenitis	2.9% severe gastroenteritis, 2.6% sepsis, 6% mycobacterial diseases.
Fungal Infections			
Recurrent oral/vaginal candidiasis	38%	21%	98% chronic mucocutaneous candidiasis (93% oral thrush, glossitis, and/or chelitis; 56% oesophageal/gential)
Fingernail fungal infection	13%	28%	56%
Other fungal infection	15% fungal skin infection		10% invasive fungal infections.
Viral Infections			
Any recurrent or severe viral infection	33%	7.4% herpes.	38% at least 1 systemic or atypical viral infection, or recurrent mucocutaneous viral infection
Recurrent VZV	2%		12% shingles and 7% severe chcken-pox
Recurrent HPV	21%		12% moluscum contagiosum or warts

Recurrent HSV	14%		32% recurrent mucocutaneous viral infection (herpes simplex or varicella zoster virus)
			8% severe systemic viral infection
Atopic disease			
Asthma	17%	39%	
Eczema	32%	57%	
Allergic disease			
Any allergic disease	60%	65%	
Contact and environmental allergy (inc wasp stings, dust, dander pollens)	36%	18%	
Food allergy	17%	37%	
Drug allergy	26%	43%	
Angioedema/hives unexplained	11%	8.5% anaphylaxis, 15.9% urticaria	
Other features			
Malignancy		7% malignancy (lymphoma 3, thyroid 1, brain 1, squamous cell carcinoma 1)	
Autoimmune	30%		37% autoimmune manifestation (largely thyroid disease, 22%)

Supplemental Table 6: <u>Clinical features in the Salt-Losing Tubulopathy cohort in this study and in cohorts of patients with inherited defects in IL-17 mediated immunity due to mutations in STAT1 and STAT3.</u>

	Salt-Losing Tubulopathy N =14	Healthy Controls N =12	P-value
Demographic			
Age (median; IQR)	33 (30-42)	31 (25-42)	0.64
Male (n;%)	7 (50)	6 (50)	0.99
Microbial diversity			
Number of microbial isolates per subject (median; IQR)	4 (2-4)	3 (2-4)	0.84
Microbial burden*			
All isolates CFU/ml (median; IQR)	66 (3.2-3000)	24 (5-2400)	0.59
<i>Staphylococcus</i> CFU/ml (median; IQR)	36 (3-800)	15 (2-42)	0.24
<i>Streptococcus</i> CFU/ml (median; IQR)	1450 (27-4900)	2400 (78- 422400)	0.73
<i>Enterococcus</i> CFU/ml (median; IQR)	60 (5-2000)	20 (5-3200)	0.99
Microbial constituents**			
<i>Citrobacter</i> (n; %)	0 (0.0)	1 (8.3)	0.46
Corynebacterium (n; %)***	7 (50.0)	1 (8.3)	0.0357
Staphylococcus (n; %)	10 (71.4)	9 (75.0)	0.99
Streptococcus (n; %)	4 (28.6)	5 (41.7)	0.68
Escherichia (n; %)	2 (14.3)	3 (25.0)	0.99
Lactobacillus (n; %)	1 7.1)	1 (8.3)	0.99
Enterococcus (n; %)	7 (50.0)	4 (33.3)	0.45
Aerococcus (n; %)	1 (7.1)	0 (0.0)	0.99
<i>Facklamia</i> (n; %)	0 (0.0)	1 (8.3)	0.46
Klebsiella (n; %)	2 (14.3)	1 (8.3)	0.99

Supplemental Table 7: <u>Urinary microbial community in Salt-Losing Tubulopathy patients and healthy controls: summary findings.</u>

* Reported as median and interquartile range CFU/ml across all isolates or across isolates of a specific genus, and compared between SLT and HC with a two-sided Mann-Whitney test.

**Reported as number and % of patients with genus present in culture, and compared between SLT and HC with a two-sided Fisher's exact test.

***Corynebacterium species isolated in Salt-Losing nephropathy: Corynebacterium amycolatum = 1;

Corynebacterium aurimucosum = 2; Corynebacterium coyleae = 1; Corynebacterium singular = 2; Corynebacterium tuberculostearicum = 1.

1	1		1				
Patient number	Age	Sex	Diagnosis	Number of isolates	Genus	Species	Colony Forming Units/ml
29	85	Male	Gitelman	ъ	Klebsiella	Klebsiella oxytoca	2.4
					Enterococcus	Enterococcus faecalis	33.6
					Staphylococcus	Staphylococcus epidermidis	8.4
					Corynebacterium	Corynebacterium singulare	38
					Staphylococcus	Staphylococcus haemolyticus	3.2
12	32	Female	Bartter (3)	4	Corynebacterium	Corynebacterium aurimucosum	2.8
					Staphylococcus	Staphylococcus haemolyticus	8.0
					No ID	No ID	1.2
					No ID	No ID	0.4
13	34	Male	Bartter (3)	1	No ID	No ID	332
6	18	Female	Bartter (2)	3	Streptococcus	Streptococcus vestibularis	100
					Staphylococcus	Staphylococcus haemolyticus	100
					Staphylococcus	Staphylococcus epidermidis	0.4
47	31	Female	Gitelman	4	Escherichia	Escherichia coli	0.4
					Staphylococcus	Staphylococcus hominis	800
					Staphylococcus	Staphylococcus epidermidis	600
					Lactobacillus	Lactobacillus crispatus	800000
33	52	Male	Gitelman	2	Staphylococcus	Staphylococcus haemolyticus	800
					Enterococcus	Enterococcis faecium	0.4
46	43	Female	Gitelman	4	Staphylococcus	Staphylococcus haemolyticus	440
					Staphylococcus	Staphylococcus epidermidis	800
					Corynebacterium	Corynebacterium aurimucosum	72
					Enterococcus	Enterococcus faecalis	5.2
31	41	Female	Gitelman	4	Escherichia	Escherichia coli	3600
					Enterococcus	Enterococcus faecalis	60
					Enterococcus	Enterococcus faecalis	11600
					Corynebacterium	Corynebacterium coyleae	56
20	34	Male	Bartter (3)	ω	Staphylococcus	Staphylococcus haemolyticus	36
					Staphylococcus	Staphylococcus haemolyticus	20
					Corynebacterium	Corynebacterium singulare	52
10	31	Male	Bartter (3)	4	Enterococcus	Enterococcus faecalis	560
					Staphylococcus	Staphylococcus capitis	5.2

A. Salt-Losing Tubulopathy patients

	5	14					27				2		
	19	31					37				26		
	Male	Male					Female				Female		
	Bartter (2)	Bartter (3)					Gitelman				Bartter (1)		
	2	1					ъ				4		
Staphylococcus	Klebsiella	Streptococcus	Corynebacterium	Staphylococcus	No ID	Enterococcus	Staphylococcus	Corynebacterium	No ID	Aerococcus	Streptococcus	Streptococcus	Staphylococcus
Staphylococcus haemolyticus	Klebsiella oxytoca	Streptococcus oralis	Corynebacterium tuberculostearicum	Staphylococcus epidermidis	No ID	Enterococcus faecalis	Staphylococcus haemolyticus	Corynebacterium amycolatum	No ID	Aerococcus urinae	Streptococcus agalactiae	Streptococcus agalactiae	Staphylococcus warneri
2.8	4.4	3.2	4000000	44000	10000000	2000	44000	3600	3600	32000	5600	2800	2

		42				50		24				53			24			28	36						22			30			30	Age	
		Female				Female		Female				Male			Male			Male	Male						Female			Female			Female	Sex	
		თ				4		2				4			ω			ω	0						6			ω			З	Number isolates	
Streptococcus	Enterococcus	Escherichia	Staphylococcus	Staphylococcus	No ID	Streptococcus	Lactobacillus	Staphylococcus	Facklamia	Staphylococcus	Staphylococcus	Staphylococcus	Streptococcus	Staphylococcus	Staphylococcus	Staphylococcus	Streptococcus	Staphylococcus	No growth	Staphylcoccus	Staphylococcus	Enterococcus	Enterococcus	Klebsiella	Escherichia	Enterococcus	Escherichia	Citrobacter	No ID	Staphylococcus	Staphylococcus	Genus	
Streptococcus agalactiae	Enterococcus faecalis	Escherichia coli	Staphylococcus haemolyticus	Staphylococcus lugdenensis	No ID	Streptococcus agalactiae	Lactobacillus crispatus	Staphylococcus epidermidis	Facklamia hominis	Staphylococcus hominis	Staphylococcus hominis	Staphylococcus hominis	Streptococcus mitis	Staphylococcus haemolyticus	Staphylococcus haemolyticus	Staphylococcus epidermidis	Streptococcus mitis	Staphylococcus epidermidis	No growth	Stapylococcus epidermidis	Staphylococcus hominis	Enterococcus faecalis	Enterococcus faecalis	Klebsiella pneumoniae	Escherichia coli	Enterococcus raffinosus	Escherichia coli	Citrobacter koseri	No ID	Staphylococcus hominis	Staphylococcus epidermidis	Species	
2400	3200	11200	24	5.6	36	840000	1800000	14.8	4	56	60	1.2	112	2.4	0.4	2.8	44	2.4	NA	ω	28	5.2	20	40	16	5.2	24	640	8.8	3600	32000	Colony Forming Units/ml	>-

	31				40		
	Male				Male		
	2				4		
Staphylococcus	Streptococcus	No ID	Corynebacterium	Staphylococcus	Staphylococcus	No ID	Enterococcus
Staphylococcus hominis	Streptococcus mitis	No ID	Corynebacterium tuberculostearicum	Staphylococcus capitis	Staphylococcus epidermidis	No ID	Enerococcus faecalis
0.4	4800	3200	3.6	16	20	1200	2400

Supplemental Table 8: <u>Complete list of organisms isolated from urine sediment cultures in Salt-Losing Tubulopathy patients (n=14) and healthy</u> <u>controls (n=12).</u> Where reliable identification could not be achieved for a cultured isolate by MALDI-TOF MS, strains are reported as "No ID".

	Normal Range	Number of values	Salt-Losing Tubulopathy (median: IQR)
Haemoglobin (g/l)	110-150 (F); 135- 170 (M)	46	140.5 (129.5-153.5)
White Cell Count (x10 ⁹ /l)	3.5-11	46	8.6 (6.8-10.5)
Neutrophil (x10 ⁹ /l)	1.7-7.5	46	5.4 (4.0-6.7)
Lymphocyte (x10 ⁹ /l)	1-4	46	2.5 (2.1-3.0)
Monocyte (x10 ⁹ /l)	0.2-1.5	46	0.6 (0.5-0.8)
Eosinophil (x10 ⁹ /l)	0-0.5	46	0.1 (0.1-0.2)
Basophil (x10 ⁹ /l)	0-0.1	46	0.1 (0.1-0.1)
Erythrocyte Sedimentation Rate (mm/hr)	0-20	32	9.0 (7.0-31.3)
C-Reactive Protein (mg/L)	0-5	36	2.0 (1.0-5.0)
Immunoglobulin A (g/l)	0.7-4	34	2.3 (1.5-3.2)
Immunoglobulin G (g/l)	7-16	34	11.3 (9.5-14.9)
Immunoglobulin M (g/l)	0.4-2.3	34	1.1 (0.8-1.8)
Total Immunoglobulin E (KUL)	0-120	30	55.0 (26.8-170.8)
Complement C3 (g/l)	0.9-1.8	32	1.4 (1.2-1.7)
Complement C4 (g/l)	0.1-0.4	32	0.3 (0.2-0.3)
Lymphocyte (absolute; g/l)	1-2.8	32	2.1 (1.6-2.6)
CD3 (absolute; g/l)	0.7-2.1	32	1.6 (1.2-1.9)
CD4 (absolute; g/l)	0.3-1.4	32	1.0 (0.8-1.2)
CD8 (absolute; g/l)	0.2-0.9	32	0.5 (0.4-0.6)
CD19 (absolute; g/l)	0.1-0.5	32	0.2 (0.2-0.4)
CD16, CD56 (absolute; g/l)	0.09-0.6	32	0.1 (0.1-0.2)
CD3 (% of lymphocytes)	55-83	32	77.0 (69.0-81.8)
CD4 (% of lymphocytes)	28-57	32	46.0 (44.0-54.8)
CD8 (% of lymphocytes)	10-39	32	24.0 (18.3-28.0)
CD19 (% of lymphocytes)	6-19	32	11.0 (9.0-15.8)
CD16, CD56 (% of lymphocytes)	7-31	32	7.5 (5.0-11.0)
CD4/CD8 (ratio)	1-3.6	32	2.0 (1.6-3.0)

Supplemental Table 9: <u>Initial immunological analysis of Salt-Losing Tubulopathy patients</u>. Median and interquartile range values within the SLT cohort are reported, along with the clinical laboratory reference range and the number of values for each variable recorded. Source data are provided as a **Source data file.**

Experiment	Product	Company	Catalog number	Dilution / Concentration
FACS STAINING				
T cell proliferation and activation	Fixable viability dye - efluor450	Invitrogen	65-0863-14	1 in 1000
	anti human CD4 - FITC	BioLegend	300538	1 in 25
	anti human Ki-67 - APC	BioLegend	350514	1 in 40
	anti human CD25 - PE/Cy7	BioLegend	302612	1 in 40
T cell subset analysis (stimulated cells and intracellular staining)	anti human CD4 - FITC	BioLegend	300538	1 in 20
	anti human IFNg - APC	BioLegend	502512	1 in 40
	anti-human IL17 - PE	BioLegend	512306	1 in 40
	anti-human IL4 - PE/Cy7	BioLegend	500824	1 in 40
T cell subset analysis (unstimulated cells and surface staining)	anti-human CD3 - PE/Cy5	BioLegend	300410	1 in 80
	anti human CD4 - FITC	BioLegend	300538	1 in 25
	anti-human CD8 - BV785	BioLegend	301046	1 in 40
	anti human CD45RA - AlexaFluor700	BioLegend	304120	1 in 40
	anti human CD45RO-PE	BioLegend	304206	1 in 40
Th17 and Tc17 analysis	Fixable viability dye - efluor450	Invitrogen	65-0863-14	1 in 1000
	anti human CD4 - FITC	BioLegend	300538	1 in 20
	anti-human CD8 - PE/Cy7	BioLegend	300914	1 in 40
	anti-human IL17 - PE	BioLegend	512306	1 in 40
Phosphostain (STAT1 and STAT3)	anti human CD4 - FITC	BioLegend	300538	1 in 20
	STAT3 (pY705) - PE	BD Biosciences	612569	1 in 5
	STAT1 (pY701) - Alexa 647	BD Biosciences	612597	1 in 5
NCC overcesion	SI C12A2 Debudence antihedu	Life	DA5 90004	1 in 50
on lymphocytes	(rabbit)	Technologies	PA5-80004	1 IN 50
	Goat anti-rabbit APC	Invitrogen	A-10931	1 in 40
	anti human CD4 - FITC	BioLegend	300538	1 in 25
	anti-human CD8 - PE/Cy7	BioLegend	300914	1 in 40
	anti human CD45RA - AlexaFluor700	BioLegend	304120	1 in 40

	anti human CD45 - FITC	BioLegend	304006	1 in 50
	anti human CD3 - BV711	BioLegend	317328	1 in 50
	anti human CD56 - BV510	BioLegend	318340	1 in 50
	anti human CD19 - PE/Cy7	Invitrogen	25-0199-42	1 in 40
		-		
Calcium flux	Indo-1, AM, cell permeant	Thermo Fisher	11223	1 in 500
	anti-human CD4 - PerCP/Cy5.5	BioLegend	300530	1 in 40
	biotinylated anti-human CD3	BioLegend	317320	10ug per ml
IL23 receptor expression	IL-23 receptor - PE	R&D Systems	FAB14001P	1 in 25
	anti human CD4 - FITC	BioLegend	300538	1 in 20
Monocyte analysis	anti-human CD14 - APC/Cy7	BioLegend	325619	1 in 50
-	anti-human CD16 - FITC	BioLegend	302006	1 in 50
	anti-human TNF - Alexaflour488	BD Biosciences	557722	1 in 40
NK cell analysis	anti human CD45 - FITC	BioLegend	304006	1 in 50
	anti human CD3 - BV711	BioLegend	317328	1 in 50
	anti human CD56 - BV510	BioLegend	318340	1 in 50
	anti human CD16 - PE/Cy7	BioLegend	302016	1 in 40
	anti human IFNg - APC	BioLegend	502512	1 in 40
WESTERN BLOT				
	Rabbit SGK1 polyclonal antibody	Abcam	ab43606	1 in 900
	Mouse GAPDH monoclonal antibody	Abcam	ab8245	1 in 10000
	anti-rabbit HRP	Abcam	ab205718	1 in 3000
	anti-mouse HRP	Abcam	ab205719	1 in 5000

Supplemental Table 10: List of antibodies used