Supplementary information

Single-cell RNA sequencing identifies shared
differentiation paths of mouse thymic innate T cells

Lee et al.

This file contains Supplementary Figures 1-20 and Supplementary Tables 1 and 2.



A
‘ NKT1
NKT2
o Type 1 NKT17
% Type 2 ] ]
<+ Type 17 1 {
Q. DP T | MAIT1
o ] MAIT2
CD44-Alexa 700 1 J MAIT17
I 4
] J \ ‘
0 | \ ‘ Tyd1
£ \ | Tyd2
=5 k2] |
Sl ‘ W] S \ Tyd17
CD44-Alexa 700 8 I L
IFN-y huCD2 (IL-4) IL-17A-BV650
-PE-Texas Red -FITC
C D
NKT2 MAIT2 Tyo2

154.2 14.6| 1254 40.7

S

1838| . 125/ 186 * 153

PLZF
-PE-Texas Red
i
o
] N N
CD44-Alexa 700

E Tyd1 Tyd2 Ty17 F VY1 V86.3"  Vy1+V86.3* Vy4* Vy5*  Vy6*and others
00 S— - - - 100
/AN
80 | N N\ \ 80
N
0\060 0\060
40 40 I
20 N 20 I I I
. (381 0 o | 1 sanl
N SN A X
ARSI RSN m Ty51
Tyd2
H Vy1*V56.3- M Vy1*V56.3* W Vy4* W Ty
Ty817

M Vy5* B Vy6*and others

Supplementary Figure 1. Thymic development of innate T cells. (A) iNKT, MAIT and yd® T subsets gated in
Figure 1A were analyzed for their expression of CD24 and CD44. Dot plots and histograms show representative
results of at least five different experiments. (B and C) Thymocytes were stimulated with PMA/ ionomycin and
indicated subsets gated as in Figure 1A were intracellularly stained with IFN-y and IL-17A or surface stained with
human CD2 (huCD2) in KN2 mice (B). CD24'° PLZF* MAIT cells gated as in Figure 1A were intracellularly stained
with IL-4 (C) For MAIT cell cytokine analysis, 6-9 mice were pooled together. Experiments were repeated at least 3
times. (D) Dot plots show correlation between CD44 and huCD2 expressions in indicated cell types of KN2 mice in
the thymus. (E and F) Tyd1, Tyd2 and Tyd17 cells defined as shown in Figure 1A were analyzed for their usage of
indicated TCRyd chains at embryonic day 18 (E18, n=6), postnatal day 1 (D1, n=4), postnatal day 7 (D7, n=4), 7
week-old mice (7wk, n=3). Bar graphs show mean frequencies of indicated subset. Data were pooled from five
independent experiments. Source data are provided as a Source Data file.
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Supplementary Figure 2. Sorting strategy of yd T cell subsets for bulk and scRNAseq. (A) yd T cells were
enriched from 5 day-old BALB/c thymocytes and stained with indicated markers. Five different subsets were
sorted as shown in table and legend. (B) Dot plots show sorting purity of cells used for bulk-RNAseq. (C) Bulk
RNA-seq FPKM values of markers used in the cell sorting were analyzed after sorting. (D) Single cell
suspensions from thymi of BALB/c mice were enriched with total iINKT, y& T, MAIT cells using MACS (left, pre-
sort) and FACS sorted for single cell analysis (right, post-sort). Dot plots show their sorting purities. Numbers
indicate frequency of cells in adjacent gates.
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Supplementary Figure 3. iNKT and Tyd subsets share transcriptional profiles. (A) Schematic figure depicts
comparison strategy of iNKT and yd T transcripts. Solid arrow represents pairwise comparisons of DEGs between
subsets and dotted line presents numeric comparison of overlapped DEGs across yd T and iNKT cells. (B) Venn-
diagrams present the numeric comparison of overlapped DEGs across iNKT and yd T cells. Bootstrapping analysis with
shuffling of DEGs follows to show the statistical significance of the overlap. (C) Fractions of overlapped DEGs,
calculated by Jaccard index, were compared among iNKT, yd T, Th, ILC subsets. (D) Fractions of overlapped DEGs
were compared among cytokines, receptors, transcription factors (TFs) and other genes. P-values were calculated with
two-sided Fisher-exact test without multiple-test correction. (E) Scatter plots show gene expression ratios (log, of fold-
change) between corresponded subsets across iINKT and yd T cells. ‘All observable’ indicates mouse genes of which
expression values are available in all samples. Cytokines + Receptors + TFs are union set of cytokine, receptor and
transcription factor genes. (F) Volcano plots were generated after the pairwise comparison of indicated subsets. Genes
that are known as DEGs in iNKT subsets were stressed and labeled. (G) Heat maps show expression patterns of
cytokines, receptors and TFs mapped to overlapped differentially expressed genes (DEGs) in iINKT and yd T cells.
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Supplementary Figure 4. Pathways that are distinct or common between y3 T and NKT linages.
Functional enrichment studies were conducted in common, Tyd—specific and NKT-specific DEGs between
type 1 vs. type 2 (1 vs. 2), type 1 vs. type 17 (1 vs. 17) and type 2 and type 17 (2 vs. 17) subsets. Using IPA
analysis, we listed top-20 significantly enriched canonical pathways (P < 0.05, one-tailed hypergeometric test

with multiple-test correction).
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Supplementary Figure 5. Immature Tyd17 cells express RORyt and have unique transcriptional signature.
(A) Single cell suspensions of 7 week old BALB/c thymocytes were enriched with iNKT, MAIT and y& T cells
using MACS beads. Representative dot plots show CD24 and RORyt expression patterns of each cell type.
Results are from at least five independent experiments. Numbers indicate frequencies of cells in adjacent gates.
Data are presented as mean values + SD. Unpaired two-tailed t-tests were used for data analysis. ****P<0.0001.
NS, not significant. Source data are provided as a Source Data file. (B) Single cell suspensions of thymocytes
from RorcCre/6fr ROSA26-LSL-tdTomato mice were enriched with yd T cells and analyzed for tdTomato
expression in each subset. Representative dot plot and histogram are shown (left) and graph shows statistical
analysis of frequencies of tdTomato expressing cells (right, n=5). Results from two independent sets of
experiments are shown. (C) Representative dot plots show Zsgreen expression from CD24* and CD24- RORyt*
thymic y& T cells in Il17ac® ROSA26-LSL-Zsgreen mice. Representative data from three independent
experiments are shown. (D and E) Tyd17i cells were sorted as showed in supplementary figure 3 and analysed
with other y& T subsets. (D) Schematic figure shows how Tyd17i-specific genes are generated from volcano
plots. Tyd17i-specific genes are from the intersection of DEGs overexpressed in Ty®17i compared to other yoT
subsets. (E) Heat map shows cytokine, receptors and transcription factors in Tyd17i-specific genes.
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Supplementary Figure 6. Quality control for scRNA-seq. (A) UMAP plots show all cells before demultiplexing,
which are colored by cell clusters (left), the expression levels of Cd4 and Cd8a (middle) and the presence of
detected TCRs (right). (B) UMAP plots of cells after excluding cluster 11 and 14 from (A), colored by reassigned
cell clusters (left), demultiplexed cell types (right). (C) Bar plot shows the number of cells assigned to iINKT, MAIT,
yd T cells, or unassigned (NA) for each cell cluster. (D) UMAP plots show all assigned cells colored by cell
clusters (left), replicates (center). Bat plot shows fractions of cells by replicates for each cell cluster of iINKT, MAIT,
and yo T cells (right). (E) Violin plots illustrate the number of detected genes (left) and UMIs (right) per cell for
each cell cluster. (F) UMAP plot of yo T cells showing an outlier cluster (cluster 7) which was removed from further
analysis.
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Supplementary Figure 7. Signature gene expression patterns of innate T cells. For each type of innate T
cells, UMAP plots were colored by the signature scores defined by signature gene sets of functional subsets of
yO T cells (A) and iNKT cells (B).
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Supplementary Figure 8. Single cell analysis of iNKT cells. (A) UMAP plot is color-coded for each cell cluster
(left, 1 panel) and signature scores of functional subsets of iINKT cells (right, 4 panels). (B) Dot plot shows the
expression levels and frequencies of indicated genes in each cluster. The size and color of the dot represent the
percentage of cells expressing the marker gene and the relative expression level (Z-score) within a cell cluster,
respectively. (C) UMAP plots are colored by the expression level of indicated genes. (D) Heat map shows geometric
mean of total frequencies of clonotypes that overlap between indicated subsets. (E-F) UMAP plots are colored by
the presence of indiated TCR genes. (G) Bar graph shows percentage of cells expressing non-canonical TCRVa

/Ja and non-oligoclonal TCR chains in each cluster.
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Supplementary Figure 9. Single cell analysis of MAIT cells. (A) UMAP plot is color-coded for each cell cluster
(left, 1 panel). Expression levels of indicated genes were colored in UMAP (right, 12 panels). (B) Dot plot shows the
expression levels and frequencies of indicated genes in each cluster. The size and color of the dot represent the
percentage of cells expressing the marker gene and the relative expression level (Z-score) within a cell cluster,
respectively. (C) Heat map shows geometric mean of total frequencies of clonotypes that overlap between indicated
subsets. (D) UMAP plots are colored by the presence of indicated TCR genes. (E) UMAPs show the presence of
indicated TCRs (top) and graphs show the distribution of frequently used non-canonical TCR Va and Ja genes
(bottom). (F) Bar graph shows percentage of cells expressing non-canonical TCRVa /Ja and non-oligoclonal TCRf
chains in each cluster.
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Supplementary Figure 10. Single cell analysis of yd T cells. (A) UMAP plot is color-coded for each cell cluster
(left, 1 panel) and signature scores of functional subsets of yd T cells (right, 4 panels). (B) Dot plot shows the
expression levels and frequencies of indicated genes in each cluster. The size and color of the dot represent the
percentage of cells expressing the marker gene and the relative expression level (Z-score) within a cell cluster,
respectively. (C) UMAP plots are colored by the expression level of indicated genes. (D) UMAP plots colored by the
presence of indicated TRGV genes. (E) Heat map shows the relative expression of differentially expressed genes
between G6-1 and G6-2 (left). The histograms show the representative expression profiles of indicated markers on
the Vy4* or Vy4- Tyd17 cells of BALB/c thymocytes from three independent experiments (right). (F) Heat map
shows the relative expression of differentially expressed genes between G7-1 and G7-2. (G) Heat map shows
geometric mean of total frequencies of clonotypes that overlap between indicated subsets. (H) Violin plots showing
y0625*, Tyd1, Tyd17i and Tyd17 signature scores for each cell cluster of yd T cells.
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Supplementary Figure 11. Sex difference of MAITs. (A-C) Violin plots showing MAITO (A), MAIT1 (B), and
MAIT17b (C) signature scores defined by Legoux et al. (Ref #13) for each cell cluster of MAITs. (D) UMAP plots
show cells from the first replicate of wild-type scRNA-seq data of Legoux et al. (a mixture of male and female
MAITs), which are colored by signature scores defined by our cell cluster of MAITs (M1 ~ M8), signature gene
sets (MAITO, MAIT1, MAIT17b) of Legoux et al (MAITO, MAIT1 and MAIT17b), and new cell clusters (‘Cluster’).
Low-quality cells with greater than 4% of UMIs assigned to mitochondrial genes were removed. HVGs were
identified using the decomposeVar function of the scran package with FDR < 0.05 and biological variability >
0.05. Clusters were found using the FindClusters function of the Seurat package on the first 50 PCs of HVGs

with resolution = 2.0.
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Supplementary Figure 12. Validation of inferred differentiation trajectories of MAIT and y& T cells. UMAP
plots showing differentiation trajectories of yd T (A) and MAIT cells (B) by Monocle3. Cells were colored by clusters.
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Supplementary Figure 13. Correlation between NKT and MAIT subsets. Graphs show signature scores of each
NKT cluster in each MAIT cluster.
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Supplementary Figure 14. y5824+25- cells give rise to yd24+25* cells in FTOC experiment. y324*25- and y524+25*
cells were sorted from neonatal thymi of B6 mice and cultured in FTOC for 5 days. (A) Dot plots show sorting
scheme and representative sorting purities. (B) Dot plots show the frequency of CD24*CD25* cells among CD24* yd
T cells after FTOC experiments in each group (left). Graph shows the frequencies of CD24*CD25* cells generated
from y3%+*25- (a, n=6) and y5%**25* (b, n=6). Results were pooled from four independent experiments. Numbers
indicate frequencies of cells in adjacent gates. Data are presented as mean values + SD. Unpaired two-tailed t-tests
were used for data analysis. *P<0.05. NS, not significant. Source data are provided as a Source Data file.
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Supplementary Figure 15. MAIT cells are more oligoclonal than iNKT or y& T cells. Graph shows fraction of
cumulative cells repeated more than once from Figure 4C. Table shows statistical analysis (two-sided Kolmogorov-
Smirnov tests).
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Supplementary Figure 16. Ki-67 expression and clonal repeat of MAIT cells. (A) Total thymocytes were
enriched with MAITs and dot plots and histogram shows for their expression of Ki-67 in each stage. Representative
results are from four independent experiments. (B) Bar plots show the ordered number of cells for each clonotype
repeated 2 or more in each replicate of MAIT cells colored by UMAP regions. Each bar represents an individual
clonotype.
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Supplementary Figure 17. Single-cell trajectory analysis of MAIT and y3 T cells. (A-D) Heat map illustrates
gene expression trends of a union of marker genes of each cluster and subtype along differentiation trajectory
towards Tyd1 (A), MAIT1 (B), Tyd17 (C) and MAIT17 (D). The enriched GO terms for each gene cluster separated
by dashed gray lines are listed in the right panel. The S/G2/M cell cycle scores along the pseudotime trajectory,
defined by the Z-score of the mean expression level of S/G2/M cell cycle related genes (Supplementary table 2), are
shown in the graph.
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Supplementary Figure 18. Comparison between canonical and non-canonical MAIT cells. (A) Total 669 non-
canonical and/or non-oligoclonal MAIT TCRs were analyzed and Venn-diagram shows numbers of cells with indicated
TCRs. Graphs show the distribution of non-canonical and/or non-oligoclonal cells in each cluster, and each region of
Venn-diagram can be matched with same cell numbers in the graphs. (B) Box plots show expression of MAITO, MAIT1
and MAIT17b signature genes obtained from Legoux et. al. (Ref #13) in 1892 MAIT cells examined over 2 replicates
with canonical and non-canonical TCRs in each cluster. *P<0.01; NS, non-significant (P > 0.01, two-sided Wilcoxon
rank sum test). Inside the boxplot, the black line represents the median value and the size of the box is determined by
the 25th and 75th percentiles of the data. The length of the whiskers is 1.5 times of IQR(Interquartile range). (C)
Volcano plots showing differential gene expression profile between MAITs with canonical and non-canonical TCRs for
each cell cluster of MAITs. (D) Volcano plots show differential gene expression profiles between MAITs with canonical
TCRs and randomly selected CD4+/CD8+ DP cells (as a potential source of contamination of cells) in each cell cluster
of MAITs. Differentially expressed genes (adjusted P-value < 0.05 ,log fold-change > 1, two-sided Wilcoxon rank sum
test) are highlighted in red (C-D).
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Supplementary Figure 19. Tyd17 cells in WT and Vy4/6 deficient mice. (A) Representative dot plots show Ki-67
expressions on CD24'"% Vy1* V56.3* RORyt* Tyd17 cells from WT (left, n=4) or Vy4/6 KO (right, n=5) mice and
graph shows statistical analysis. Results are pooled from four independent experiments. (B) Representative dot plots
show frequencies of Vy1* V56.3* cells among CD24'ow PLZFhish Tyd2 cells from WT (left, n=5) or Vy4/6 KO (right,
n=7) and graph shows statistical analysis. Representative results pooled from four independents. Numbers indicate
frequencies of cells in adjacent gates. Data are presented as mean values + SD. Unpaired two-tailed t-tests were
used for data analysis. *P<0.05. NS, not significant. Source data are provided as a Source Data file.
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Supplementary Figure 20. NKT1 and NKT17 cells are terminally differentiated population. (A) Total
thymocytes from either from B6 or BALB/c mice were enriched with CD1d tetramer and sorted as NKT1 (Tbx219%+)
and NKT17 (Tbx219- CD4") cells and stained with transcription factors before intrathymic injections. Sorted live
cells were injected into congenic host and analyzed after 7 days. Representative plots show the phenotype of cells
before and after injection of each population. Representative data of 3 independent experiments are shown. (B)
Graph shows statistical analysis of GFP+ cells in donor population (N=3). *, two mice did not contain donor NKT
cells. Source data are provided as a Source Data file.



NKT

MAIT

yo T

Total

Total cells TCR analysis
N1 225 202
N2 210 188
N3 843 769
N4 785 657
N5 871 690
N6 68 22
N7 283 247
Total 3285 2775
M1 532 440
M2 83 48
M3 562 494
M4 154 134
M5 148 137
M6 113 106
M7 231 209
M8 464 324
Total 2287 1892
G1 308 201
G2 334 218
G3 295 184
G4 741 461
G5 267 143
G6-1 155 101
G6-2 74 68
G7-1 417 232
G7-2 76 57
Total 2667 1665
8239 6332

Supplementary Table 1. Number of cells analyzed.




S phase genes

G2/M phase genes

Dnajc2 Dnajc2
Mcm2 Chek1
Mcm3 Ppmld
Mcm4 Brca?
Mki67 Ccnal
Mrella Ccnbl
Msh2 Cdc25a
Pcna Cdc25b
Radl7 Cdk2
Rad51 Nek2
Sumol Npm2
Pesl
Prml
Rad21
Ran
Shcl
Smcla
Stagl
Terfl
Psmg2
Weel

Supplementary Table 2. List of cell cycle related genes.




