Supplementary Information

Tolerance to alkaline ambient pH in *Aspergillus nidulans* depends on the activity of ENA proteins.

Ane Markina-Iñarrairaegui¹, Anja Spielvogel², Oier Etxebeste¹ (0000-0002-9786-6091), Unai Ugalde¹ and Eduardo A. Espeso^{2,*} (0000-0002-5873-6059)

 Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain

Department of Cellular and Molecular Medicine, Centro de Investigaciones
Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, Madrid 28040, Spain

* Correspondence to: eespeso@cib.csic.es.

Running title: Role of P-type ATPases in alkaline pH response.

Conserved motifs for ENA proteins, coordinates as in ScEna1p

TGES¹⁸³ (A domain)
DKTGT³⁹³ (D = Asp residue phosphorylation)
* F⁵³⁷, K⁵⁴², K⁵⁶¹ (nucleotide binding)
DPPR⁶⁵²
TGD⁶⁷⁵
DGVND⁷⁶¹ (Mg²⁺ binding domain)

Supplementary Figure 1. Amino acid sequence analysis of An-ENA like ATPases. (A) Sequence alignments of *S. cerevisiae* Ena1p and *A. nidulans* predicted full-length ENA ATPases. Clustal method was used for the comparison. Boxes describe conserved functional regions detailed in reference¹ and the red rectangles delimit the position of the putative transmembrane regions predicted with Hidden Markov Models (TMHMM and HMMTOP). Protein accession numbers are reported as follows: *Saccharomyces cerevisiae* Ena1p (NP_010325), *Aspergillus nidulans* EnaA (CBF71157), EnaB (CBF85251) and EnaC (CBF79858).

Supplementary Figure 2. Classification of ATPases in *A. nidulans* and distribution of functional domains. (A) Phylogenetic tree corresponding to 22 ATPases of *A. nidulans*. The tree was generated using Mega (version 7.0)² and the Neighbor-Joining method, with a bootstrap test value of 10,000 replicates. EnaA, EnaB and EnaC group to the same clade of the tree, next to PMR1-like proteins. (B) Representation of domain organization and extension of EnaA, EnaB and EnaC according to Pfam, AspGD and FungiDB databases. Colours keyed to cation-ATPase-N (pfam00690) domain (green), E1-E2_ATPase (pfam00122) domain (red), Hydrolase, haloacid dehalogenase-like hydrolase (HAD) (COG4087. pfam00702) domain (blue), and Cation_ATPase_C (pfam00689) domain (yellow).

Supplementary Figure 3. Colocalization of EnaB-GFP and nuclei. Images showing the localization of EnaB-GFP and histone H1-mRFP in cells of diploid strain DIP5. Red fluorescence channel is shown on top left image showing a hypha with 6 nuclei. Top right is shown the green fluorescence channel (EnaB-GFP) and the ovoid structures are indicated with white arrowheads. Down-right is the merged image of red and green channels (magenta nuclei/histone H1 and green EnaB) showing the localization of EnaB at the periphery of nuclei. Down left is the Nomarsky image of the hypha and the scale bar representing 5 μ m.

Supplementary Table 1. List of A. nidulans strains used in this work

Strain	Genotype	Source
MAD2446	pyrG89; wA4; inoB2, pyroA4; hho::mCh::pyroA ;(myc)3-pacC(pacC900); veA1	Madrid's collection
MAD2173	pyrG89 argB2 pyroA4Dnku::argB sec63::gfp::pyrGAf,	3
MAD1425	pyrG89; argB2; pyroA4, nkuA∆::argB; veA1	TNO02A3 ⁴
MAD1425+ /BD377	$pyrG^{An}$; $argB2$; $pyroA4$, $nkuA\Delta$:: $argB$; $veA1$	5
MAD1427	$pyrG89$, $pabaA1$; $argB2$; $nkuA\Delta$:: $argB$; $veA1$, $riboB2$	TNO02A25 ⁴
MAD2732	$pyrG^{An}$, pabaA1; argB2; nkuA Δ ::argB; veA1, riboB2	5
MAD2731	$pyrG89$, $pabaA1$; $argB2$; $nkuA\Delta$:: $argB$; $veA1$, $riboB^{An}$	5
BD604	<i>pyrG89, enaA</i> ∆:: <i>pyrG^{Af}; argB2; pyroA4, nkuA</i> ∆:: <i>argB; veA1</i>	This work
BD487/BER53- B	$pabaA1; argB2; nkuA\Delta::argB; enaB\Delta::riboB^{Af}; veA1, riboB2$	This work
BD486/BER55- B	pyrG89, pabaA1; argB2; enaC Δ ::pyrG ^{Af} , Δ nkuA::argB; veA1, riboB ^{An}	This work
BD488/BER54	pyrG89, pabaA1, enaA∆::pyrG ^{Af} ; argB2; ∆nkuA::argB; enaB∆::riboB ^{Af} ; veA1, riboB2	This work
BD489/BER56	pyrG89, pabaA1; argB2; enaC∆::pyrG ^{Af} , ∆nkuA::argB; enaB∆::riboB ^{Af} ; veA1, riboB2	This work
BD625	pyrG89, enaA Δ ::pyrG ^{Af} ; argB2; enaC Δ ::pyroA ^{Af} , pyroA4, nkuA Δ ::argB; veA1	This work
BD575	pyrG89, enaA Δ ::pyrG ^{Af} ; pyroA4, nkuA Δ ::argB; enaB Δ ::riboB ^{Af} ; inoB2; wA4, argB2	This work
BD612	pyrG89, enaA Δ ::pyrG ^{Af} ; argB2; enaC Δ ::pyrG ^{Af} , pyroA4, nkuA Δ ::argB; enaB Δ ::riboB ^{Af} ; veA1	This work
MAD305	$pabaA1; pacC^{c}14$	Madrid's collection
MAD1074	inoB2; palH72	Madrid's collection
MAD4097 /HHF27b	sltAA::riboB ^f	6
MAD25ED	pyrG89, enaA::gfp::pyrG ^{Af} ; pyroA4, nkuA::bar	This work
MAD26ED	pyrG89; pyroA4, nkuA1::bar; enaB::gfp::pyrG ^{Af}	This work
MAD1739	$pyrG^{An}$; $pyroA4$, $nkuA\Delta$::bar	Madrid's collection
MAD3042	pyrG89; pyroA4, nkuA∆::bar, [pyroA+::gpdA ^{mini} ::enaA]	This work
MAD3043	pyrG89; pyroA4, nkuA∆::bar, [pyroA+::gpdA ^{mini} ::enaA]x2	This work
MAD1865	pabaA1; pyroA4; inoB2, glrA1, palA1	Madrid's collection
I25	pabaA1;[pyroA+::gpdA ^{mini} ::enaA]; palA1	This work
I4	pabaA1; [pyroA+::gpdA ^{mini} ::enaA]x2; palA1	This work
DIP5	pyrG89; pyroA4, nkuA∆::bar; enaB::gfp::pyrG ^{Af} /	This work

pabaA1, hhoA::mRFP::pyrG ^{Af}
--

Supplementary Table 2. Oligonucleotides used in this work

Name	Sequence (5'-3')	Aim	Source
EnaA-gsp1	CGGAAAGACCTTACCATGATTCGC	EnaA 5´ UTR	This work
EnaA-gsp2	CTGACGTTACTACTATGGTGTC	EnaA 5´ UTR	This work
EnaA-gsp3	GCACTCCGACGGAAAGCTTGCTACC	EnaA 3´ UTR	This work
EnaA-gsp4	CAACCACAACCTCGATACTTCGC	EnaA 3´ UTR	This work
EnaA-gsp5	TCTACGATCCGCCTAGGCCTGAGACAG	EnaA 3' end ORF	This work
	С		
EnaA-gsp6	AACGATATTCTGTTCCGCCTTGAAGTC	EnaA 3' end ORF	This work
	TCC		
EnaA-	GACACCATAGTAGTAACGTCAGACCGG	pyrG ^{Af} cassette	This work
gsp2*	TCGCCTCAAACAATGCTCT		
EnaA-	GGTAGCAAGCTTTCCGTCGGAGTGCGT	pyrG ^{Af} /gfp::pyrG ^{Af}	This work
gsp3*	CTGAGAGGAGGCACTGATGCG	cassette	
EnaA-	GGAGACTTCAAGGCGGAACAGAATAT	gfp::pyrG ^{Af} cassette	This work
gsp6*	CGTTGGAGCTGGTGCAGGCGCTGGAGC		
	С		
EnaB-gsp1	CAACAACCAGCTCAGCCGTTTGC	EnaB 5´ UTR	This work
EnaB-gsp2	TGACAACTGAGATGATAAGCCCG	EnaB 5´ UTR	This work
EnaB-gsp3	CGTCTGCTTTCCCTCGCTTAG	EnaB 3´ UTR	This work
EnaB-gsp4	AGCTAGCCCTCCAAGCCAACAC	EnaB 3´ UTR	This work
EnaB-gsp5	AACTCATCGGCTCCTGTGGC	EnaB 3´ end ORF	This work
EnaB-gsp6	GGCATCCTGAGGGCCCCTGCTTACCTC	EnaB 3´ end ORF	This work
EnaB-	CGGGCTTATCATCTCAGTTGTCAACCG	riboB ^{Aj} cassette	This work
gsp2*	GTCGCCTCAAACAATGCTCT		
EnaB-	CTAAGCGAGGGAAAGCAGACGGTCTG	riboB ^{Aj} /gfp::pyrG ^{Aj}	This work
gsp3*	AGAGGAGGCACTGATGCG	cassette	
EnaB-	GAGGTAAGCAGGGGGCCCTCAGGATGC	gfp::pyrG ^A cassette	This work
gsp6*	CGGAGCTGGTGCAGGCGCTGGAGCC		
EnaC-gsp1	GGAAAGAG1GCGGGGC	EnaC 5' UTR (enaC-	This work
E C O		PP1)	
EnaC-gsp2	CATICAATIGGAGIGGAGGIG	EnaC 5' UTR (enaC-	This work
En of com?		PP2)	This most
EnaC-gsp3		EnaC 3 UIR	This work
EnaC-gsp4		Enac 5 UTR $riho D^{Af}$ (norm C^{Af} accounts	This work
EnaC-		(ano C SMD1)	This work
gsp2*		(enal-SMP1)	This most
EnaC-		(ano C SMD2)	This work
gsp5* DiboAnid		(ellaC-SIVIP2)	This work
KIDOAIIId	CCTAOCAOTOOTTOAATAOT	A. malification	THIS WORK
RiboAnid	GATAAGTGTTGGTGGAAGTG	A nidulans AN0670.2	This work
nrom fw	GATAAOTOTTOOTOGAAOTO	A. multication	THIS WOLK
FnaA		Meiotic recombination	This work
sense		confirmation	THIS WOLK
Ena A_antie	GCTCGAAGGTGCGCG	Meiotic recombination	This work
Enary-anus		confirmation	THIS WOLK

EnaB- sense	GGCTTGACCTTCGAATCTGC	Meiotic recombination confirmation	This work
EnaB-antis	CTTACCAACAGGCCACACTCC	Meiotic recombination confirmation	This work
EnaC- sense	CGCTCCTCCTGCAATCC	Meiotic recombination confirmation	This work
EnaC-antis	CGAGCGTGTAGGCAGAGG	Meiotic recombination confirmation	This work
An6642 fw	TCAACGTCGGAACACCTCTT	<i>enaA</i> forward primer for probe	7
An6642 rev	TTGACACCGTCACCAGTCAT A	<i>enaA</i> reverse primer for probe	7
An1628 fw	TCGTCGTTGCAGGTGCTGAT	<i>enaB</i> forward primer for probe	7
An1628 rev	TATTGGTCACCGCTCCAAGG	<i>enaB</i> reverse primer for probe	7
An10982 fw	AGGACATCCTCTCGCTACAG	<i>enaC</i> forward primer for probe	7
An10982 rev	TCCTTCTCCAGCCAGTCTCT	<i>enaC</i> reverse primer for probe	7
msnA fw	CGACCATCATCTAATGTGAGTGC	<i>msnA</i> forward primer for probe	This work
msnA rev	GAGACCAGTGTGGATGTCGAAGC	<i>msnA</i> reverse primer for probe	This work
EnaAup	CG <u>GAATTC</u> ATGGGAGAGGAGACCGAA C	<i>enaA</i> forward primer with EcoRI site for <i>gpda::enaA</i> construction	This work
EnaAdown	CG <u>GAATTC</u> TCAAACGATATTCTGTTCC	<i>enaA</i> reverse primer with EcoRI site for <i>gpda::enaA</i> construction	This work

Supplementary Table 3. List of plasmids used in this work

Plasmid ID	Main features	Reference
Madrid's		
collection		
p1439	Plasmid pFNO3 containing the insert	8
	GA_5 - GFP - $pyrG^{Af}$	
p1547	pBluescriptSK(+) derivative containing A	Gift from B. Oakley
	<i>fumigatus pyroA</i> gene	
p1548	pBluescriptSK(+) derivative containing A	Gift from B. Oakley
	fumigatus riboB gene	
p1660	Expression vector, harbouring gpdA mini	9
_	promoter, used for moderate expression	
	of target genes.	
	Directed integration to <i>pyroA4</i> mutant	
	allele.	

References

- 1. Palmgren, M.G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243-266 (2011).
- 2. Kumar, S., Stecher, G., & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol. Evol. **33**, 1870-1874 (2016).
- 3. Markina-Iñarrairaegui, A., Pantazopoulou, A., Espeso, E.A., & Peñalva, M.A. The *Aspergillus nidulans* peripheral ER: disorganization by ER stress and persistence during mitosis. PLoS. One. **8**, e67154 (2013).
- 4. Nayak, T., *et al.* A versatile and efficient gene-targeting system for *Aspergillus nidulans*. Genetics **172**, 1557-1566 (2006).
- 5. Markina-Iñarrairaegui, A., *et al.* Nuclear transporters in a multinucleated organism: functional and localization analyses in *Aspergillus nidulans*. Mol. Biol. Cell **22**, 3874-3886 (2011).
- 6. Findon, H., *et al.* Analysis of a novel calcium auxotrophy in *Aspergillus nidulans*. Fungal. Genet. Biol. **47**, 647-655 (2010).
- 7. Spielvogel, A., *et al.* Two zinc finger transcription factors, CrzA and SltA, are involved in cation homoeostasis and detoxification in *Aspergillus nidulans*. Biochem. J. **414**, 419-429 (2008).
- 8. Yang, L., *et al.* Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in *Aspergillus nidulans*. Eukaryot. Cell **3**, 1359-1362 (2004).
- 9. Pantazopoulou, A. & Peñalva, M.A. Organization and dynamics of the *Aspergillus nidulans* Golgi during apical extension and mitosis. Mol. Biol. Cell **20**, 4335-4347 (2009).

Full size images for hybridations of wild type samples filter See Figure 3 panel A and legend for lanes information.

Full size images for hybridations of $enaA\Delta$ samples filter See Figure 3 panel C and legend for lanes information.

Full size images for hybridations of $enaB\Delta$ samples filter See Figure 3 panel D and legend for lanes information.

Full size images for hybridations of *palH72* samples filter See Figure 4 panel B and legend for lanes information.

Full size images for hybridations of $pacC^{c}14$ samples filter See Figure 4 panel C and legend for lanes information.

Full size images for hybridations of $sltA\Delta$ samples filter See Figure 4 panel D and legend for lanes information.

Full size images for MW markers on filter and immunodetection of GFP and actin in protein extracts from EnaA and EnaB-GFP expressing strains. See Figure 5 panel A and legend for lanes information.

Filter with prestained MWs

anti-GFP

antiGFP + anti-actin Full size images for MW markers on filter and immunodetection of GFP and actin in protein extracts from EnaA and EnaB-GFP expressing strains. See Figure 5 panel B and legend for lanes information.

Filter with prestained MWs

anti-GFP

antiGFP + anti-actin Full size images for hybridations of *gpdA* driven *enaA-gfp* chimera See Figure 7 panels A and B, and legend for lanes information.

rRNA

Panel WT background

Panel B, *palA1* background

rRNA

probe enaA