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Supplemental Figure 1: Overview of RNA-seq data generated and used in this study.
(A) Table displaying library type (poly (A) vs ribo-minus) and number of uniquely mapped reads
(Heraud-Farlow et al. 2017; Bajad et al. 2020).

(B) Bar plot summarizing number of uniquely mapped reads across different ADAR and ADARB1
deficient tissues.
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Supplemental Figure 2: Mean editing levels of sites detected in different tissues of wildtype,
Adar knockout and Adarbl knockout animals. (A) Cortex (WT vs Adar KO); (B) Cortex (WT vs

Adarbl KO); (C) Bone Marrow (WT vs Adar KO) and (D) Liver (WT vs Adar KO). Mean editing
levels for every site in wildtype sample (black) and knockout sample (red) are shown. Sites have
been plotted in increasing order of difference of editing levels between wildtype and mutant.
Editing sites that cluster along the y-axis show an increase in mean editing levels in the mutant
whereas those that cluster near the x-axis, are sites that show reduction in editing levels in the

mutant.
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Supplemental Figure 3: Local splicing variations. (A, B) The term ‘local splicing variation’ (LSV)
is used to describe simple and complex alternative splicing patterns. When identifying LSVs,
MAJIQ mostly relies on detecting differences in ‘junction reads’ i.e. reads spanning two or more
exons (indicated by arcs). Exons are depicted as grey bars. Red arcs indicate ‘alternative
splicing’ whereas blue arcs indicate ‘constitutive splicing’. (A) Two examples for canonical
alternative splicing events are given. (B) Not all splicing events can be classified using
established terminology. An example for a more complex LSV is given. The concept of LSV
described in more detail in the original publication (Vaquero-Garcia et al. 2016) or online

(https://maijig.biociphers.org/).
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Supplemental Figure 4: Alternative splicing events detected by different methods. Venn
diagram showing the overlap for the number of alternatively spliced genes in the Adar knockout
cortex for DEXSeq and MAJIQ.
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Supplemental Figure 5: gRT-PCR validations of differential exon/intron usage events predicted
by DEXSeq. (A) All 29 tested targets out of which targets enclosed under “correct trend” were

positively validated in all three replicates for Adarb1-Zxdc (n=3) and in at least two replicates for

Adat2-Pinl (n=3). Negative validations are classified as wrong trend. (B) Validation of 4 targets
which harbor differential editing sites within the coordinates of differential exon/intron usage
event. Eloc and Ezh1 are validated in at least two replicates.
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Supplemental Figure 6: gRT-PCR validations of differential exon/intron usage events in the
Adarbl knockout cortex. Five differential splicing events predicted either by MAJIQ or DEXseq
were tested using gPCR. The trend was correctly predicted for all genes except Romol. n=3.
+=correct trend. *: p-value < 0.05.
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Supplemental Figure 7: Adarbl-dependent editing sites exhibiting reduced editing upon Adar
knockout. All cortex editing sites covered by at least 10 reads in all samples were filtered
according to the following criteria: editing in wildtype > 10%, no editing in the Adarbl ko, editing
level in the Adar ko > than 0%, and less than 50% editing in the Adar ko as compared to the
wildtype. The editing level for the filtered sites was plotted for all individual samples (circle: Adar,
triangle: Adarbl), average editing levels (large crosses). The color code is depicted on the right
site of the figure (blue: wildtype, green Adarbl ko, red: Adar ko). Chromosome coordinates

(mm210) for all sites are given above the individual plots.
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Supplemental Figure 8: Genomic annotation (Exon, Intergenic, Intron, UTR) for editing sites

identified in individual tissues.



MAJIQ
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Supplemental Figure 9: Comparison of local splicing variations across different tissues. (A)
Venn diagram comparing LSV coordinates identified by MAJIQ in ADAR-deficient tissues and
Venn diagram comparing differential exon/intron usage coordinates identified in ADAR-deficient
tissues identified using DEXSeq. (B) Summary of adjusted p-values of targets selected for
validations of differential exon/intron usage events predicted by DEXSeq in Adar knockout
tissues.
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Supplemental Figure 9: gRT-PCR validation of LSVs. (C) Histogram showing gRT-PCR
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validations of LSVs in Atp5b, Egfr, Fgd1l and Ttc19. Data shown is mean inclusion to exclusion
ratio in Adar KO (+/- SD). Statistical test performed with Student’s t-test (* p < 0.05; **: p < 0.01;
***: p < 0.001) (D) Histogram showing differential expression analysis of Atp5b, Egfr, Fgdl and
Ttc19 as predicted by DESeq2. Data shown is mean transcripts per million (TPM) values
inclusion to exclusion ratio in Adar KO (+/- SD). None of these genes were found to be

differentially expressed.
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Supplemental Figure 10: Local secondary structure for two editing sites showing a strong
correlation between editing and splicing. The secondary structures have been generated using
the tool RNAfold in conjunction with the visualization tool forna (Lorenz et al. 2011; Kerpedjiev et
al. 2015). Yellow=exon, no color=intron, red=editing site.




MaxEntScore - 5'ss MaxEntScore - 3'ss

Supplemental Figure 11: Box plots depicting the change in MaxEnt scores caused by editing of

sites. The A(G-A) score is given by position around the 5’ and 3’ splice sites. Each editing site is
marked as a circle.
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Supplemental Figure 12: Validation of splicing changes predicted by the MaxEnt score. Five
editing sites (A) predicted to change pre-mRNA splicing by differences in the MaxEnt score
(AMaxEnt) were randomly chosen and cloned into a mammalian expression vector in a
heterologous context. Using site-directed mutagenesis pre-edited versions of the constructs were
done (G). The constructs were transfected into Hek293T cells. Subsequently, RNA was isolated,
reverse transcribed and PCR-amplified using exon-specific primers. The signhals corresponding
to pre-mRNA or mRNA are indicated next to each individual panel. Chromosome coordinates
(mm10 are indicated on top of each panel. M=size standard.
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Supplemental Figure 13: Volcano plot showing differential circRNA expression in Adar WT and
Adar KO bone marrow (A) and liver (B) determined using edgeR. Top 10 significant circRNAs
events in both datasets are highlighted in red (C) Comparison of average host gene expression
of genes that generate significantly different circRNAs (p < 0.05) between WT and Adar-KO vs.
non-significant circRNAs (p > 0.05). (D) Histogram showing overlay of circRNAs with their host
genes that were found to have a differential exon/intron usage by DEXSeq in bone marrow and

liver. Circular RNAs are binned by nucleotide distance within the DEXSeq gene.
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Supplemental Figure 14: The impact of inverted SINE elements and intron length on circRNA
expression. (A-F) The distance between circRNAs detectable in bone marrow or liver
transcriptomic data to (A-C) the next paired SINE elements or (D-F) the next flanking exon was
identified. Subsequently, the distance was plotted for (A-C) all circRNA/SINE elements or (D-F)
all circRNA/flanking exons according to circRNA expression status (differentially expressed in
Adar ko mice or total number). NS: not significant, **; p-value < 0.01, ***: p-value < 0.001.




Supplemental Materials and Methods

Minigene constructs to validate the effect of editing on splicing as predicted by AMaxEnt
scores

The DNA sequences encompassing the 5’splice site and the surrounding un-edited sequence
were ordered from Twist Bioscience (see Supplemental Table 8 for sequences).
Subsequently, the DNAs were cloned into the plasmid pcDNA3.1-Gabra3-AdML++ using the
restriction enzymes EcoRl and BamHI thereby removing the Gabra3 insert (Licht et al. 2016).
Using site-directed mutagenesis pre-edited versions of the plasmids were constructed
(Primers for site-directed mutagenesis can be found in Supplemental Table 8). Both plasmid
versions were transfected into Hek293 cells using PEl reagent as previously described (Licht
et al. 2019). One day after transfection, RNA was isolated using a homemade ‘Trizol’ reagent
followed by DNAase | (New England Biolabs, #M0303) digestion according to the
manufacturer’s instructions. Reverse transcription was done with 1 ug total RNA using M-
MulLV Reverse Transcriptase (New England Biolabs, #M0253S) and random hexamers
according to the manufacturer’s instructions. Subsequently, 1/20 of the cDNA was PCR
amplified using OneTaq Mix (New England Biolabs, #M0482L) with standard conditions and
28 PCR cycles. PCR reactions were separated on a 1.5% agarose gel, stained with ethidium
bromide, and imaged.
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