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SUPPLEMENTAL METHODS 

The methods used in this study are described below in the following order: (1) in vitro data 
collection; (2) construction of effective connectivity networks; and (3) quantification of neural 
computation and related information measures. 

In vitro data collection 

All procedures were performed in strict accordance with guidelines from the National Institutes of 
Health, and approved by the Animal Care and Use Committees of Indiana University and the 
University of California, Santa Cruz. 

To study the relationship between neural computation and topological measures of networks of 
spiking neurons, we analyzed data collected in vitro. Data were spontaneously spiking organotypic 
cultures of mouse somatosensory cortex obtained from postnatal Day 6 to 7 Black 6 mouse pups 
(RRID:Charles_River:24101632, Harlan) following methods described by Tang et al. (2008) & 
Ito et al. (2014). Spontaneous (as opposed to stimulus-driven) spiking activity in the cultures was 
recorded at a high temporal resolution of 50 µs, between 2 and 4 weeks after culture preparation, 
using a 512-microelectrode array (Litke et al., 2004). Array electrodes were flat, 5 µm in diameter 
and arranged in a triangular lattice with an interelectrode distance of 60 µm. This spacing means 
that the spiking of most cells is picked up by multiple sites and there are few gaps where cells are 
too far from electrodes to be recorded. The full array allowed for a total recording area of 
approximately 0.9 mm by 1.9 mm. This preparation and recording method enabled the isolation of 
large numbers of neurons (a median of 310 cells per recording in 25 hour-long recordings) at high 
temporal resolution, beyond what can currently be done in any in vivo setup. Crucially, the 
temporal resolution of this method was small enough to resolve synaptic delays typically found in 
cortex (Mason et al., 1991; Swadlow, 1994).  

Once the data were collected, spikes were sorted using a PCA approach based on waveforms 
detected at seven adjacent electrodes (Ito et al., 2014; Litke et al., 2004; Timme et al., 2014). This 
process yielded a single set of spike times for each isolated neuron. Neurons that spiked fewer than 
100 spikes during the hour long recording were removed from the analysis. Spike trains were then 
used to build networks.  

Effective connectivity network construction 

Because neural computation is fundamentally a dynamic process, we focused on examining 
networks of effective connectivity. In these networks, connections represent a predictive 
relationship between the firing of two different neurons. Note, effective connectivity differs from 
structural connectivity (synapses or gap junctions between neurons) and functional connectivity 
(e.g., cross-correlations between neuronal time series). Here, effective connections represent 
directed information transfer between neurons.  

Networks of effective connectivity, representing global activity in recordings, were constructed 
following methods described previously (Timme et al. 2014 & 2016) using a measure from 
information theory known as transfer entropy (TE; Schreiber, 2000). TE was selected for its ability 



to detect nonlinear interactions and deal with discrete data, such as spike trains. To capture neuron 
interactions at timescales relevant to synaptic transmission (1-14 ms; Mason et al., 1991; Swadlow, 
1994), multiple windows are used to improve the sensitivity to functional interactions across these 
delays. Spiking data was binned at three logarithmically-spaced bin sizes (1, 1.6 and 3.5 ms) and 
TE was computed at delays (0-3 bins, for bins of size 1 and 1-4 bins for bins of size 1.6 and 3.5 
ms) corresponding to synaptic delays, as in Timme et al. (2014, 2016). Thus, we computed TE at 
three timescales, 0.05–3 ms, 1.6–6.4 ms and 3.5–14 ms. Timescales were purposefully designed 
to be overlapping so that no interactions were neglected. See Supplemental Figure 1 for an 
overview of the binning structure used in TE calculations. To consider extra-synaptic interactions, 
we computed additional networks with bin sizes 7.5, 16.15, 34.8, 75, 161.6, 348.1, and 750 ms. 
With delays of 1-4 bins, these networks represent timescales of 7.5-30 ms, 16.15-64.6 ms, 34.8-
139.2 ms, 75-300 ms, 161.6-646.6 ms, 348.1-1392.4 ms, and 750-3000 ms (Supplemental Table 
1).  
 
Timescale Bin size 

(ms) 
Delay window 
(ms) 

Delay window 
(bins) 

Timescale Delay 
(~ms) 

1 1 0.05–3 0–3 3 

2 1.6 1.6–6.4 1–4 5 

3 3.5 3.5–14 1–4 11 

4 7.5 7.5–30 1–4 23 

5 16.15 16.15–64.6 1–4 48 

6 34.8 34.8–139.2 1–4 104 

7 75 75–300 1–4 225 

8 161.6 161.6–646.4 1–4 485 

9 348.1 348.1–1392.4 1–4 1044 

10 750 750–3000 1–4 2250 
 
Supplemental Table 1. Timescales. Bin sizes and delays were chosen to logarithmically span a 
broad range of neurologically relevant time scales. Timescales were somewhat overlapping in 
order to ensure that all interactions were captured. In addition, timescales beyond 1 used delays in 
order to prevent short timescale interactions from influencing long timescale dynamics. Values in 
the far right column were used to refer to timescales throughout the paper in an abbreviated 
fashion. For additional information about the binning structure, see Supplemental Figure 1. 
 
TE quantifies an effective connection from neuron J to neuron I by measuring how much 
information the past state of the neuron J time series (𝐽"#$ ) produces regarding the current state of 
the neuron I time series (𝐼"  ), beyond what is provided by the past state of the neuron I time series 
(𝐼"#$). Here, time series are binary spike trains for neurons I and J, containing 0 for time bins in 



which the neuron did not spike and 1 for time bins in which it did spike. Generally, the TE from 
neuron J to neuron I is computed as:  
 

𝑇𝐸(	→	+ = 𝑝 𝑖", 𝑖"#$, 𝑗"#$ log
𝑝(𝑖"|	𝑖"#$, 𝑗"#$)
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The probabilities in Eqn. 1 are computed by counting the number of occurrences of all possible 
combinations of spiking and not spiking in the 𝑖", 𝑖"#$ and 𝑗"#$ time bins (of the 𝐼", 𝐼"#$ and 𝐽"#$ 
time series) for all bins making up the hour-long recording. 
 
Because we wanted to consider interactions at various timescales associated with synaptic and 
extra-synaptic transmission, we included a delay between the past and future states of the neurons 
so that 𝑖"#$ became 𝑖"#< and 𝑗"#$ became 𝑗"#<. Additionally, in order to ensure overlapping 
timescales, we combined the 𝑖"#< and 𝑗"#< bins with their previous time bins, such that a spike in 
either or both time bins corresponded to a state of 1 while no spikes in either time bin corresponded 
to a state of 0 (see Supplemental Figure 1 for binning structure). Denoting these new bins as 	𝑖"#<=  
and 	𝑗"#<=  gives a slightly different form for TE: 
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Supplemental Figure 1. Overview of time series binning structure used in transfer entropy 
calculations. Transfer entropy was used to quantify a directed, functional connection from neuron 
J to neuron I which represents how well the current state (t) of neuron I can be predicted by the 
past state (’t-d) of neuron J, beyond what is known from the past state of neuron I itself. Three 
synaptic timescales were considered, each with corresponding delays (d). These timescales 
considered transfer entropy from 0.05—3 ms, 1.6—6.4 ms, and 3.5—14 ms.  
 



To cast TE in terms of the percentage of the receiver neuron’s capacity that can be accounted for 
by the transmitting neuron, rather than it representing the amount of information being transmitted 
from transmitter to receiver, we normalized TE by the entropy of the receiver neuron via: 

𝑇𝐸ABCD 𝑑 (	→	+ = 	
𝑇𝐸 𝑑 (	→	+

− 𝑝(𝑖") log	( 𝑝(𝑖"))78
 (3) 

Computing (normalized) TE in this way between all pairs of binned neuronal time series results in 
a time-scale dependent, weighted, directed network. Networks are weighted because some pairs 
of neurons fire more frequently and reliably at certain delays than others, and they are directed 
because a predictive, statistical relationship that exists from neuron J to neuron I, may not exist 
from neuron I to neuron J. Each element 𝑎7;  in the TE matrix is the TE value from the 𝑖"G to the 
𝑗"G neuron. TE values of zero denote the absence of an effective connection between the two 
neurons, while TE values greater than zero represent the weighted strength of the effective 
connection between the two neurons. 
 
To determine the significance of network connections (TE values), TE values were computed for 
5000 pairs of jittered spike trains. Spike trains were jittered by randomly adjusting the timing of 
each spike by a small amount proportional to the timescale being examined. This preserved the 
overall firing of each neuron, as well as the longer timescale dynamics, but destroyed the precise 
spike timing between neurons. Only spike trains of source neurons were jittered in order to 
preserve the auto-prediction in the target neuron. Spike trains were jittered according to a 
uniform distribution with a width of seven bins centered on the observed location of each spike. 
This procedure is discussed in more detail in Timme et al. 2014. TE values which were larger 
than 99.9% of jittered values were considered significant, corresponding to an alpha value of 
0.001. Computing significant, normalized TE values for 25 recordings at ten timescales resulted 
in 250 full networks.  
 
An important consideration in the calculation of our TE values, which includes a delay in the 
past of the receiver, is that we may be overestimating TE and increasing our odds for detecting 
false positives (Wibral et al., 2013). Importantly, we control for the increased risk of false-
positives by using an alpha-level of 0.001. However, the potential overestimation of TE comes 
from more variance being attributed to the sender neurons than to the receiver neuron itself. 
Despite the advantages of the Wibral et al. method, which does not include a delay in the 
receiver past, we chose the current method in order to isolate interactions at separate timescales. 
It is possible that our choice to do so may have impacted the results of our non-normalized 
analysis of synergy with respect to mutual information (see Supplemental Results below). The 
non-normalized analysis resulted in ever-increasing information values across timescales, as 
delays lengthen. Yet, we do not observe this in our normalized results. Thus, the normalization 
of these values by the entropy of the receiver appears to prevent the delay confound from having 
a runaway effect. In addition, the normalization serves to enable direct comparison across 
timescales.  
 
 
To be confident that our timescales captured the peak of information processing in our networks, 
we calculated TE at delays other those analyzed here for two representative networks. First, spike 



trains were binned at 1 ms. Then TE was calculated at multiple delays ranging from 0 to 501 ms, 
in steps of 3 ms, for all existing pairs of significant connections in the network. We found that TE 
tended to peak in the 1-14 ms delay range for most connections (Supplemental Figure 2). Across 
networks, 87.3% of pairs, on average, had a peak of TE between 1 and 14 ms. 
 

 
 
Supplemental Figure 2. TE peaks between 1-14 ms. Mean distribution of TE over time for all 
connections from two representative networks. Left: The black line shows the mean TE over all 
connections from two representative networks. The shaded region shows the 95% confidence 
interval. The vertical dashed red line indicates the upper bound of the synaptic timescales.  Across 
connections, the peak TE occurs below this bound at short latencies. Right: Histogram of the delay 
to the maximum TE over connections. The height of each bar shows the proportion of connections 
for which the peak TE was found to occur at the delay indicated along the x-axis. Most connections 
had max TE at short delays as shown in the inset panel which zooms in to the first 50 ms of the x-
axis. These plots show that most connections had a peak TE at less than 14 ms. 
 
Quantification of multivariate transfer entropy, redundancy, and synergy 
 
Computation by neurons receiving inputs from two other neurons in these networks was quantified 
following the partial information decomposition (PID) method from Williams and Beer (2011). 
The PID allows multivariate TE (mvTE) to be separated into distinct information components, one 
of which is a measure of neural computation termed synergy. The general form of the 
decomposition of multivariate TE between three neuronal time series, with two transmitter 
neurons, J and K, each sending a single input to one receiver neuron, I, can be expressed as:  

𝑇𝐸 𝐽, 𝐾 → 𝐼 = 	Synergy 𝐽, 𝐾 → 𝐼 + 	Unique 𝐾; 𝐽 → 𝐼 + 
Unique 𝐽; 𝐾 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (4) 

where 𝐽, 𝐾  is a vector of the combined J and K time series (Supplemental Figure 3). Similarly, 
we can express the decomposition of bivariate TE from neuron J to I and neuron K to I as: 
 

𝑇𝐸 𝐽 → 𝐼 = 	Unique 𝐾; 𝐽 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (5) 
  



and 
 

𝑇𝐸 𝐾 → 𝐼 = 	Unique 𝐽; 𝐾 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (6) 
 
In Equations 4-6, all terms are quantified in units of bits (see Williams and Beer 2010, 2011 for a 
full description of these terms). The unique terms correspond to the information provided by that 
time series alone (either the J or the K time series) about the current state of I. The redundant term 
represents the overlapping information provided by time series J and K about the current state of 
I. Notice, in Equations 5 and 6, that although TE is only dependent on the two time series that are 
directly interacting (either J and I, or K and I), because J and K are both interacting with the same 
time series, their unique interactions are influenced by each other. Thus, the unique information 
provided by one of these time series is dependent on the other. In other words, because J and K 
provide some redundant (overlapping) information about I, J influences how much information K 
provides uniquely versus redundantly about I. Likewise, K influences how much information J 
provides uniquely versus redundantly about I.   
 
The synergistic term in Equation 4 is the additional information (beyond the unique and redundant 
information) that is accounted for in the receiver activity (I) based on the non-overlapping 
information from both inputs (J and K) occurring simultaneously. Thus, synergy is a proxy for the 
non-linear computation which takes information from two sources and combines them in some 
way to generate a unique output. Examples of high synergy computations include ‘AND’ and 
‘XOR,’ wherein knowledge of the state of both upstream neurons is needed to predict the state of 
the receiving neuron (Timme et al., 2016).  
 
To calculate synergy, note that Equation 4 can be rewritten as: 

Synergy 𝐽, 𝐾 → 𝐼 = 	𝑇𝐸 𝐽, 𝐾 → 𝐼 − 	𝑇𝐸 𝐽 → 𝐼 − 
𝑇𝐸 𝐾 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (7) 

by substituting Equations 5 and 6 and solving for synergy. Notice that we can compute all TE 
terms in Equation 7 via Equation 1. This leaves only the Redundancy term to be computed. We 
use the method for estimating redundancy provided by Williams and Beer (2010, 2011). That is 
redundancy is defined as follows in terms of a quantity titled the minimum information 𝐼Z[\: 
 

Redundancy 𝐽, 𝐾 → 𝐼 ≝ 𝐼Z[\ 𝐼"; 𝐽"#$𝐾"#$|𝐼"#$ =	 
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where the specific information 𝐼bcde is defined as: 



𝐼bcde 𝐼" = 𝑖"; 𝑅, 𝐼"#$ = 𝑝 𝑟, 𝑖"#$|𝑖" log
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(9) 

and 

𝐼bcde 𝐼" = 𝑖"; 𝐼"#$ = 𝑝 𝑖"#$|𝑖" log
𝑝(𝑖"#$, 𝑖")
𝑝 𝑖"#$ 𝑝(𝑖")	789:

 

 

(10) 

Thus, redundancy is the minimum information provided by J or K about each state of I, averaged 
over all possible states. In other words, redundancy is the minimum overlapping information (the 
shared information) that the past states of J and K provide about the current states of I. Redundancy 
was calculated via Equations 9 and 10. Finally, synergy was calculated via Equation 7. Computing 
synergy for all possible triads (for each neuron that received at least two inputs, all possible 
groupings of two input neurons and the receiver were considered) in all networks yields a single 
synergy value per triad. We then normalized synergy (as well as redundancy and mvTE) values by 
dividing by the entropy of the future state of I, as done in Equation 3.  

 
Supplemental Figure 3. The Partial Information Decomposition. In this study, we analyzed two-
input computations which were determined using the Partial Information Decomposition to dissect 
multivariate transfer entropy (occurring among three neurons, with two transmitter neurons each 
sending significant information to a receiver neuron) into synergistic, redundant, and unique 
information terms. The synergistic information component was used to represent the amount of 
computation carried out by the receiver.  
 
 
SUPPLEMENTAL RESULTS 
 
Below are additional results not presented in the main text pertaining to (1) alternative measures 
of correlation (i.e., similarity) between senders; (2) non-normalized synergy versus mutual 
information; (3) an alternative implementation of synergy; and (4) linear regression slopes 
describing the synergy-mutual information relationship, as well relationships between synergy and 
redundancy and synergy and multivariate transfer entropy.  
 
Alternative Measures of Correlated Activity 



 
To test the robustness of the synergy-correlation relationship to analytical approach, we compared 
our results to those obtained from four alternative similarity metrics; these included: conditional 
mutual information, cosine similarity, Pearson correlation, and the Jaccard index (or Jaccard 
similarity). Their implementation and comparison to mutual information are described below, as 
are the results of their implementation. For each, the results are consistent with those obtained 
using mutual information as described in the main text. 
 
Conditional mutual information is the mutual information between senders, conditioned on the 
past of the receiver. This alternative to mutual information was selected for its alignment to the 
multivariate TE calculation. Importantly, this metric removes variance related to the state of the 
receiver, thereby reducing the influence of the receiver on the mutual information between the 
senders. Cosine similarity computes the cosine of the angle between two spike trains, or the inner 
product of the spike trains, divided by the product of their magnitudes (e.g., Schreiber et al., 2003). 
This value scales between 0 and 1, with 0 being completely different (i.e., orthogonal) and 1 being 
identical. In comparison to mutual information, which is computed over all observations, cosine 
similarity ignores all observations of (0,0). Thus, this measure reflects the number of observations 
for which both neurons spike relative to spike rates of the two neurons. Pearson correlation 
coefficient computes the expectation of the variance of the two spike trains, divided by the product 
of their standard deviations. For binary spike trains, this is equivalent to the difference of the 
probability that one neuron spikes conditioned on whether the other spikes or does not. In 
comparison to mutual information, which weights each observation based upon the log-likelihood 
of observing that event type (i.e., (0,0), (0,1), (1,0), & (1,1) states), Pearson correlation weights 
each observation equally, independent of type. Values produced by this method scale between -1 
and 1, with -1 being completely different, and 1 being identical. The Jaccard index computes the 
intersection of two spike trains, divided by their union. The Jaccard index scales between 0 and 1, 
with 0 being completely different, and 1 being identical. The Jaccard approach differs from the 
mutual information approach as it, like the cosine approach, ignores [0 0] observations. Unlike 
cosine approaches, it is not normalized by the firing rates of the two neurons, rather it is normalized 
by the total number of observations with at least one spike. For each of these alternate approaches 
to measuring the similarity of the transmitter neurons, we replaced the mutual information values 
with the respective alternate values and completed the remaining steps of the analyses identically.  
 
The results show that the same qualitative pattern of findings emerge irrespective of which method 
is used for measuring the transmitter similarity. That is, regardless of the approach used to measure 
similarity, the median similarity increases as timescales grow longer, reflecting the transition from 
a low correlation regime to a high correlation regime as timescales shift from synaptic to extra-
synaptic (Supplemental Figure 4). Also, regardless of the approach used to measure similarity 
there were positive correlations between similarity and synergy at synaptic timescales and there 
were negative correlations between similarity and synergy at extra-synaptic timescales 
(Supplemental Figure 5). 



 
 
Supplemental Figure 4. Spiking activity of senders become increasingly similar at longer 
timescales irrespective of method for quantifying similarity. Lines indicate median median 
similarity across all recordings at each timescale. Shaded regions depict 95% bootstrap confidence 
intervals around the median.  
 

 
 
Supplemental Figure 5. Synergy is positively related to similarity at synaptic timescales (0.05-3 
ms, 1.6-6.4 ms, and 3.5-14 ms) and negatively correlated with synergy at extra-synaptic timescales 
(75-300 ms, 161.6-646.4 ms, and 348.1-1392.4ms) irrespective of method for quantifying 
similarity. Lines indicate median correlation coefficients for similarity versus synergy for all 



recordings at each timescale. Shaded regions depict 95% bootstrap confidence intervals around the 
median. Conditional MI (purple) and MI (black) lines are overlapping here. 
 
Non-normalized synergy versus mutual information  
 
The results presented in the main text were obtained using mutual information and synergy values 
that were normalized by the maximum possible values given the firing rates and bin sizes for each 
triad at each timescale. This was done because information terms such as mutual information and 
synergy are sensitive to the entropy of the data being analyzed, which is, in turn, sensitive to firing 
rates and bin sizes. The log-normal distribution of firing rates and the different timescales 
generated large variability in the total entropy and thus information terms. By normalizing, we 
minimized any effects that may have been due to changes in entropy within and across timescales. 
To confirm that this did not influence our findings, we repeated the main analyses with no 
normalization. Supplemental Figure 6 illustrates the results showing that the same qualitative 
pattern of results with the non-normalized values. 
 
 

 
 
Supplemental Figure 6. Non-normalized synergy and mutual information values show the same 
qualitative trends as normalized values. (A) Plotting synergy as a function of mutual information 
across timescales shows that the positive relationship between synergy and mutual information 
only exists at peri-synaptic timescales where mutual information is relatively low. This 



relationship becomes negative at longer timescales where mutual information is high. Note that 
mutual information, plotted along the x-axis, varies across sub-panels. A dashed vertical line where 
mutual information is 0.02 is included to facilitate visual alignment across panels. (B) Curves from 
A are replotted on the same axes here to show the overall relationship between synergy and mutual 
information. (C) Spearman rank correlation coefficients of synergy versus mutual information for 
all networks across timescales show that synergy and mutual information are positively related at 
shorter timescales and negatively related at longer timescales. Correlation coefficients are largest 
for synaptic timescales. (D) Synergy and mutual information are significantly positively correlated 
at synaptic timescales and significantly negatively correlated at extra-synaptic timescales. For all 
plots, solid/bold lines indicate medians and shaded regions/error bars depict 95% bootstrap 
confidence intervals around the median. 
 
Alternative implementation of synergy 
 
To ensure that our findings were not dependent on the method used to calculate synergy, we 
performed additional analyses which implemented an alternative method. In this alternative 
method, we considered the effect of calculating the lower bound on synergy, which we refer to as 
“bonafide” synergy. This method also uses PID but sets redundancy to be the smallest possible 
value. Effectively, in this approach synergy is computed as follows:   
 

Synergy 𝐽, 𝐾 → 𝐼 = 	argMax	[	𝑇𝐸({𝐽, 𝐾} → 𝐼)	– 	𝑇𝐸 𝐽 → 𝐼 		– 	𝑇𝐸 𝐾 → 𝐼 , 0	] (11) 

Consequently, synergy is minimized or set to zero when the sum of 𝑇𝐸(𝐽 → 𝐼) and 𝑇𝐸(𝐾 → 𝐼) is 
greater than	𝑇𝐸({𝐽, 𝐾} → 𝐼). To avoid having the number of zeros in any decile driving the results, 
the analyses were restricted to triads with synergy greater than zero. 
 
When we used these synergy values and repeated our core analyses, we found that synergy and 
mutual information were positively related at synaptic timescales. However, we also found them 
to be positively related at extra-synaptic timescales, departing from what we show in the main text 
(Supplemental Figure 7). This is likely due to the fact that, in triads with sufficiently high synergy 
to be included in this analysis, redundancy had not effectively cannibalized the mvTE. As a result, 
the only triads left in this analysis were those with generally high synergy.  
 



 
Supplemental Figure 7. Bonafide synergy is positively related to SenderMI at all timescales. (A) 
Log-scaled Synergy versus mutual information grows at all timescales. (B) Curves of synergy 
versus mutual information in A, replotted on the same axes. All curves are increasing. (C) 
Spearman rank correlation coefficients for synergy versus mutual information at all timescales 
show that the two are always positively related. (D) Synergy and mutual information are positively 
related at both synaptic and extra-synaptic timescales. For all plots, solid/bold lines indicate 
medians and shaded regions/error bars depict 95% bootstrap confidence intervals around the 
median. 
 
Linear regression slopes of information term relationships  
 
In the main text we show Spearman rank correlation coefficients for synergy versus mutual 
information across networks (main text Figure 4), as well as other information term relationships 
(main text Figure 5). However, we also performed linear regressions in order to measure the slopes 
of these relationships. These are shown below in Supplemental Figure 8. 
 
 





 
Supplemental Figure 8. Slopes of information term relationships show the same trends as 
Spearman rank correlation coefficients. (A) Synergy and mutual information are initially 
positively related, but become negatively related across timescales [ Δlog10(pMImax) / Δlog10(pHrec) 
]. (B) Synergy and mutual information are positively related at synaptic timescales and negatively 
related at extra-synaptic timescales. (C) Synergy and mvTE are initially positively related, but 
become increasingly unrelated across timescales [ Δlog10(pHrec) / Δlog10(pHrec) ]. (D) Synergy and 
mvTE are positively related at synaptic timescales and unrelated related at extra-synaptic 
timescales. (E) Synergy and redundancy are initially positively related, but become negatively 
related across timescales [ Δlog10(pHrec) / Δlog10(pHrec) ]. (F) Synergy and redundancy are 
positively related at synaptic timescales and negatively related at extra-synaptic timescales. (G) 
Synergy and the difference between mvTE and redundancy are positively related at all timescales 
[ Δlog10(pHrec) / Δlog10(pHrec) ]. (H) Synergy and mvTE-redundancy are positively related at 
synaptic timescales and at extra-synaptic timescales. For all plots, solid/bold lines indicate medians 
and shaded regions/error bars depict 95% bootstrap confidence intervals around the median. 




