Supplemental Table 1. Primer sequences

Name	Sequence		
ICAM3-H-RT-F	CCCCAGCACTTGAAATGGAAAGA		
ICAM3-H-RT-R	AGGGTCAGTAACACCGCCACGAA		
CCL16-RT-F	CTTATCATTACTTCGGCTTCTCGC		
CCL16-RT-R	GGCCTTTCTGTATCCCACCACTA		
PDE3A-RT-F	GATGATAAATACGGATGTCTGTCTGG		
PDE3A -RT-R	GACAAGGAAACGGAAATGCTTAA		
PRTN3-RT-F	ACAACTACGACGCGGAGAACAAACTGA		
PRTN3-RT-R	GAAGAAGGTGACCACGGTGACATTGAG		
TRAF6-RT-F	GCACGCCACCTACAAGAG		
TRAF6-RT-R	CAGGGCTATGAATCACAACA		
BCAR1-RT-F	CAGTTTGAACGACTGGAACAGGAGGTG		
BCAR1-RT-R	AGCTTGTGGGCGCTGAGGATGAC		
IL-1α-RT-F	ATTGTATGTGACTGCCCAAGATG		
IL-1α-RT-R	GTTTCCCAGAAGAAGAGGAGGTT		
IL-1β-RT-F	GGCGGCATCCAGCTACGAATCTC		
IL-1β-RT-R	AAGGTCTGTGGGCAGGGAACCAG		
NF-κB1-RT-F	AAAAGGACCCTGAAGGTTGTGAC		
NF-κB1-RT-R	AAGGTGGATGATTGCTAAGTGTAAG		

ІкВкВ-RT-F	GGCAGTCTTTGCACATCATTCGT			
ІкВкВ-RT-R	TCACCGTTCCATTCAAGTCTTCG			
SOX2-RT-F	TGGAGCAACGGCAGCTACAGCATG			
SOX2-RT-R	GGAGTGGGAGGAAGAGGTAACCACAGG			
OCT4-RT-F	TGGGAAGGTATTCAGCCAAACGA			
OCT4-RT-R	ACCGAGGAGTACAGTGCAGTGAAGTGA			
ICAM3-M-RT-F	GCAGAACAGGAAGGCACCAAACAG			
ICAM3-M-RT-R	CTCAAAGTCAGAAGAGGAGTCGGGAAG			
ICAM3-CHIP-3-	CTTGCACAGGAACAGTAGCG			
F				
ICAM3-CHIP-3-	ACGAAGAACGGGATCCC			
R				
COX1-sh	AAAAGGAGTACAGCTACGAGCAGTTTTGGATCCAAAACTGCTCGTAGCTGT			
	ACTCC			
COX2-sh	AAAAGCGCTCAGCCATACAGCAAATTTGGATCCAAATTTGCTGTATGGCTG			
	AGCGC			

Supplemental Table 2. Antibodies List

Antibody		Clone, Cat #	Vendor	City, State,
				Country
ICAM3	Rabbit monoclonal	EPR3994,	Abcam	Hong Kong,
		ab109405		China
CCL16	Rabbit monoclonal	EPR4452(2),	Abcam	Hong Kong,
		ab134917		China
PDE3A	Rabbit monoclonal	EPR11601,	Abcam	Hong Kong,
		ab169534		China

PRTN3	Rabbit monoclonal	EPR6227,	Abcam	Hong Kong,
		ab133613		China
IL-1α	Rabbit polyclonal	ab9614	Abcam	Hong Kong,
				China
OCT4	Rabbit polyclonal	ab19857	Abcam	Hong Kong,
				China
NANOG	Rabbit monoclonal	ab109250	Abcam	Hong Kong,
				China
ALDH1A1	Rabbit monoclonal	ab52492	Abcam	Hong Kong,
				China
SOX2	Rabbit polyclonal	Н-65,	Santa Cruz	Santa Cruz, CA,
		sc-20088X	Biotechnology	USA
TRAF6	Rabbit polyclonal	H-274, sc-7221	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
BCAR1	Rabbit polyclonal	C-20, sc-860	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
β-actin	Mouse monoclonal	sc-47778	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
IL-1β	Mouse monoclonal	12242	Cell Signal	Danvers, MA,
			Technology	USA
p-IKKβ	Mouse monoclonal	16A6, 2697L	Cell Signal	Danvers, MA,
			Technology	USA
H3K4-3Me	Rabbit monoclonal	9783 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3K9-3Me	Rabbit monoclonal	9783 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3K27-3Me	Rabbit monoclonal	9783 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3K36-3Me	Rabbit monoclonal	9783 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3K79-3Me	Rabbit monoclonal	9783 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3	Rabbit monoclonal	9783 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3K18-Ac	Rabbit monoclonal	9927 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
H3K27-Ac	Rabbit monoclonal	9927 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
HDAC1	Mouse monoclonal	9928 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
HDAC2	Mouse monoclonal	9928 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
HDAC3	Mouse monoclonal	9928 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA

HDAC4	Rabbit monoclonal	9928 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
HDAC5	Mouse monoclonal	9928 (Kit)	Cell Signal	Danvers, MA,
			Technology	USA
KDM6A	Rabbit monoclonal	33510	Cell Signal	Danvers, MA,
			Technology	USA
KDM6B	Rabbit monoclonal	3457	Cell Signal	Danvers, MA,
			Technology	USA
COX1	Rabbit monoclonal	9896	Cell Signal	Danvers, MA,
			Technology	USA
COX2	Rabbit monoclonal	12282	Cell Signal	Danvers, MA,
			Technology	USA

Supplemental figure 1

Fig. S1 The work concentration of ibuprofen was tested in various cancer cells.

The cytotoxicity assay was performed on lung cancer cell A549, breast cancer cell MDA-MB-231and liver cancer cell HepG2. The IC50 of ibuprofen on three cell lines were 3.0, 1.8, 1.2 respectively.

Supplemental figure 2

Fig. S2 The effects of ibuprofen on CSC or non-CSC cells was detected.

(A) Schematic model of CSC or non-CSC cell sorting. (B) Western blot to detect the stemness markers (ALDH1A1, SOX2, OCT4 and NANOG) in ALDH+ or ALDH-cells treated with ibuprofen sorted from 231 and A549 cell lines. (C) Schematic model of the *in vivo* experiment to check the role of ibuprofen on CSC or non-CSC cells. (D) Schema of the *in vivo* model established by subcutaneous implantation of ALDH+/ALDH- cells into the 4th pair of mammary fat pad of nude mice. (E) Tumor growth curve of ALDH+/ALDH- cells with or without ibuprofen treatment. (F) Schema of the chemo-resistance model established by subcutaneous implantation of ALDH+/ALDH- cells into the 4th pair of mammary fat pad of nude mice. (G) Tumor growth curve of ALDH+/ALDH- cells with or without ibuprofen treatment in the presence of cisplatin. (H) The representative tumors separated from each groups were shown.

Supplemental figure 3

β-actin

Fig. S3 Ibuprofen effects the inflammation related genes and H3 modification markers expression in ALDH+ and ALDH- cells.

(A) Western blot to detect the inflammation related genes expression in ALDH+ and ALDH- cells with or without ibuprofen treatment. (B) Western blot to detect the H3 modification markers expression in ALDH+ and ALDH- cells with or without ibuprofen treatment.