1	SUPPORTING INFORMATION
2	
3 4	Improved odorless access to benzo[1,2-d;4,5-d']bis[1,3]dithioles and <i>tert</i> - butyl arylsulfides via C-S cross coupling
5	Kevin Kopp, Olav Schiemann, Nico Fleck*
6 7	Institute of Physicial and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany.
8	E-Mail: *fleck@pc.uni-bonn.de
9	
10	

1 Table of Contents

2		
3	1. Analytical data of products	3
4	1.1 NMR spectroscopy	3
5	1.2 Mass spectrometry	8
6	2. Condition screening	12
7	2.2 ¹ H-NMR data	14
8	3 Literature	27
9		

- 1 <u>1. Analytical data of products</u>
- 2 1.1 NMR spectroscopy
- 3
- 4

6 *Figure S1.* ¹H-NMR (400 MHz, 298 K, DMSO-d6) spectrum of S-*tert*-butyl isothiouronium bromide **6**.

8 *Figure S2.* ¹³C-NMR (100 MHz, 298 K, DMSO-d6) of S-tert-butyl isothiouronium bromide **6**.

4 Figure S4. ¹H-NMR (400 MHz, 298 K, CDCl₃) of 1,2,4,5-Tetrakis(*tert*-butylthio)benzene 5.

5 tetrabromobenzene to **5** containing mesitylene as an internal standard.

5 Figure S8. ¹³C-NMR (100 MHz, 298 K, CDCl₃) of 1a.

Figure S9. ¹H-NMR (400 MHz, 298 K, CDCl₃) of 4-methoxy-*tert*-butylthiobenzene **7**.

Figure S10. ¹³C-NMR of 4-methoxy-*tert*-butylthiobenzene **7**.

1 1.2 Mass spectrometry

4 *Figure S11.* ESI(+)-MS (top) of S-*tert*-butyl isothiouronium bromide **6** and calculated isotope pattern

5 (bottom).

3 Figure S12. EI(+)-MS (top) of 4-methoxy-tert-butylthiobenzene 7 and average value of exact mass

4 (bottom).

1

3 Figure S13. EI(+)-MS (top) of 1,2,4,5-tetrakis(tert-butylthio)benzene 5 and average value of exact

4 mass (bottom).

Figure S14. EI(+)-MS (top) of **1a** and average value of exact mass (bottom).

1 2. Condition screening

2

3 <u>Screening of conditions with other substrates</u>

The analysis of the reaction mixtures was carried out via ¹H-NMR, products were identified via
comparison of literature values for 1,4-bis(*tert*-butylthio)benzene⁴, 4-chlorophenol⁵, 4-fluorophenol⁶,
and 4-(*tert*-butylthio)nitrobenzene⁷.

- 9 *Figure S15.* Reference spectra of 4-bromoanisole (bottom), 4-bromophenol (middle) and 4-methoxy-
- 10 *tert*-butylthiobenzene (top).
- 11
- 12 *Table S1.* Reaction conditions.

Reaction No.	Temperature [°C]	ligand	base	Solvent
1	50	Ph ₃ P	KO ^t Bu	DMF
2	50	XPhos	KO ^t Bu	DMF
3	50	Xantphos	KO ^t Bu	DMF

4	80	Ph₃P	KO ^t Bu	DMF
5	80	XPhos	KO ^t Bu	DMF
6	80	Xantphos	KO ^t Bu	DMF
7	80	dppf	KO ^t Bu	DMF
8	80	SPhos	KO ^t Bu	DMF
9	80	BrettPhos	KO ^t Bu	DMF
10	80	nBu₃P	KO ^t Bu	DMF
11	80	none	KO ^t Bu	DMF
12*	80	none	KO ^t Bu	DMF
13*	80	SPhos	KO ^t Bu	DMF
14	80	Ph₃P	KO ^t Bu	ⁿ BuOH
15	80	Ph₃P	K ₂ CO ₃	DMF
16	80	Ph₃P	Cs ₂ CO ₃	DMF
17	80	Ph₃P	K ₃ PO ₄	DMF
18**	80	Ph₃P	KO ^t Bu	DMF
19***	80	Ph₃P	K ₂ CO ₃	DMF
20***	80	Ph₃P	K ₃ PO ₄	DMF

*without Pd_2dba_3 . **reduced amounts of base to 2.4 eq. ***addition of 10mol% of 18-C-6.

1 2.2 ¹H-NMR data

3 Figure S16. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 1.

5 **Figure S17.** ¹H-NMR (400 MHz, 298 K, CDCl₃) of Reaction 2.

2 Figure S18. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 3.

4 Figure S19. ¹H-NMR (500 MHz, 298 K, CDCl₃) of reaction 4.

2 Figure S20. ¹H-NMR (500 MHz, 298 K, CDCl₃) of reaction 5.

4 Figure S21. ¹H-NMR (500 MHz, 298 K, CDCl₃) of reaction 6.

2 Figure S22. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 7.

4 Figure S23. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 8.

2 Figure S24. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 9.

4 *Figure S25.* ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 10.

2 Figure S26. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 11.

4 *Figure S27.* ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 12.

2 Figure S28. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 13.

4 *Figure S29.* ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 14.

2 Figure S30 1 H-NMR (400 MHz, 298 K, CDCl₃) of reaction 15.

4 Figure S31. 1 H-NMR (400 MHz, 298 K, CDCl₃) of reaction 16.

Figure S32. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 17.

Figure S33. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 18.

2 Figure S34. ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 19.

4 *Figure S35.* ¹H-NMR (400 MHz, 298 K, CDCl₃) of reaction 20.

Page 25 of 27

1 <u>3 Literature</u>

2	(1)	Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.;
3		Bercaw, J. E.; Goldberg, K. I.; Gan, R.; Apiezon, H. NMR Chemical Shifts of Trace Impurities :
4		Common Laboratory Solvents , Organics , and Gases in Deuterated Solvents Relevant to the
5		Organometallic Chemist. Organometallics 2010, 29, 2176–2179.
6	(2)	Wang, L.; Zhou, WY.; Chen, SC.; He, MY.; Chen, Q. A Highly Efficient Palladium-Catalyzed
7		${\sf One-Pot} {\sf Synthesis} {\sf of} {\sf Unsymmetrical} {\sf Aryl} {\sf Alkyl} {\sf Thioethers} {\sf under} {\sf Mild} {\sf Conditions} {\sf in} {\sf Water}.$
8		Adv. Synth. Catal. 2012 , 354, 839–845.
9	(3)	Reddy, T. J.; Iwama, T.; Halpern, H. J.; Rawal, V. H. General Synthesis of Persistent Trityl
10		Radicals for EPR Imaging of Biological Systems. J. Org. Chem. 2002, 4635–4639.
11	(4)	Cogolli, P.; Testafari, L.; Tingoli, M.; Tiecco, M.; <i>J. Org. Chem</i> . 1979 , 44, 2636 – 2642.
12	(5)	Bovonsombat, P.; Ali, Rameez; K., Chiraphorn; L., Juthamard; P., Kawin; Aphimanchindakul, S.;
13		Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N.; <i>Tetrahedron</i> 2010 , <i>66</i> ,
14		6928 – 6935.
15	(6)	Furuya, T.; Kaiser, H.; Ritter, T.; <i>Angew. Chem. Int. Ed.</i> 2008 , <i>47</i> , 5993 – 5996.
16	(7)	Wang, L.; Zhou, WY.; Chen, SC.; He, MY.; Chen, Q. A Highly Efficient Palladium-Catalyzed
17		One-Pot Synthesis of Unsymmetrical Aryl Alkyl Thioethers under Mild Conditions in Water.
18		Adv. Synth. Catal. 2012 , 354, 839–845.