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1 Introduction
This document aims at describing in more detail the pipeComp benchmarking framework. As it represents
a snapshot (pipeComp version 0.99.36, 04 August, 2020), the most up-to-date information can be found on
the github repository.

pipeComp is especially suited to the benchmarking of pipelines that include many steps/parameters, enabling
the exploration of combinations of parameters and of the robustness of methods to various changes in other
parts of a pipeline. It is also particularly suited to benchmarks across multiple datasets. It is entirely
based on R/Bioconductor, meaning that methods outside of R need to be called via R wrappers. pipeComp
handles multithreading in a way that minimizes re-computation and duplicated memory usage, and computes
evaluation metrics on the fly to avoid saving many potentially large intermediate files, making it well-suited
for benchmarks involving large datasets.

2 pipeComp overview and main inputs
pipeComp requires three main inputs, through which we will go in order:

• a PipelineDefinition object, which specifies the basic pipeline structure and evaluation metrics
• a list of alternative parameter values
• benchmark datasets

2.1 PipelineDefinition objects
pipeComp is built around the S4 class PipelineDefinition which encapsulates a basic abstract workflow
(different steps and their parameters) along with pre-defined evaluation metrics to be computed, as depicted
in Figure 1A. When a pipeline is executed, each step is consecutively applied to a starting object. In addition,
each step can optionally have evaluation functions, which take as input the output of the main step function,
and generate associated evaluation metrics. These metrics are automatically aggregated across analyses
and datasets if they have standard formats (e.g. vectors, data.frames or lists thereof), or otherwise custom
aggregation functions can be specified.

Each step of a PipelineDefinition can have any number of parameters, which can take any scalar values
(e.g. character, numeric, logical). Alternative methods for a step can therefore be passed as the name of wrap-
per functions which need to be prepared in advance. While the PipelineDefinition defines the different
parameters, the alternatives parameter values are not contained in the object itself, which enables the use of
the same PipelineDefinition to run several benchmarks. To facilitate this, however, PipelineDefinition
objects can also hold information about default parameter values, thereby enabling users to run benchmarks
without having to define every single parameter.

The packages comes with two different pre-built PipelineDefinitions: the single-cell RNAseq clustering
pipeline (in two flavours, see ?scrna_pipeline) and the SVA-DEA pipeline (see ?dea_pipeline), each with
their in-built evaluation functions. For more information about building (or editing) a PipelineDefinition
object, refer to the examples in the following vignettes:
vignette("pipeComp", package = "pipeComp")
vignette("pipeComp_dea", package = "pipeComp")

2.2 Alternative parameter values
Each pipeline step defined in the PipelineDefinition can have any number of parameters, which can take
any scalar values (i.e. character, numeric or logical vectors of length 1), as illustrated in Figure 1B. If a
PipelineDefinition was built in a way that expects it, distinct alternative methods for a step can be
passed as the name of wrapper functions, which need to be prepared in advance and to be loaded in the
environment in which runPipeline (see below) will be run.

For example:
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Required inputs

1. list of alternative parameter values

2. datasets (or filepaths)

3. PipelineDefinition object

Figure 1: Overview of the pipeComp framework. A: ’PipelineDefinition’ objects include general pipeline
structures, concentrated around consecutive steps, as well as all evaluation metrics to be computed after any
of these steps. B: Given a ’PipelineDefinition’, a list of alternative parameters and a list benchmark datasets,
the ’runPipeline’ function proceeds through combinations arguments, avoiding recomputing the same step
twice and computing evaluations on the fly.
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function_A <- function(x) 1+sqrt(x)
function_B <- function(x) log1p(x)
alternatives <- list(

par1=c("function_A", "function_B")
)

2.3 Benchmark datasets
pipeComp was especially designed to run parallel benchmarks across multiple datasets. There is no a priori
restriction on the format of benchmark datasets, so long as the PipelineDefinition and wrappers can deal
with them. The datasets objects should contain any data that is needed for the pipeline to run, as well as
any information that is needed for the evaluation of the results (e.g. their own truth, such as true cell labels
for the scRNAseq application, or true differential expression labels for the SVA-DEA application).

3 The runPipeline function.
Once the three main inputs are available, the actual processing can be launched with the runPipeline
function, e.g.:
res <- runPipeline( datasets, alternatives, PipelineDefinition,

output.prefix="folder/prefix", nthreads=3 )

The function’s processing is illustrated in Figure 1B. First, a matrix of parameter combinations is created (it
can alternatively be manually provided/edited to run only subsets of possible combinations). Multithreading
is handled through BiocParallel, by first splitting datasets across threads, and then splitting the parameter
matrix in a way that minimizes re-computation. In each thread, the parameter combinations are executed
in a branching fashion (Figure 1B) so that, if combinations share the same first steps, these are computed
only once. Evaluation is computed in the thread immediately after step processing.

4 Comparison with other (R) tools
4.1 drake
pipeComp is not a general pipeline/workflow framework like, for instance, drake, which boasts an impressive
array of features (object histories and dependencies, caching and recovery, etc.). Instead, pipeComp was
specifically designed for benchmarking: it makes benchmarks easily deployable, modifiable and extensible by
encapsulating together abstract pipeline structures and evaluation procedures, and facilitates running many
combinations of step parameters through hierarchical branching.

The same branching pattern could in principle be done with drake, however in a much more cumbersome
fashion. Indeed, planning a static or dynamic drake branching on all combinations would result in a target
for each (and hence many duplicated computation) unless it was planned for each step separately, requiring
considerably more scripting than when implemented in pipeComp. In addition, it would mean that all
intermediate targets need to be stored, which is not practicable for combinatorial explorations with large
datasets (for our scRNAseq comparison, we estimate this to be approximately 16 TB).

On the other hand, a drake-based workflow has several advantages, in particular the capacity, upon failure
of a pipeline (or changes made to a step), to smoothly recover and restart from the very next upstream
target. Starting from version 0.99.45, pipeComp also supports some error handling, allowing users to use
results from those pipelines that ran successfully and selectively recompute (e.g. after fixing the error)
those that encountered errors (see the package’s vignettes for more information). However, due to the non-
persistent nature of pipeComp’s storage, for those parameter combinations that failed, all steps will have to
be recomputed.
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4.2 CellBench
The CellBench package was recently proposed for single-cell benchmarking, offering an elegant piping syntax
to combine alternative methods at successive steps. Both packages have similar functionalities, although
implemented very differently. For instance, CellBench uses on-disk caching to avoid recomputing steps,
which has the same drawback as drake for large datasets / number of combinations. pipeComp instead keeps
computed intermediates in memory no longer than is strictly necessary to avoid recomputation. In addition,
because the benchmark is, in CellBench, simply a function piped after the pipeline steps, it does not allow
the multi-step evaluation central to pipeComp.
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