SUPPORTING INFORMATION

A Comparative Study on Luminescence Properties of Y₂O₃: Pr³⁺ Nanocrystals Prepared by Different Synthesis Methods

Contents

1.	Powder X-ray Diffraction (PXRD) Analysis	S2
2.	Raman Spectroscopy	S 3
3.	Reflectance Spectroscopy	S 5
4.	Thermogravimetric Analysis (TGA+DSC)	S6
5.	Transmission Electron Microscopy (TEM) Images	S7
6.	Fluorescence Emission Spectroscopy	S18
7.	Fluorescence Excitation Spectroscopy	S20
8.	Luminescence Lifetime (τ)	S22

1. Powder X-Ray Diffraction (PXRD) Analysis

Figure S1. XRD patterns of Y_2O_3 : Pr^{3+} NCs obtained by (**a**) combustion method after calcination at 900 °C for 4 h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 900 °C for 16 h; and (**d**) homogeneous precipitation using 0.832 mol of urea and 200 ml H₂O during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

2. Raman Spectroscopy

Figure S2. Raman spectra of Y_2O_3 : Pr^{3+} NCs obtained by (**a**) combustion method after calcination at 900 °C for 4 h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 900 °C for 16 h; and (**d**) homogeneous precipitation method using 0.832 mol of urea and 200 ml of deionized water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S3. Comparison of the most prominent Raman peak of Y_2O_3 : Pr^{3+} NCs prepared by (**a**) combustion method after calcination at 900 °C for 4h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 900 °C for 16 h; (**d**) homogeneous precipitation method using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h; and (**e**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h.

3. Reflectance Spectroscopy

Figure S4. Absorption spectra of Y_2O_3 : $Pr^{3+}NCs$ obtained by (**a**) combustion method after calcination at 900 °C for 4 h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) homogeneous precipitation using urea (0.832 mol) and H₂O (200 mL) during 2 h reaction followed by calcination at 800 °C (3 h); and (**d**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h.

4. Thermogravimetric Analysis (TG + DSC)

Figure S5. TG + DSC plots of Y_2O_3 : Pr³⁺ NCs prepared by (**a**) combustion method after calcination at 900 °C for 4h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 900 °C for 16 h; (**d**) homogeneous precipitation method using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h; and (**e**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h.

5. Transmission Electron Microscopy (TEM) Images

Figure S6. TEM images of Y_2O_3 : $Pr^{3+}NCs$ obtained by molten salt method at 500 °C followed by 10 washing cycles.

Figure S7. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 800 °C for 16 h.

Figure S8. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 800 °C for 24 h.

Figures S9. TEM images of Y_2O_3 : Pr^{3+} NCs obtained by sol-gel Pechini method using citric acid as chelating agent and followed by thermal treatment at 900 °C for 16 h.

Figure S10. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by sol-gel Pechini method using EDTA as chelating agent and followed by thermal treatment at 900 °C for 16 h.

Figure S11. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 0.485 mol of urea and 360 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S12. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 0.485 mol of urea and 720 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S13. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 0.485 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S14. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 0.166 mol of urea and 360 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S15. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 1.415 mol of urea and 360 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S16. TEM image of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 0.832 mol of urea and 360 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figures S17 and S18. TEM images of Y_2O_3 : Pr^{3+} NCs obtained by homogeneous precipitation using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S19. TEM image of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 180 °C for 24 h followed by calcination at 800 °C for 4 h.

Figure S20. TEM image of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 180 °C for 24 h followed by calcination at 900 °C for 4 h.

Figure S21. TEM image of Y_2O_3 : $Pr^{3+}NCs$ prepared by solvothermal method at 180 °C for 24 h using a two-fold RE precursor concentration, followed by calcination at 900 °C for 4 h.

Figure S22. TEM image of Y_2O_3 : $Pr^{3+}NCs$ prepared by solvothermal method at 180 °C for 24 h using EtOH, followed by calcination at 900 °C for 4 h.

Figure S23. TEM image of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 180 °C for 24 h followed by calcination at 900 °C for 8 h.

Figure S24. TEM image of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 220 °C for 24 h followed by calcination at 900 °C for 4 h.

Figure S25. TEM images of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 220 °C for 24 h followed by calcination at 1000 °C for 4 h.

6. Fluorescence Emission Spectroscopy

Figure S26. Emission spectra from C₂ site (λ_{ex} = 292 nm) of Y₂O₃: Pr³⁺ NCs prepared by (**a**) combustion method after calcination at 900 °C for 4h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by calcination at 900 °C for 16 h; (**d**) homogeneous precipitation using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h; and (**e**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h.

Figure S27. Emission spectra from S₆ site (λ_{ex} = 330 nm) of Y₂O₃: Pr³⁺ NCs prepared by (**a**) combustion method after calcination at 900 °C for 4h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by calcination at 900 °C for 16 h; (**d**) homogeneous precipitation using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h; and (**e**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h.

7. Fluorescence Excitation Spectroscopy

Figure S28. Excitation spectra at C₂ site (λ_{em} = 717 nm) of Y₂O₃: Pr³⁺ NCs prepared by (**a**) combustion method after calcination at 900 °C for 4h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by calcination at 900 °C for 16 h; (**d**) homogeneous precipitation using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h; and (**e**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h. The insets show a zoom of the intraconfigurational excitation transitions of Pr³⁺ ions.

Figure S29. Excitation spectra at S₆ site (λ_{em} = 603 nm) of Y₂O₃: Pr³⁺ NCs prepared by (**a**) combustion method after calcination at 900 °C for 4h; (**b**) molten salt method at 500 °C followed by 10 washing cycles; (**c**) sol-gel Pechini method using citric acid as chelating agent and followed by calcination at 900 °C for 16 h; (**d**) homogeneous precipitation using 0.832 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h; and (**e**) solvothermal method at 220 °C followed by calcination at 1000 °C for 4 h. The insets show a zoom of the intraconfigurational excitation transitions of Pr³⁺ ions.

8. Luminescence Lifetime (τ)

Figure S30. Luminescence decay curve of the $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : $Pr^{3+}NCs$ prepared by combustion method before calcination at 900 °C.

Figure S31. Luminescence decay curve of the $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by molten salt method at 500 °C followed by 5 washing cycles.

Figure S32. Luminescence decay curve of the $Pr^{3+} D_2 \rightarrow ^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by molten salt method at 500 °C followed by 7 washing cycles.

Figure S33. Luminescence decay curve of $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : $Pr^{3+}NCs$ prepared by solgel Pechini method using citric acid as chelating agent and followed by calcination at 800 °C for 16 h.

Figure S34. Luminescence decay curve of $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : $Pr^{3+}NCs$ prepared by solgel Pechini method using citric acid as chelating agent and followed by calcination at 800 °C for 24 h.

Figure S35. Luminescence decay curve of $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : $Pr^{3+}NCs$ prepared by solgel Pechini method using EDTA as chelating agent and followed by calcination at 900 °C for 16 h.

Figure S36. Luminescence decay curve of the $Pr^{3+} D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by homogeneous precipitation method using 0.485 mol of urea and 360 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S37. Luminescence decay curve of the $Pr^{3+} D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by homogeneous precipitation method using 0.485 mol of urea and 200 ml of water during 2 h reaction followed by thermal treatment at 800 °C for 3 h.

Figure S38. Luminescence decay curve of the $Pr^{3+} D_2 \rightarrow ^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 180 °C followed by calcination at 800 °C for 4 h.

Figure S39. Luminescence decay curve of the $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method using 15.6957 mmol RE at 180 °C followed by calcination at 900 °C for 4 h.

Figure S40. Luminescence decay curve of the $Pr^{3+} D_2 \rightarrow ^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method using EtOH at 180 °C followed by calcination at 900 °C for 4 h.

Figure S41. Luminescence decay curve of the $Pr^{3+1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 180 °C followed by calcination at 900 °C for 8 h.

Figure S42. Luminescence decay curve of the $Pr^{3+} {}^{1}D_2 \rightarrow {}^{3}H_4$ emission of Y_2O_3 : Pr^{3+} NCs prepared by solvothermal method at 180 °C followed by calcination at 900 °C for 4 h.