1. Supplementary methods

1.1. Production of human platelet lysate (HPL)

The HPL herein (Bergenlys[®], Bergen, Norway) was prepared from outdated pooled whole bloodderived platelet concentrates (PCs) at the Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway. Briefly, unused 7 d-old PCs were used for HPL production via multiple freezing (-80° C) and thawing cycles ($+37^{\circ}$ C). Pooled PCs were then centrifuged at 3000 x g (4°C, 15 min) to remove platelet fragments and aliquoted as the final HPL product. HPL aliquots were stored at -80° C and thawed overnight at 4°C for subsequent use in experiments. In HPL-supplemented media, 1 IU/mL of heparin was added to prevent gelation and the medium was sterile filtered (0.2 µm) before use.

2. Supplementary tables and figures

Gene	TaqMan [®] Assay ID	Amplicon length		
Housekeeping gene				
GAPDH	Hs 02758991_g1	93		
Adipogenesis-related				
PPARG	Hs01115513_m1	90		
LPL	Hs00173425_m1	103		
Osteogenesis-related				
RUNX2	Hs01047973_m1	86		
BMP2	Hs00154192_m1	60		
ALPL	Hs01029144_m1	79		
COL1A2	Hs00164099_m1	68		
OPN (SPP1)	Hs00959010_m1	84		
OCN (BGLAP)	Hs01587814_g1	138		
Stemness-related				
SOX2	Hs01053049_s1	91		
OCT4 (POU5F1)	Hs00999632_g1	77		
NANOG	Hs02387400_g1	109		

2.1. Supplementary table 1: Real-time PCR assays

GAPDH glyceraldehyde 3-phosphate dehydrogenase, PPARG peroxisome proliferator activated receptor gamma, LPL lipoprotein lipase, RUNX2 runt-related transcription factor 2, BMP2 bone morphogenetic protein 2, ALPL alkaline phosphatase, COL1A2 Collagen type 1, OPN/SPP1 Osteopontin, OCN/BGLAP Osteocalcin, SOX2 sex determining region Y-box 2, OCT4/POU5F1 octamer-binding transcription factor 4, NANOG homeobox transcription factor nanog

Abbreviation	Cytokine
b-FGF/FGF2	Basic fibroblast growth factor
Eotaxin/CCL11	C-C chemokine 11
G-CSF	Granulocyte colony stimulating factor
GM-CSF	Granulocyte-macrophage colony-stimulating factor
IFN-γ	Interferon-y
IL-1β	Interleukin-1ß
IL-1ra	Interleukin 1 receptor antagonist
IL-1a	Interleukin-1a
IL-2Ra	Interleukin-2 receptor a
IL-3	Interleukin-3
IL-12 (p40)	Interleukin-12 subunit beta
IL-16	Interleukin-16
IL-2	Interleukin-2
IL-4	Interleukin-4
IL-5	Interleukin-5
IL-6	Interleukin-6
IL -7	Interleukin-7
IL / II -8	Interleukin-8
IL 0 II -9	Interleukin-9
GRO-a/CXCI 1	Growth-regulated alpha protein/CXC ligand 1
HGF	Hepatocyte growth factor
IFN-a2	Interferon_a?
L IF	Leukemia inhibitory factor
MCP-3/CCI 7	Monocyte chemotactic protein-3
II _10	Interleukin-10
IL_{10} II12 (n70)	Interleukin-12
IL 12 (p/0)	Interleukin-13
IL 15 II -15	Interleukin-15
IL - 15 $II - 17 \Lambda$	Interleukin-17
IL-17A II_18	Interleukin-17
ID-10/CYCI 10	Interferon commo induced protein 10/CYC chemokine 10
MCP 1/CCL 2	Monocyte Chemoattractant Protein 1
MIG/CYCL0	Monokine induced by gamma interferon/CYC ligand 0
B NGE	Norve growth factor
P-NOL SCE/KITI G	Stem call factor/KIT ligand
SCGE B	Stem cell growth factor
SCOP-p SDE 1a/CVCI 12	Stem cell glowth factor 1
MIP 1a/CCI 3	Macronhage inflammatory protein
MIP 18/CCL3	Macrophage inflammatory protein
DCE DD	Distolat derived growth factor DD
LUCL-DD DANTES/CCI 5	Producted on activation, normal T call expressed and secreted
KANTES/CCL3	Estavin
TNE a	Eolaxiii
$1 \text{ INF} - \alpha$	Tumor necrosis factor 0
INF-p	I umor necrosis factor-p
	vascular endolnenal growth lactor
UTAUK/UUL2/	Cutaneous I-Cell Auracting Unemokine
	The related energies in the inclusion
IKAIL	INF-related apoptosis-inducing ligand
M-CSF	wacrophage colony-stimulating factor

2.2. Supplementary table 2: Multiplex human cytokine screening panel

2.3. Supplementary figure 1: Osteogenic differentiation of monolayer GPCs and BMSCs on copolymer scaffolds

Alizarin red S staining (ARS) reveals osteogenic differentiation of GPCs and BMSCs in monolayer (21 d) and on poly(LLA-co-CL) scaffolds (14 d) under osteogenically induced (+) and non-induced (-) conditions; SEM reveals cell attachment and spreading on the scaffold surface after 24 h; scale bars 10 μ m (*top*); magnified view of Alizarin red-stained scaffolds (*bottom*, scale bars 500 μ m)

2.4. Supplementary figure 2: Gene expression in 3D spheroids of independent donors.

Relative expression (fold changes) of stemness- (A) and osteogenesis-related genes (B) after 7 d in 2D vs. 3D GPCs and BMSCs; data represent means; each symbol represents a single donor (n=>3); statistical analyses are based on delta-Ct values; *p < 0.05; **p < 0.001.

2.5. Supplementary figure 3: Immunofluorescence staining of 2D GPCs and BMSCs

IF staining of 2D monolayer GPCs and BMSCs for stemness (SOX2) and osteogenesis-related markers (BMP2, OCN) after 14 d culture in standard and osteogenic induction media, respectively; scale bars 100 µm. Positive and comparable staining for BMP2 and OCN was observed in GPCs and BMSCs.

2.6. Supplementary figure 4: Protein estimation of BMP2 via western blotting in 2D and 3D GPCs and BMSCs

Protein estimation of BMP2 was performed via western blotting via SDS gel electrophoresis and blotting onto polyvinylidene difluoride (PVDF) membranes. The membranes were incubated with the following primary antibodies overnight at 4°C: anti-BMP2 (R&D systems) and anti- β -actin as a reference protein (Invitrogen). After extensive washing, the membranes were further incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h and then developed using an enhanced chemiluminescence detection system (all from Bio-rad).

	GPC			BMSC					
	2D		31	3D		2D		3D	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Growth fa	actors								
FGF2	0.04012	0.00478	0.18143	0.00197	0.02768	0.00530	0.04271	0.00001	
PDGFbb	0.04337	0.01677	0.13879	0.00952	0.03152	0.00506	0.13655	0.00067	
HGF	24.24730	0.87560	42.10489	1.40289	1.99578	0.25363	3.77988	0.06782	
VEGF	0.72088	0.12111	1.69592	0.04196	3.94904	0.43366	1.69724	0.05659	
TGFb1	24.50784	25.92031	53.98704	6.14884	17.95800	1.87240	35.67928	6.78256	
SCF	0.04295	0.00382	0.04931	0.00303	0.05008	0.00406	0.01840	0.00024	
SCGFb	113.14256	3.54892	95.36207	2.94256	110.21860	8.45354	74.49511	1.97597	
GCSF	0.25382	0.03767	0.45470	0.03915	0.16630	0.00391	0.13473	0.00454	
GMCSF	0.00281	0.00422	0.00456	0.00021	0.00202	0.00021	0.00082	0.00012	
MCSF	0.03043	0.00432	0.02100	0.00062	0.04031	0.00780	0.01267	0.00030	
Chemoki	nes								
CCL11	0.16741	0.00556	0.04998	0.00012	0.01049	0.00137	0.00118	0.00003	
CXCL10	0.03273	0.00471	0.02468	0.00072	0.00911	0.00330	0.00907	0.00001	
CCL2	2.13776	0.13538	2.27424	0.07038	0.93586	0.12059	1.47786	0.02184	
CCL3	0.00086	0.00029	0.00129	0.00001	0.00088	0.00023	0.00073	0.00005	
CCL4	0.04168	0.01010	0.10332	0.00365	0.03960	0.01123	0.08331	0.00226	
CCL5	5.85575	0.20835	7.63716	0.15172	1.44246	0.22004	9.65767	0.20100	
CXCL1	3.65130	0.01579	2.06174	0.13972	0.16873	0.03515	6.66148	0.41839	
CCL7	0.08885	0.00569	0.15191	0.00706	0.53342	0.06061	0.20476	0.00486	
LIF	0.12380	0.02919	0.66383	0.01056	0.07635	0.01774	0.65338	0.00975	
MIF	1.30814	0.07396	4.06624	0.26745	0.72819	0.29118	5.04052	0.25619	
CXCL12	0.23595	0.02569	0.18201	0.00560	0.21189	0.03144	0.11132	0.00479	
Inflamma	tory cytokin	es							
ILla	0.02693	0.00994	0.02109	0.00164	0.02588	0.00858	0.00960	0.00001	
IL1b	0.00251	0.00102	0.00247	0.00001	0.00222	0.00067	0.00081	0.00011	
IL2	0.00471	0.00280	0.00180	0.00001	0.00324	0.00223	0.00109	0.00032	
IL4	0.00353	0.00214	0.00307	0.00019	0.00376	0.00068	0.00194	0.00004	
IL5	0.05189	0.05215	0.03438	0.00001	0.03339	0.00435	0.02244	0.00091	
IL6	4.37381	0.03748	0.68100	0.06986	0.82140	0.10703	2.16931	0.07043	
IL7	0.01789	0.00672	0.02066	0.00310	0.01402	0.00315	0.00608	0.00083	
IL8	0.31796	0.06139	0.63340	0.07276	0.07324	0.01182	3.57365	0.03481	
IL9	0.06582	0.02222	0.16124	0.00506	0.06258	0.01968	0.12090	0.00044	
IL10	0.00854	0.00080	0.00387	0.00001	0.00502	0.00252	0.00256	0.00033	
TNFa	0.01963	0.00316	0.02714	0.00001	0.02310	0.00592	0.01133	0.00123	
IFNg	0.07505	0.00856	0.03856	0.00394	0.06054	0.00678	0.01762	0.00123	

To account for differences in cell numbers between 2D and 3D cultures at the end of the culture period, cytokine concentrations (pg/mL) were normalized to the corresponding total DNA (ng/mL); data represent pg protein/ng DNA.

2.8.

Supplementary figure 5: Gene expression in 3D spheroids of FBS-cultured GPCs.

Relative expression (fold changes) of stemness- and osteogenesis-related genes after 7 d in 2D vs. 3D GPCs; data represent means; each symbol represents a single donor (n=2).

2.9. Supplementary figure 6: Schematic representation of the hypothesized mechanism for selfrenewal and lineage commitment in 3D spheroids.

MCC, mesenchymal cell condensations; * independent of osteogenic induction; ** dependent on osteogenic induction.