IUCrJ

Volume 7 (2020)

Supporting information for article:

The susceptibility of disulfide bonds towards radiation damage may be explained by S···O interactions

Rajasri Bhattacharyya, Jesmita Dhar, Shubhra Ghosh Dastidar, Pinak Chakrabarti and Manfred S. Weiss

Table S1 Charges^a on the S atom and the total energy^b of the system (as calculated using Hartree-Fock theory with basis set 6-31++G(2d,2p)) at different values of θ and ϕ , and S···O distance of 3.08 Å^c.

φ (°)	$\theta(^{\rm O})^{\rm a}$				
	90	45	0		
-60 ^b	0.0 (-0.297, 0.005)	0.63 (-0.187, -0.063)	5.02 (-0.233, 0.066)		
0	0.94 (-0.163, -0.084)	3.89 (-0.192, 0.038)			
+50	0.31 (-0.074, -0.070)	2.01 (-0.066, -0.158)			

^a The charges on distant and neighboring S atoms (S_{γ}' and S_{γ} , respectively) are given in parenthesis.

^b (E_{RHF}) (a.u) obtained from the program was first converted into kcal/mol. The value at a given (θ , ϕ) was then expressed relative to that at (90°, -60°), *i.e.*, $\Delta E = E_{RHF(\theta,\phi)} - E_{RHF(90,-60)}$.

 $[^]c$ Calculations were also done at two distances on either side of 3.08 Å , and the resulting charges are: (-0.319, 0.014) at 2.9 Å and (-0.284, -0.001) at 3.2 Å.

Charges on the S atoms and energy of interaction when the amide group is rotated about Table S2 the C=O axis, keeping the disulphide moiety fixed (using DFT/B3LYP/6-31G++(2d,2p) level of theory).

Position	Dihedral	Charge on	Charge on	
	angle(°)a	distant S atom	proximal S	
			atom	
1	-12	-0.155	0.026	
2	-42	-0.154	0.019	
3	-72	-0.151	-0.001	
4	-102	-0.146	0.001	
5	-132	-0.142	-0.011	
6	-162	-0.143	-0.002	
7	-180(or +180)	-0.139	-0.002	
8	+150	-0.138	0.016	
9	+120	-0.151	0.013	
10	+90	-0.148	0.001	
11	+60	-0.151	0.015	
12	+30	-0.157	0.031	
13	0	-0.157	0.029	

^a The virtual dihedral angle is defined by S_{γ} ···O-C-CH₃. The position 1 corresponds to what is shown in Fig. 2.

Table S3 Second order perturbation theory analysis of the Fock matrix in NBO basis (using Hartree-Fock theory) of the model shown in Fig. 2 representing elastase

S_{γ} ···O	Donor (i)	Type	Acceptor	Type	E(2) ^a	$\varepsilon(j)$ - $\varepsilon(i)^b$
distance (Å)			(j)		(kcal/mol)	(a.u)
		LP (1)			1.42	1.25
2.9	О	LP (2)	Sγ-Sγ′	σ^*	0.18	0.72
		LP (1)			0.62	1.25
3.08	О	LP (2)	Sγ-Sγ′	σ^*	0.08	0.71
		LP (1)			0.35	1.25
3.2	О	LP (2)	Sγ-Sγ'	σ^*	0.05	0.71

^a E(2) means energy of hyperconjugative interaction (stabilization energy). The default threshold of 0.05 kcal/mol was used.

^b Energy difference between donor (i) and acceptor (j) NBO orbitals.