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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 

 

This section relates to Main Text Results section entitled 
 ‘Reliability of CpG probes is low and highly variable’. 

 

1.1 Reliability of CpG probes is low and highly variable. We began by assessing the 
distribution of probe-probe Intraclass Correlations (ICCs, henceforth ‘reliability’) across the 438,593 
probes present on both the 450K and EPIC BeadChips in our data. Probe ICCs ranged from -0.28 to 1.00 
(Data S1, https://osf.io/83ucs/). As shown in Figure S1, probe reliabilities were skewed towards zero, with 
a mean of 0.21 (median = 0.09). This is low reliability considering that, in the context of establishing 
reliable measurement, ICCs below .4 are considered “poor,” those between .4 to .6 are considered “fair”, 
between .6 to .75 “good”, and above .75 “excellent”.1 

 

Figure S1: Distribution of reliability correlations for probes common to the 450K 
and EPIC BeadChips. 

 

Section S1: Describing the landscape of CpG probe reliability 

https://osf.io/83ucs/


Low reliability might arise through experimental factors not related solely to poor probe 
performance. We therefore tested whether the pattern of reliabilities we observed might be due to such 
stochastic processes by comparing our reliabilities against those reported by Logue et al.2, who also 
compared reliabilities of probes across 450K and EPIC BeadChips. The reliabilities were highly correlated 
(r = 0.86, p < 0.01, Figure S2), suggesting the reliabilities are reproducible and systematic in pattern.  

 

Figure S2. Differential probe reliabilities were consistent across studies. The y-axis 
plots probe reliabilities (as ICCs) in the present study, and the x-axis plots the reliabilities 
(as ICCs) reported by Logue et al.. Reliabilities were highly correlated (r = 0.86). 
Reliabilities were derived from comparisons between 450K and EPIC BeadChip. 

 

An additional source of low reliability could be due to between-array (i.e. 450K vs EPIC) 
differences in probe performance. While this is unlikely since previous studies have documented low 
reliabilities in 450K-450K probe comparisons3,4 and EPIC-EPIC probe comparisons2, we nonetheless 
sought to independently determine whether within-array reliability followed similar patterns to between-
array reliability. For this, we created a new reliability dataset comprised EPIC-EPIC (i.e. within-array) 
comparisons for a subset of Dunedin (N = 28) study samples (for comparison purposes, we restricted 
analysis to the ~440,000 probes overlapping with the 450K array as described throughout this 
manuscript). We sought to test if the distribution of reliabilities was similar between these two datasets. 



We found that, like the between-array comparison, reliabilities for the within-array comparison were low 
and skewed towards zero (median = 0.26), and the two sets of reliabilities were significantly correlated 
with one another (r = 0.77, Figure S3). This suggests that differences between 450K and EPIC 
BeadChips are unlikely to be the sole cause of low probe reliability. 

 

Figure S3. Between-array and within-array reliabilities are correlated. The y-axis 
plots the 450K-EPIC probe reliabilities used in the present study, and the x-axis plots 
EPIC-EPIC probe reliabilities from a subset of 28 individuals in the Dunedin Study. 
Reliabilities were highly correlated (r = 0.77), suggesting that unreliable probe 
measurement is systematic. 

 

1.2 Probe-specific characteristics are related to reliability. Next, we tested if probe reliability 
was related to the mean and variance of methylation levels (β-values) at the site measured by the probe. 
Our analysis revealed three findings. First, probe-reliability had an inverse-U shaped relationship with 
mean β-values; the lowest-reliability probes were concentrated at either end of the distribution of 
methylation β-values (i.e. among hyper- and hypo-methylated probes), whereas the highest reliability 
probes were concentrated in the intermediate range of the distribution (Figure S4A). Second, the highest 
density of low reliability probes was found among probes with low β-value SD (Figure S4B). Third, β-
value means and SDs were correlated (r = 0.15, P<0.01), and the most reliable probes were those with 
intermediate levels of methylation that varied most between individuals (Figure S4C). These observations 
confirm earlier reports of differential reliability as a function of site-specific characteristics2-4. 



 

 

 Figure S4: Probe-specific characteristics are related to the distribution of probe reliability. (A) 
shows a density heatmap of mean DNA methylation level (methylation β, range = 0-1; x-axis) plotted 
against reliability (Y-axis). This distribution follows an inverted U-shaped curve, where lowest 
reliabilities tend to be observed where mean β levels are close to either extreme, whereas the highest 
reliability probes were concentrated in the intermediate range of the distribution. (B) shows a density 
heatmap of the standard deviations of DNA methylation (x-axis) plotted against reliability (Y-axis). 
Lowest reliabilities tend to be observed where variation in β-levels is the lowest. (C) shows means (x-
axis) and standard deviations (y-axis) of methylation β-values plotted as a function of reliability (color; 
red = highest, blue = lowest). Methylation β-level means and SDs are correlated (r=0.15, P<0.01) and 
show an inverse-U relationship with variability; the most variable probes tend to have mean levels of 
methylation around the center of the distribution. These variable, intermediately-methylated probes also 
tend to be most reliable.  



1.3 Genomic annotation of probes is related to differential reliability.  Figure S5A shows 
that there are regional differences in the distribution of probe reliability (Data S1). The transcription start 
site (TSS) had the highest aggregation of unreliable probes; the intergenic region had the lowest. In 
addition, CpG islands had a higher aggregation of unreliable probes than CpG shores (Figure S5B), a 
pattern consistent with previous reports4,5.  This could be due to the fact that sites within CpG islands are 
more likely to be unmethylated6 and are therefore more likely to be unreliably measured, or it could be 
because the proportion of Type I Infinium probes in CpG islands is greater than in CpG shores7 (vs. Type 
II; the two probe types differ in the chemistry used to quantify methylation level), and Type I probes are 
more unreliable than Type II4,5 (Figure S5C). 



 



Figure S5: Reliabilities of probes as a function of spatial characteristics. (A) plots 
the distributions of reliability coefficients as box and whisker plots for probes annotated to 
one of six genic regions: transcription start site (TSS), 5’ untranslated region (5’UTR), 3’ 
untranslated region (‘3UTR), coding region, intronic region, and intergenic region. Boxes 
correspond to Inter-quartile range (IQR), and whiskers extend to 1.5 * IQR. Observations 
beyond the whiskers (outliers) are represented by individual points. The TSS has the 
greatest proportion of unreliable probes, the intergenic region the least. (B) shows the 
distribution of reliability coefficients for probes localized to CpG islands or CpG shores. 
Unreliable probes are more common in CpG islands than CpG shores. Also shown is the 
distribution of reliability correlations as a function of Infinium probe type; older Type I 
probes are less reliable than Type II probes (C). This could be due to the fact that sites 
within CpG islands are more likely to be unmethylated and are therefore more likely to be 
unreliably measured, or it could be because the proportion of Type I Infinium probes in 
CpG islands is greater than in CpG shores (vs. Type II; the two probe types differ in the 
chemistry used to quantify methylation level), and Type I probes are more unreliable than 
Type II. As a reference, the distribution (pink bars) and median (vertical dashed line) of all 
~440,000 probe reliabilities in the E-Risk reliability dataset are shown above the box and 
whisker plots. The text box shows the results of Gene Set Enrichment Analysis (GSEA) 

for the each set of features; NES= Normalized Enrichment Score, p= p-value, N = 

number of probes. NESs greater than 1 indicate enrichment for reliable probes. 

 

1.4: Low reliability is not artefactual. Previous methodological studies have drawn attention to 
three factors that might compromise the quality of methylation BeadChip data: probe invariance8-10, 
potential probe hybridization problems11, and skewness. We tested whether these features are sufficient 
to capture unreliability. They are not.  Figure S6A and S6B document that probe unreliability exists in 
probes that are variable, and do not have potential probe hybridization problems.  Figure S6C 
demonstrates that probe reliabilities calculated on β-values resemble the reliabilities of M-values, a 
method for transforming skewed probe distributions12.  



 



Figure S6: The distribution of reliabilities of probes identified as potentially 
problematic in previous studies. Distributions are depicted as box and whisker plots of 
the reliability coefficients of the probes identified as variant/invariant by Edgar et al. (A; 
probes to discard are invariant probes) or having potential hybridization problems as 
described by Naaem et al. (B; probes to discard are probes with hybridization problems). 
Boxes correspond to Inter-quartile range (IQR), and whiskers extend to 1.5 * IQR. 
Observations beyond the whiskers (outliers) are represented by individual points. Both 
variant and non-problematic probe lists (‘probes to keep’) contain unreliable probes, 
suggesting these factors alone are not sufficient to index reliability. As a reference, the 
distribution (pink bars) and median (vertical dashed line) of all ~440,000 probe reliabilities 
in the E-Risk dataset are shown above the box and whisker plots. The text box shows the 
results of Gene Set Enrichment Analysis (GSEA) for the suggested set of probes to keep 
or discard in each situation (NES= Normalized Enrichment Score, p= p-value, N = 
number of probes). NESs greater than 1 indicate enrichment for reliable probes. (C) 
compares the reliability of probes computed using β values against those using M-values. 
Transforming β values to M-values has little effect on estimates of reliability. These three 
methods of accounting for unreliable probe data are not fully satisfactory.  

 

In summary, we replicated previous reports of low reliability across probes common to the 450K 
and EPIC BeadChips, demonstrating that, paradoxically, poor reliability is reproducible. Moreover, factors 
commonly thought to account for unreliability (such as genomic location, invariance and skewness) do not 
provide a satisfactory account of its ubiquity. 

  



This section relates to Main Text Discussion Section:  

‘Approaches to improve replicability via reliability assessment.’ 

We demonstrated that probe reliability is related to various properties of probe measurements 
(e.g. probe variability, section S1.2 above). These observations might lead one to ask: are these 
properties the major drivers of reliability, such that it is unreasonable to assess reliability without their 
adequate consideration?  

We tested this assumption using variability as a case in point. Our reasoning was that If variability 
is the major driver of reliability, then it follows that exclusion of invariant probes should increase the power 
to detect associations between reliability and the factors we outline in the main text of the manuscript. We 
subset our data to only those probes identified as not invariant in blood by Edgar et al.8. We then 
repeated our analysis of a) the association between probe reliability and estimates of genetic and 
environmental influences on DNA methylation, b) the association with mQTL probes, and c) the 
association with the extent of concordance in DNA methylation levels between blood and brain tissue.  

We first tested if the probes identified as invariant by Edgar et al.8 had the same distribution of 
reliabilities as probes that we independently determine as invariant within our own data. As shown in  
Figure S7 (below), the overlap of reliabilities of the probes listed by Edgar et al.8 and probes identified 
within our data is very high, suggesting that characteristics of individual probes (such as probe variance) 
are highly reproducible and unlikely to result from experimental-specific artifacts. As such, we went 
forward to subset our data to only those probes that were not invariant (i.e. ‘variant’) and repeated our 
tests of association outlined above. 

 
 

Section S2: Testing the sensitivity of associations with reliability in light of 

probe variability 



 

Figure S7. Comparison of reliabilities of invariant probes. Distributions are depicted 
as box and whisker plots of the reliability coefficients of the probes identified as invariant 
by Edgar et al., (top box) or identified as invariant based on our own data (bottom box). 
Boxes correspond to Inter-quartile range (IQR), and whiskers extend to 1.5 * IQR. 
Observations beyond the whiskers (outliers) are represented by individual points. The 
distribution of reliability in both sets of invariant probes are similar, suggesting the lists 
are highly conserved across studies. As a reference, the distribution (pink bars) and 
median (vertical dashed line) of all ~440,000 probe reliabilities in the E-Risk dataset are 
shown above the box and whisker plots.  

 

2.1: Associations between probe reliability and estimates of genetic and environmental 
influences on DNA methylation. In our manuscript, we report that estimates of additive genetic variation 
were positively correlated with reliability, and estimates of non-shared environmental variation (which also 
inlcudes measurement error) were negatively associated with reliabilty. 

When restricting analysis to just those probes that are variable, we find little attenuation of the 
association between reliability and these estimates (Table S1, below). It is not purely variability driving 
the associations, since excluding invariant probes does not improve the power to detect associations. 

  



 Table S1. Correlations of reliability and ACE parameters  

 All probes (N = 430,802) 
Variant probes only (N = 

292,127) 
 r 95% CI r 95% CI 

Additive genetic variation (A) 0.702 0.701, 0.0704 0.705 0.703, 0.706 

Shared environmental variation 
(C) 

-0.073 -0.076, -0696 -0.039 -0.042, -0.035 

Non-shared environmental 
variation (E) 

-0.583 -0.584, -0.5805 -0.657 -0.659, -0.655 

2.2: Associations between probe reliability and mQTL probes. In our manuscript, we report 
that methylation Quantitative Trait Loci (mQTLs)--DNA sequence variants that are associated with 
differential DNA methylation--are more likely to be associated with reliable probes than unreliable probes. 

When restricting our analysis to just those probes that are variable, we find little change in the 
extent to which the list of mQTL-associated probes is enriched for reliable probes (Table S2, below). It is 
not purely variability driving the ability to detect associations between sequence variants and differential 
DNA methylation. 

 Table S2. GSEA (enrichment) analysis of mQTL- and non mQTL indexing probes 

 All probes (N = 438,593) Variant probes only (N = 334,449) 

 

Normalized 
Enrichment Score 

p value 
Normalized 

Enrichment Score 
p value 

mQTL probes 1.477 0.002 1.525 0.0002 

non-mQTL 
probes 

0.867 1.00 0.850 1.00 

2.3: Associations of probe reliability with the extent of concordance in DNA methylation 
levels between blood and brain tissue. In our manuscript, we report that probes that show similar 
levels of DNA methylation in blood and any of four different brain regions (‘blood-brain’ concordance) are 
more likely to be reliably measured. 

When restricting our analysis to just those probes that are variable, we find little attenuation of the 
association between reliability and blood-brain concordance (Table S3, below).  It is not purely variability 
driving the ability to detect blood-brain concordance.   

Table S3. correlations of reliability and concordance of methylation values between blood 
and each of four brain regions 

 All probes (N = 438,593) 
Variant probes only (N = 

334,449) 

Blood-brain region 
concordance 

rho 95% CI rho 95% CI 

Prefrontal Cortex 0.348 0.345, 0.351 0.362 0.359, 0.365 

Entorhinal Cortex 0.315 0.312, 0.317 0.360 0.357, 0.363 

Superior Temporal Gyrus 0.376 0.373, 0.379 0.390 0.387, 0.393 

Cerebellum 0.218 0.215, 0.222 0.218 0.215, 0.221 

In summary,  variability, though highly related to reliability, is not sufficient to account for the 
challenges posed by unreliable DNA methylation measurement.  



 

 
 

 

S3.1: Sample description and data production 
 

Environmental Risk (E-Risk) Longitudinal Twin Study  
 

 Sample Description. Participants were members of E-Risk, which tracks the development of a 
1994-95 birth cohort of 2,232 British children13. Briefly, the E-Risk sample was constructed in 1999-2000, 
when 1,116 families (93% of those eligible) with same-sex 5-year-old twins participated in home-visit 
assessments. This sample comprised 56% monozygotic (MZ) and 44% dizygotic (DZ) twin pairs; sex was 
evenly distributed within zygosity (49% male). The study sample represents the full range of 
socioeconomic conditions in Great Britain, as reflected in the families’ distribution on a neighborhood-
level socioeconomic index (ACORN [A Classification of Residential Neighbourhoods], developed by CACI 
Inc. for commercial use): 25.6% of E-Risk families live in “wealthy achiever” neighborhoods compared to 
25.3% nationwide; 5.3% vs. 11.6% live in “urban prosperity” neighborhoods; 29.6% vs. 26.9% in 
“comfortably off” neighborhoods; 13.4% vs. 13.9% in “moderate means” neighborhoods; and 26.1% vs. 
20.7% in “hard-pressed” neighborhoods. E-Risk underrepresents “urban prosperity” neighborhoods 
because such households are often childless.  

Home visits were conducted when participants were aged 5, 7, 10, 12 and most recently, 18 
years (93% participation).  The Joint South London and Maudsley and the Institute of Psychiatry 
Research Ethics Committee approved each phase of the study. Parents gave informed written consent 
and twins gave written assent between 5-12 years and then informed written consent at age 18.  

 At age 18, 2,066 participants were assessed, each twin by a different interviewer. The average 
age at the time of assessment was 18.4 years (SD = 0.36); all interviews were conducted after the 18th 
birthday.  

Genome-wide quantification of DNA methylation. Our epigenetic study used DNA from a 
single tissue: blood. At age 18, whole blood was collected from 82% (N=1700) of the participants in 10mL 
K2EDTA tubes. DNA was extracted from the buffy coat using a Flexigene DNA extraction kit (Qiagen, 
Hilden, Germany) following manufacturer’s instructions. Study members who did not provide blood 
provided buccal swabs, but these were not included in our methylation analysis to avoid tissue-source 
confounds. Assays were run by the Complex Disease Epigenetics Group at the University of Exeter 
Medical School, and as described in full in previous publications9,14. 450K BeadChip data were available 
for 1658 study members. 

Reliability dataset. For our reliability analysis we selected 350 individuals to assay with the EPIC 
BeadChip. ~500ng of DNA from each sample was treated with sodium bisulfite using the EZ-96 DNA 
Methylation kit (Zymo Research, CA, USA). DNA methylation was quantified using the Infinium 
MethylationEPIC (‘EPIC’) BeadChip run on an Illumina iScan System (Illumina, CA, USA) by the Complex 
Disease Epigenetics Group at the University of Exeter Medical School.  

Reliability Dataset Processing and Normalization. The EPIC and 450K BeadChip data that 
comprise the reliability dataset were imported into the minfi Bioconductor package15,16.  Probes were 
excluded if they had a detection p-value > 0.05 in at least 10% of the samples in either the EPIC or the 
450K BeadChip datasets. Data were processed using the subset-quantile within array normalization 

Section S3: Additional Experimental Procedures 



 

 
 

(SWAN) approach to eliminate systematic differences across the arrays.  This method was chosen 
because it is currently one of the very few methods that allows normalization of 450K and EPIC BeadChip 
data together. Probes were kept for subsequent analysis if they passed the detection p-value threshold in 
both technologies, were shared between the two array platforms, and did not map to a sex chromosome.   
  Low reliability might arise through experimental factors not related solely to poor probe 
performance. We therefore tested two ways in which normalization might affect reliability estimates. First, 
low reliability could be due to data handling differences between datasets. To test this, we compared 
reliability coefficients after normalizing the datasets in two ways: (a) where data from 450K and EPIC 
BeadChips were normalized as separate datasets and (b) where they were normalized together as one 
dataset. The different normalization strategies had little effect on reliability estimates (Figure S8A, r = 
1.00, p < 0.01), suggesting differential probe reliability was not a product of data-handling practices. The 
‘normalized separately’ set is used for all analyses unless otherwise noted.   

Second, low reliability could be due to differences in relative ranks of probes induced through use 
of specific normalization methods. To test this, we re-normalized our data using an alternative method 
(‘’Quantile”) to that we have employed (“SWAN”), and compared the reliabilities generated using each. 
Normalization method had little effect on reliability measures (Figure S8B, r = 0.98, p < 0.01), suggesting 
our results are not affected by normalization strategy. 
  



 

 
 

 

 

Figure S8: Reliability correlations for probes common to the 450K and EPIC 
BeadChips.  (A) compares the reliability correlations generated when data for each 
BeadChip type were normalized together (x-axis) or normalized separately (y-axis). (B) 
compares the reliability correlations generated using ‘SWAN’, as reported in the main text 
of the manuscript (x-axis), and those generated using data normalized with ‘Quantile’ (y-
axis). In either case, normalization strategy seems to have little effect on the distribution 
of probe-probe reliability correlations.  



 

 
 

Dunedin Longitudinal Study  

Sample description. Participants were members of the Dunedin Multidisciplinary Health and 
Development Study, a longitudinal investigation of health and behavior in a representative birth cohort17. 
Study members (n = 1,037; 91% of eligible births; 52% male) were all individuals born between April 1972 
and March 1973 in Dunedin, New Zealand, who were eligible for the longitudinal study based on 
residence in the province at 3 years of age and who participated in the first follow-up assessment at 3 
years of age. The cohort represented the full range of socioeconomic status on NZ’s South Island. On 
adult health, the cohort matches the NZ National Health and Nutrition Survey (e.g., BMI, smoking, GP 
visits)17. The cohort is primarily white (93%); genetic analyses were restricted to non-Maori participants. 
Assessments were carried out at birth and at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38 and 45 years, 
when 94% of the 997 study members still alive took part. The Otago Ethics Committee approved each 
phase of the study and informed consent was obtained from all study members. 

Genome-wide quantification of DNA methylation using 450K BeadChips. Our epigenetic 
study used DNA from a single tissue: blood. Whole blood was collected in 10mL K2EDTA tubes from N = 
857 participants at age 38. DNA was extracted from the buffy coat using standard procedures18,19. Study 
members who did not provide blood provided buccal swabs, but these were not included in our 
methylation analysis to avoid tissue-source confounds. 

We assayed 835 blood samples (out of 857); 22 samples were not useable. ~500ng of DNA from 
each sample was treated with sodium bisulfite using the EZ-96 DNA Methylation kit (Zymo Research, CA, 
USA). DNA methylation was quantified using the Illumina Infinium HumanMethylation450 BeadChip 
(“Illumina 450K BeadChip”) run on an Illumina iScan System (Illumina, CA, USA) at the Molecular 
Genomics Core at the Duke Molecular Physiology Institute and are described in full in previous 
publications14.  

Genome-wide quantification of DNA methylation using EPIC BeadChips. To assay within-
array reliability of the EPIC BeadChip, we selected 28 individuals from the Age 45 data collection phase 
of the Dunedin Study and assayed their DNA twice. DNA was collected from blood and extracted as 
above.  ~500ng of DNA from each sample was treated with sodium bisulfite using the EZ-96 DNA 
Methylation kit (Zymo Research, CA, USA). DNA methylation was quantified using the Infinium 
MethylationEPIC (‘EPIC’) BeadChip run on an Illumina iScan System (Illumina, CA, USA) at the Molecular 
Genomics Core at the Duke Molecular Physiology Institute.  Data were processed, underwent quality 
control filtering, and normalized as described above for the 350-sample reliability dataset.   

Gene Expression. Expression data were generated from whole-blood RNA using the Affymetrix 
PrimeView Human Gene Chip (Affymetrix, CA, USA). Briefly, these arrays simultaneously interrogate 
more than 38,000 gene transcripts across the entire genome. Whole-blood RNA samples collected via 
PaxGene Blood RNA tubes (Qiagen, CA, USA) at age 38 were assayed. Samples were arranged into 
batches of 60. Array processing was performed by the Duke University Microarray Core Facility using the 
Affymetrix GeneChip system (Affymetrix). Prior to hybridization, total RNA was assessed for quality with 
Agilent 2100 Bioanalyzer G2939A (Agilent Technologies, Santa Clara, CA)) and Nanodrop 8000 
spectrophotometer (Thermo Scientific/Nanodrop, Wilmington, DE). Samples with RIN ≥ 6 were then 
subject to globin mRNA depletion using the GLOBINClear –human kit (Ambion, Thermo Fisher Scientific, 
MA, USA). RNA samples from 843 individuals were assayed. Data quality control and RMA normalization 
were carried out using the affy Bioconductor package20 in the R statistical programming environment. 
After QC, expression data were available for 836 individuals.  

  



 

 
 

S3.2: Data analysis 

Data analysis was performed in the R statistical programming environment, often using 
Bioconductor packages. Data handling was performed using the package dplyr 21 and descriptives were 
generated using the package psych22. Plots were produced in R using the packages ggplot223 and 
ggpubr24 where appropriate.  Density heatmaps were generated using the KernSmooth package25.  
Unless otherwise noted, correlations are reported as two-tailed Pearson product-moment correlation 
coefficients.  Intraclass correlation was calculated using the irr package26. 

Probe reliabilities. Probe reliabilities are computed using Intraclass Correlations (ICC), 
calculated for each autosomal probe present on both the EPIC and 450K BeadChip (N=438,593). ICCs 
are an oft-used metric to assess reliability in test-retest situations27, and many different models exist 
depending on the way in which the test-retest data are generated. Here, we calculated ICCs based on a 
mean-rating (k=2), absolute-agreement, 2-way random-effects model. We chose this model using the 
guidelines outlined in Koo and Li27, where mean-rating (k=2) relates to the number of repeated measures 
(i.e., BeadChips per sample); absolute agreement requires that not only do the values across BeadChips 
correlate, but that values are in agreement; and 2-way random effects relates to the generalizability of the 
ICCs to any subsequent similarly characterized rater (where rater = BeadChip probe). To compare 
whether test-retest model choice had an effect on reliability estimates, we also computed Pearson 
product-moment correlation coefficients. Pearson correlation coefficients and ICC estimates of reliability 
were highly similar (r=1.00, P=<1x10-4;  Figure S9).  

 

 

Figure S9: Reliabilities expressed as Pearson correlation coefficients and Intra-Class 
Coefficients are similar (Refers to Main Text Experimental Procedures section “Probe 
Reliabilities”). The y-axis plots probe reliabilities as Pearson correlation coefficients and the x-axis 
plots the Intra-Class Coefficients (ICC. Reliabilities were highly correlated (r = 1.00).  



 

 
 

Gene Set Enrichment Analysis.   Gene Set Enrichment Analysis (GSEA) was performed using 
the fgsea Bioconductor package28 with 10,000 permutations. We tested if each probe list was significantly 
enriched for more highly reliable probes. Due to computing constraints, if a list had more than 35000 
probes, it was truncated down to a random sampling of 35000 probes for the analysis. 

Structural equation modelling. Biometrical modelling was applied to every probe passing QC 
on the Illumina 450K array. Specifically, an ACE model was fitted to calculate the proportion of variance in 
DNA methylation explained by additive genetic (A), shared environmental (C) and unshared or unique 
environmental (E) factors, the latter which also includes measurement error. The assumptions behind this 
model are that additive genetic factors are perfectly correlated between MZ twins (i.e. genetic correlation 
= 1) but are only 50% correlated between DZ twins (i.e. genetic correlation = 0.5) and that shared non-
heritable influences are equally similar between MZ and DZ twin pairs. The model was fitted using 
structural equation modelling implemented with functions from the OpenMx R package29,30.  

Identification of Smoking-related DNA methylation probes. We identified 22 studies that 
reported an epigenome-wide analysis of current vs never smoking using the 450K BeadChip platform31-37. 
For each study, we obtained lists of probe IDs and direction-of-effect for probes that were significantly 
associated with current smoking (as determined by the study authors; total number of probes=3,724; N 
probes per study=84-2,441). We then determined the extent to which individual probes replicated across 
the 22 studies by summing the number of times each probe was listed with consistent direction-of-effect 
(i.e., consistent cross-study increases or decreases in methylation in response to smoking). Descriptions 
of the studies included are found in  Table S4. 

 



 

 

 Table S4. Descriptions of the studies included in analysis of consistency of replication for DNA methylation-smoking associations 

(Refers to Main text Result item “Probe reliability impacts association testing”). Descriptives are derived from the original publications. 
Information on the 16 studies included in the meta-analysis by Joehanes et al., (2016) is individually listed. 

Publication Cohort 
Sample 
Origin 

N (% 
smokers) 

% male 
Age; mean 
(SD), where 

available 

N probes 
significant* 

N probes with 
available 

reliability data 
Additional Notes 

Zellinger et al., 
(2013) 

KORA F3 
and F4 

Whole Blood 
1011 (26.0) 

and 468 (50.4) 
60.3 and 

49.4 
56.96 (46-76) 187 174 

sites replicated 
across F3 and F4 

Besingi et al., 
(2014) 

NSPHS Whole Blood 421 (10.2) 53.0 14 - 94 95 84  

Dogan et al., (2014) FACHS PBMCs 111 (45.0) 0.0 48.1 +/- 7 910 840 
African American 

participants 

Guida et al., (2015) 
EPIC and 
NOWAC 

Buffy coat 745 (23.8) 0.0 
53.1 (7.4); 
55.4 (4.3) 

461 431  

Dogan et al., (2017) FHS Buffy coat 1597 (7.6) 54.9 
62.0 - 67.7 
(6.5- 8.6) 

525 482 
current vs non-

smoker 

Wilson et al., 
(2017) 

KORA S4/F4 whole blood 1344 (20.38) 58.1 
50.8 (7.8) - 
55.1 (9.0) 

590 557  

Joehanes et al., 
(2016); meta-
analysis 
comprising 16 
cohorts (listed 
individually); each 
cohort treated as 
an individual study 
for current 
analysis 
 
 
 
 
 
 
 
 

     2,623** 2,441  

ARIC Buffy coat 2848 (25.3) 36.4 56.2 (5.8)   African American 
participants 

GTP Whole Blood 286 (32.9) 29.0 43.4 (11.7)   African American 
participants 

CHS AA Whole Blood 192 (15.6) 34.9 70.4 (4.9)   African American 
participants 

GENOA Buffy coat 420 (18.3) 28.8 58.7 (7.9)   African American 
participants 

FHS Whole Blood 2648 (10.3) 45.7 62.5 (7.8)   European American 
participants 

KORA F4 Whole Blood 1797 (14.6) 48.7 57.0 (7.0)   European American 
participants 

GOLDN CD4+ 992 (7.4) 47.8 44 (13)   European American 
participants 

LBC 1921 Whole Blood 445 (7.0) 39.6 79.2 (0.5)   European American 
participants 



 

 

Publication Cohort 
Sample 
Origin 

N (% 
smokers) 

% male 
Age; mean 
(SD), where 

available 

N probes 
significant* 

N probes with 
available 

reliability data 
Additional Notes 

 
 
  

LBC 1936 Whole Blood 920 (11.2) 50.5 69.5 (0.7)   European American 
participants 

NAS Whole Blood 644 (4.0) 100.0 68.2 (6.1)   European American 
participants 

Rotterdam Whole Blood 686 (24.6) 43.6 58.0 (6.8)   European American 
participants 

Inchianti Whole Blood 508 (9.8) 45.1 58.9 / 16.8   European American 
participants 

CHS EA Whole Blood 184 (12.5) 44.0 74.1 (4.2)   European American 
participants 

EPIC-Norfolk Buffy coat 1183 (16.1) 49.6 58.3 (8.4)   European American 
participants 

MESA CD14+ 1256 (9.1) 48.6 65 (8)   
European American, 
African American and 
Hispanic participants 

EPIC Buffy coat 898 (21.8) 0.0 48.9 (8.8)   European American 
participants 

 
* as identified by Study Authors 
**significant at α = 1x10-7 level 
 

 



 

 

Correlation of methylation with gene expression.  Each probe in the Dunedin 450K 
methylation dataset was correlated with each probeset from the Dunedin PrimeView gene expression 
dataset using Spearman’s rank correlation approach.  To control for technical variation in the gene 
expression data, we regressed out the following microarray-based quality metrics described by Peters et 
al.38: mean of positive match probesets, mean of positive control probesets, standard deviation of positive 
control probesets, mean of negative control probesets, standard deviation of negative control probesets, 
mean of all probesets, standard deviation of all probesets, and relative log expression mean of all 
probesets, along with sex, array batch and RIN.  To control for technical variation in the methylation data, 
we regressed out the first 32 principal components calculated from the control probes on the arrays.  For 
both datasets, we controlled for cell type composition by regressing out white cell-type counts measured 
using flow cytometry (Sysmex Corporation, Japan) in whole blood samples taken concurrently with the 
DNA and RNA samples.  Methylation probes that overlapped the transcription start site of at least one 
isoform of each gene represented by a gene expression probeset were kept for subsequent analysis. For 
each methylation probe, the gene expression probeset with the highest Spearman correlation coefficient 
was retained as the representative probeset for the expression level of that gene.  Thus, each methylation 
probe is reported as correlated with a single gene expression probeset.  A methylation-expression 
correlation coefficient was considered significant if it had a p-value <= 1x10-7. 

Determination of the number of replicates needed to identify reliable probes.  The 350 
samples used for the reliability analysis were randomly ordered.  Reliability was calculated on growing 
subsets of the data that were needed to consistently identify probes that had a reliability >= 0.75 in the full 
set of 350 samples (Figure S10).   

 

Figure S10: Simulation of the number of replicate BeadChips needed to identify 
reliable probes. Simulations suggests that 25 replicates would be sufficient to capture 
80% of the probes with reliability > 0.75 observed in the dataset of 350.   
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