
Supplementary Information: Goslin - A
Grammar of Succinct Lipid Nomenclature

Dominik Kopczynski1,*, Nils Hoffmann1,*, Bing Peng1,2 and

Robert Ahrends3,�

1Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.,
44139 Dortmund, Germany

2Division of Rheumatology, Department of Medicine, Solna,
Karolinska Institutet and Karolinska University Hospital, 17176

Stockholm, Sweden
3University of Vienna, Department of Analytical Chemistry, 1090

Vienna, Austria
*Shared first authors

�Robert.Ahrends@univie.ac.at

Contents

1 Web Application and REST API 2

2 C++ Implementation 9

3 Python Implementation 12

4 R Implementation 16

5 Java Implementation 19

6 Goslin Object Model 23

7 List of Supported Lipids 24

S1

1 Web Application and REST API

Interactive Usage

The interactive grammar of succinct lipid nomenclatures (Goslin) web application is
available at https://apps.lifs.isas.de/goslin. It provides two forms to i) upload
a file containing one lipid name per line (see Supplementary Figure S1), or ii) upload
a list of lipid names, defined by the user in an interactive form (see Supplementary
Figure S2). The latter form also allows pasting lists of lipid names directly from the
clipboard with CTRL+V. Both forms provide feedback for issues concerning every pro-
cessed lipid, such as invalid names or typos (see Supplementary Figure S3), to allow
the user to cross-check their data before proceeding.

Figure S1: Goslin web application submission form for text files with one lipid name
per row.

S2

Figure S2: Goslin web application submission form for user-defined lipid names.

Figure S3: Goslin web application submission form for user-defined lipid names pro-
vides feedback for unknown or unsupported names and parts thereof.

S3

Figure S4: Parsing results are displayed as ’cards’ for every lipid name. Clicking on a
card opens it and shows details of the according lipid.

After successful validation, the validated lipids are returned in overview cards (see
Supplementary Figure S4), detailing their LipidMAPS classification1, cross-links to
SwissLipids2 and/or LipidMAPS or HMDB3. Additionally, the cards show summary
information about the number of carbon atoms, double bonds, hydroxylations and
detailed information, such as double bond position, long-chain-base status, and the
bond type of the fatty acyl to the head group for each fatty acyl, if available (see
Supplementary Figure S5) .

S4

Figure S5: Each result card displays summary and detail information about a lipid.
Depending on the lipid level, this can include information about each individual fatty
acyl. Cross-links to SwissLipids and LipidMAPS are shown where a normalized lipid
name could be matched unambiguously against the normalized shorthand names of
SwissLipids and / or LipidMAPS lipids.

The source code for the web application and instructions to build it as a Docker con-
tainer are available at https://github.com/lifs-tools/goslin-webapp under the
terms of the open source Apache license version 2.

S5

Programmatic access via the REST API

An interactive documentation for the representational state transfer (REST) applica-
tion programming interface (API) of the Goslin web application is available at https:
//apps.lifs.isas.de/goslin/swagger-ui.html (see Supplementary Figure S6). To
illustrate its usage, we will briefly show a small example how a user can access the
REST API with a standard hypertext transfer protocol (HTTP) client.

Figure S6: The Goslin web application provides an interactive documentation for its
REST API to simplify programmatic access.

The Structure for the request consists of a JavaScript object notation (JSON) object {}
enclosing two lists, with the names lipidNames and grammars. Acceptable values
for grammars are: LIPIDMAPS, GOSLIN, GOSLIN_FRAGMENTS, SWISSLIPIDS, and HMDB. A
complete list is available from the interactive REST API documentation’s Models sec-
tion under ValidationRequest. Both fields in the ValidationRequest accept comma-
separated entries, enclosed in double quotes:

{
"lipidNames": [
"Cer(d18:1/16:1(6Z))"

],
"grammars": [
"LIPIDMAPS"

]
}

Sending the HTTP POST request with curl as an HTTP client looks as follows:

curl -X POST "https://apps.lifs.isas.de/goslin/rest/validate" -H "accept: */*" -H

S6

"Content-Type: application/json" -d "{ \"lipidNames\": [
\"Cer(d18:1/16:1(6Z))\"], \"grammars\": [\"LIPIDMAPS\"]}"

The REST API will return the following result for the request, with a HTTP response
code of 200 (OK). This result returns a map of properties for each lipid name that was
parsed. If at least one name is not parseable, the REST API will return a response
code of 400 (Client error), together with the same results reponse object. In that case,
the failedToParse field in the response will contain the number of lipid names that
could not be parsed. For those results where no grammar was applicable, the grammar
field will contain the string NOT_PARSEABLE.¸In other cases, that field will contain the
last grammar used to parse the lipid name and the messages field will contain a list of
validation messages that help to narrow down the offending bits in the lipid name.

{
"results": [
{
"lipidName": "Cer(d18:1/16:1(6Z))",
"grammar": "LIPIDMAPS",
"messages": [],
"lipidAdduct": {
"lipid": {
"lipidCategory": "SP",
"lipidClass": "CER",
"headGroup": "Cer",
"info": {
"type": "STRUCTURAL",
"name": "Cer",
"position": -1,
"lipidFaBondType": "ESTER",
"lcb": false,
"modifications": [],
"doubleBondPositions": {},
"level": "STRUCTURAL_SUBSPECIES",
"ncarbon": 34,
"nhydroxy": 2,
"ndoubleBonds": 2

},

The response part also reports the normalized name (goslinName), as well as classi-
fication information using the LipidMAPS category and class associated to the parsed
lipid.

},
"goslinName": "Cer 18:1;2/16:1(6Z)",
"lipidMapsCategory": "SP",
"lipidMapsClass": "SP0203",

The response also reports information on the fatty acyls detected in the lipid name. In
this case, a long chain base (LCB) (in the ceramide) has been detected. The name
given here as an example was classified on structural subspecies level, since the LCB
contains one double bond, but without positional E/Z information. The fatty acyl FA1
at the sn2 position does report E/Z information for its double bond, thus FA1 is an
isomeric fatty acyl. Overall, the lipid can thus be classified as a structural subspecies.

"fattyAcids": {

S7

"LCB": {
"type": "STRUCTURAL",
"name": "LCB",
"position": 1,
"lipidFaBondType": "ESTER",
"lcb": true,
"modifications": [],
"doubleBondPositions": {},
"ncarbon": 18,
"nhydroxy": 2,
"ndoubleBonds": 1

},
"FA1": {
"type": "ISOMERIC",
"name": "FA1",
"position": 2,
"lipidFaBondType": "ESTER",
"lcb": false,
"modifications": [],
"doubleBondPositions": {
"6": "Z"

},
"ncarbon": 16,
"nhydroxy": 0,
"ndoubleBonds": 1

}
}

Finally, the response reports the total number lipid names received, the total number
parsed and the total number of parsing failures.

],
"totalReceived": 1,
"totalParsed": 1,
"failedToParse": 0

}

S8

2 C++ Implementation

This is the documentation for the Goslin reference implementation for C++. Please be
aware, that the documentation is dedicated to developers of tools for computational
lipidomics who want to use cppgoslin within their project. If you are interested to run
Goslin as a user, please read Supplementary Section 1. The cppgoslin implementa-
tion has been developed with the following objectives:

1. To ease the handling with lipid names for developers working on mass spectro-
metry-based lipidomics tools.

2. To offer a tool that unifies all existing dialects of lipid names.

It is an open-source package under the MIT License available via github1. For a
detailed structure of the implementation, read Supplementary Section 6.

Prerequisites

The cppgoslin library needs a GNU g++ compiler version with support for the C++ 11
standard. It comes with simple makefiles for easy compilation and installation. You
need the following packages:

$ g++ (compiler)
$ make

To install the library globally on your system, simply type:

$ [sudo] make install

Be sure that you have root permissions. Here, the library and headers are installed
into the /usr directory. If you want to change that location, you have to edit the first
line within the makefile.

Testing cppgoslin

We set up more than 150 000 single unit and integration tests, to ensure that cppgoslin
is parsing correctly. To run the tests, please type:

$ make test
$ make runtests

If a test should fail, please contact the developers2.

1https://github.com/lifs-tools/cppgoslin
2goslin@lipidomics.at

S9

Using cppgoslin

The two major functions within cppgoslin are the parsing and printing of lipid names. A
minimalistic example will demonstrate both functions the easiest way. In the examples
folder, you will find the lipid_name_parser.cpp file. Compile it by typing:

$ cd examples
$ make
$./lipid_name_parser

Here is the minimalistic C++ code:
#include "cppgoslin/cppgoslin.h"
#include <iostream>
int main(){

LipidParser parser;
try {

LipidAdduct* lipid = parser.parse("PA(12:0_14:0)");
cout << lipid->get_lipid_string() << endl;
delete lipid;

}
catch(LipidException& e){

// handle the exception
cout << e.what() << endl;

}
return 0;

}

To handle unexpected behavior, the parsing command should always be placed within
a try/catch block and the LipidAdduct pointer should be deleted after usage to avoid
memory leaks. Be aware when changing the installation directory, you also have to
change the library directory within the examples makefile.

To retrieve a parsed lipid name on a higher hierarchy of lipid level, simply define the
level when requesting the lipid name:

#include "cppgoslin/cppgoslin.h"
#include <iostream>
int main(){

LipidParser parser;
try {

// providing a lipid name on isomeric subspecies level
LipidAdduct* lipid = parser.parse("PA(12:1(5Z)/14:0)");
cout << lipid->get_lipid_string(ISOMERIC_SUBSPECIES) << endl;
cout << lipid->get_lipid_string(STRUCTURAL_SUBSPECIES) << endl;
cout << lipid->get_lipid_string(MOLECULAR_SUBSPECIES) << endl;
cout << lipid->get_lipid_string(SPECIES) << endl;
cout << lipid->get_lipid_string(CLASS) << endl;
cout << lipid->get_lipid_string(CATEGORY) << endl;
delete lipid;

}
catch(LipidException& e){

// handle the exception
cout << e.what() << endl;

}
return 0;

}

S10

Requesting a lipid name on a lower level than the provided will throw an exception.
This functionality especially enables an easy way for computing data for histograms
on lipid class or category level.

To increase the parsing performance, one can pick a parser for only one specific
grammar:

GoslinParser goslin_parser;
GoslinFragmentParser goslin_fragment_parser;
LipidMapsParser lipid_maps_parser;
SwissLipidsParser swiss_lipids_parser;
HmdbParser hmdb_parser;

S11

3 Python Implementation

This is the documentation for the Goslin reference implementation for Python 3. Please
be aware, that the documentation is dedicated to developers of tools for computational
lipidomics who want to insert pygoslin into their project. If you are interested to run
Goslin as a user, please read Section 1. The pygoslin implementation has been de-
veloped with the following objectives:

1. To ease the handling with lipid names for developers working on mass spectro-
metrybased lipidomics tools.

2. To offer a tool that unifies all existing dialects of lipid names.

It is an open-source package under the MIT License available via github3. For a
detailed structure of the implementation, read Supplementary Section 6.

Prerequisites

The pygoslin package uses Python’s package management system pip to create an
isolated and defined build environment. You need Python >=3.5 and the following
packages to build the pygoslin package:

python3-pip
cython (module for Python 3)
make (optional)

To install the package globally in your Python distribution, simply type:

$ [sudo] make install

or

$ [sudo] python setup.py install

Be sure that you have root permissions.

Testing pygoslin

We set up more than 150 000 single unit and integration tests, to ensure that pygoslin
is parsing correctly. To run the tests, please type:

$ make test

or

3https://github.com/lifs-tools/pygoslin

S12

$ python3 -m unittest pygoslin.tests.FattyAcidTest
$ python3 -m unittest pygoslin.tests.ParserTest
$ python3 -m unittest pygoslin.tests.SwissLipidsTest
$ python3 -m unittest pygoslin.tests.GoslinTest
$ python3 -m unittest pygoslin.tests.LipidMapsTest
$ python3 -m unittest pygoslin.tests.HmdbTest

Using pygoslin

The two major functions within pygoslin are the parsing and printing of lipid names.
You have several options, to access these functions. This example will demonstrate
both functions the easiest way. Open a Python shell and type in:

from pygoslin.parser.Parser import LipidParser

lipid_parser = LipidParser() # setup the parser
lipid_name = "PE 16:1-12:0"

try:
lipid = lipid_parser.parse(lipid_name) # start parsing
print(lipid.get_lipid_string())

except Exception as e:
print(e) # handle the exception

For all unexpected states, an exception is being raised. Be aware, that this method
uses all available grammars in turn until a lipid name can be parsed successfully by
a parser. Currently, five grammars are available, namely: Goslin, GoslinFragment,
LipidMaps, SwissLipids, HMDB. To use a specific grammar / parser, you can use the
following code:

using solely the Goslin parser
from pygoslin.parser.Parser import GoslinParser
goslin_parser = GoslinParser()

lipid_name = "Cer 18:1;2/12:0"
try:

lipid = goslin_parser.parse(lipid_name)
print(lipid.get_lipid_string())

except Exception as e:
print(e)

using solely the Goslin Fragment parser
from pygoslin.parser.Parser import GoslinFragmentParser
goslin_fragment_parser = GoslinFragmentParser()

lipid_name = "Cer 18:1;2/12:0"
try:

lipid = goslin_fragment_parser.parse(lipid_name)
print(lipid.get_lipid_string())

except Exception as e:
print(e)

S13

using solely the LipidMaps parser
from pygoslin.parser.Parser import LipidMapsParser
lipid_maps_parser = LipidMapsParser()

lipid_name = "Cer(d18:1/12:0)"
try:

lipid = lipid_maps_parser.parse(lipid_name)
print(lipid.get_lipid_string())

except Exception as e:
print(e)

using solely the SwissLipids parser
from pygoslin.parser.Parser import SwissLipidsParser
swiss_lipids_parser = SwissLipidsParser()

lipid_name = "Cer(d18:1/12:0)"
try:

lipid = swiss_lipids_parser.parse(lipid_name)
print(lipid.get_lipid_string())

except Exception as e:
print(e)

using solely the HMDB parser
from pygoslin.parser.Parser import HmdbParser
hmdb_parser = HmdbParser()

lipid_name = "Cer(d18:1/12:0)"
try:

lipid = hmdb_parser.parse(lipid_name)
print(lipid.get_lipid_string())

except Exception as e:
print(e)

To be as generic as possible, no treatment of validation of the fragment is conducted
within the GoslinFragmentParser.

To retrieve a parsed lipid name on a higher hierarchy of lipid level, simply define the
level when requesting the lipid name:

report on different lipid hierarchies
from pygoslin.parser.Parser import *
from pygoslin.domain.LipidLevel import LipidLevel

parser = LipidParser()
providing a lipid name on isomeric subspecies level
lipid_name = "PA 18:1(5Z)/12:0"

S14

try:
lipid = parser.parse(lipid_name)
print(lipid.get_lipid_string(LipidLevel.ISOMERIC_SUBSPECIES))
print(lipid.get_lipid_string(LipidLevel.STRUCTURAL_SUBSPECIES))
print(lipid.get_lipid_string(LipidLevel.MOLECULAR_SUBSPECIES))
print(lipid.get_lipid_string(LipidLevel.SPECIES))
print(lipid.get_lipid_string(LipidLevel.CLASS))
print(lipid.get_lipid_string(LipidLevel.CATEGORY))

except Exception as e:
print(e)

This functionality especially enables an easy way for computing data for histograms
on lipid class or category level. Requesting a lipid name on a lower level than the
provided will raise an exception.

S15

4 R Implementation

This project is a parser, validator and normalizer implementation for shorthand lipid
nomenclatures, using the Grammar of Succinct Lipid Nomenclatures project for the R
language 4.

Goslin defines multiple grammars compatible with ANTLRv4 for different sources of
shorthand lipid nomenclature. This allows to generate parsers based on the defined
grammars, which provide immediate feedback whether a processed lipid shorthand
notation string is compliant with a particular grammar, or not.

rgoslin uses the Goslin grammars and the cppgoslin parser to support the following
general tasks:

1. Facilitate the parsing of shorthand lipid names dialects.

2. Provide a structural representation of the shorthand lipid after parsing.

3. Use the structural representation to generate normalized names.

rgoslin is an open-source package available via github5.

Prerequisites

This project uses the R programming language. To be able to use it, please install
R6 following the instructions for your particular operating system. rgoslin is based on
native C++ code (via cppgoslin). It therefore requires additional tools on your system
to compile and install it. Please see the Rcpp FAQ7, question 1.3 for installation details
for your specific operating system.

Install the ‘devtools‘ package with the following command.
if(!require(devtools)) { install.packages("devtools") }

Run
install_github("lifs-tools/rgoslin")

to install from the github repository.

This will install the latest, potentially unstable development version of the package
with all required dependencies into your local R installation.

If you want to use a proper release version, referenced by a Git tag (here: v1.0.0)
install the package as follows:

4https://www.r-project.org/
5https://github.com/lifs-tools/rgoslin
6https://cloud.r-project.org/
7https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-FAQ.pdf

S16

install_github("lifs-tools/rgoslin", ref="v1.0.0")

If you have cloned the code locally, use devtools as follows. Make sure you set the
working directory to where the API code is located. Then execute

library(devtools)
install(".")

Testing rgoslin

rgoslin uses the testthat R package to provide unit tests for the lipid name parsing
methods. The tests are located in the tests folder. To run the tests, execute

library(devtools)
test()

Using rgoslin

To load the package, start an R session and type

library(rgoslin)

Type the following to see the package vignette / tutorial:

vignette(’introduction’, package = ’rgoslin’)

In order to use the provided translation functions of rgoslin, you first need to load the
library.

library(rgoslin)

To check, whether a given lipid name can be parsed by any of the parsers supplied by
cppgoslin, you can use the isValidLipidName method. It will return TRUE if the given
name can be parsed by any of the available parsers and FALSE if the name was not
parseable.

isValidLipidName("PC 32:1")

Using parseLipidName with a lipid name returns a named vector of properties of the
parsed lipid name.

pc32vector <- parseLipidName("PC 32:1")
pc32df <- as.data.frame(t(pc32vector))

If you want to set the grammar to parse against manually, this is also possible:

originalName <- "TG(16:1(5E)/18:0/20:2(3Z,6Z))"
tagVec <- rgoslin::parseLipidNameWithGrammar(originalName, "LipidMaps")
tagDf <- as.data.frame(t(tagVec))

S17

Currently, the following grammars are available: LipidMaps, SwissLipids, Goslin, Goslin-
Fragments, HMDB.

If you want to parse multiple lipid names, use the parseLipidNames method with a
vector of lipid names. This returns a data frame of properties of the parsed lipid
names with one row per lipid.

multipleLipidNames <- parseLipidNames(c("PC 32:1","LPC 34:1","TG(18:1_18:0_16:1)"))

Finally, if you want to parse multiple lipid names and want to use one particular gram-
mar:

originalNames <- c("PC 32:1","LPC 34:1","TAG 18:1_18:0_16:1")
multipleLipidNamesWithGrammar <- parseLipidNamesWithGrammar(originalNames,

"Goslin")

S18

5 Java Implementation

This project is a parser, validator and normalizer implementation for shorthand lipid
nomenclatures, based on Goslin for the Java programming language8.

Goslin defines multiple grammars compatible with ANTLRv4 for different sources of
shorthand lipid nomenclature. This allows to generate parsers based on the defined
grammars, which provide immediate feedback whether a processed lipid shorthand
notation string is compliant with a particular grammar, or not.

Here, jgoslin uses the Goslin grammars and the generated parsers to support the
following general tasks:

1. Facilitate the parsing of shorthand lipid names dialects.

2. Provide a structural representation of the shorthand lipid after parsing.

3. Use the structural representation to generate normalized names.

Furthermore, jgoslin is an open-source package available via github9.

Prerequisites

This project is based on Java 11. To use it, you need a Java Runtime Environment
(JRE) installed on your system. If you want to use the library in your own Java projects,
you need a Java Development Kit (JDK) installed on your system. Please consult
https://adoptopenjdk.net/installation.html for installation options and instruc-
tions for your operating system.

Installation instructions

Building the project and generating client code from the command-line

In order to build the client code and run the unit tests, execute the following command
from a terminal:

./mvnw install

or on Windows:

mvnw.bat install

This compiles and tests the Java library.

8https://go.java/
9https://github.com/lifs-tools/jgoslin

S19

Testing jgoslin

Here, jgoslin comes with a comprehensive collection of unit (JUnit 5), integration (JU-
nit 5) and acceptance (Cucumber) tests. You can run all of them as follows:

./mvnw verify

Using the command-line interface

The cli sub-project provides a command line interface (CLI) for parsing of lipid names
either from the command line or from a file with one lipid name per line.

After building the project as mentioned above with ./mvnw install, the cli/target
folder will contain the jgoslin-cli-<VERSION>-bin.zip file. Alternatively, you can
download the latest cli zip file from Bintray: https://bintray.com/lifs/maven/jgoslin-cli[Search
for latest jgoslin-cli-<VERSION>-bin.zip artefact] and click to download.

In order to run the validator, unzip that file, change into the unzipped folder and run
java -jar jgoslin-cli-<VERSION>.jar

to see the available options.

To parse a single lipid name from the command line using all available parsers, run
java -jar jgoslin-cli-<VERSION>.jar -n "Cer(d18:1/20:2)"

The output will tell you what is done and will echo a table of the results to the terminal:
Parsing lipid identifier: Cer(d18:1/20:2)
Parsing lipid identifier: Cer(d18:1/20:2)
Parsing lipid maps identifier: Cer(d18:1/20:2)
Parsing swiss lipids identifier: Cer(d18:1/20:2)
Parsing HMDB lipids identifier: Cer(d18:1/20:2)
Echoing output to stdout.
Normalized Name Original Name Grammar Message Lipid Maps Category Lipid Maps Main

Class Functional Class Abbr Functional Class Synonyms Level Total #C Total #OH
Total #DB LCB SN Position LCB #C LCB #OH LCB #DB LCB Bond Type FA1 SN Position
FA1 #C FA1 #OH FA1 #DB FA1 Bond Type

Cer(d18:1/20:2) GOSLIN no viable alternative at input ’Cer(’
Cer(d18:1/20:2) GOSLIN_FRAGMENTS no viable alternative at input ’Cer(’

Cer 18:1;2/20:2 Cer(d18:1/20:2) LIPIDMAPS Sphingolipid [SP]
N-acyl-4-hydroxysphinganines (phytoceramides) [SP0203] [Cer] [Cer, Ceramide]
STRUCTURAL_SUBSPECIES 38 2 3 1 18 2 1 ESTER 2 20 0 2 ESTER

Cer 18:1;2/20:2 Cer(d18:1/20:2) SWISSLIPIDS Sphingolipid [SP]
N-acyl-4-hydroxysphinganines (phytoceramides) [SP0203] [Cer] [Cer, Ceramide]
STRUCTURAL_SUBSPECIES 38 2 3 1 18 2 1 ESTER 2 20 0 2 ESTER

Cer 18:1;2/20:2 Cer(d18:1/20:2) HMDB Sphingolipid [SP]
N-acyl-4-hydroxysphinganines (phytoceramides) [SP0203] [Cer] [Cer, Ceramide]
STRUCTURAL_SUBSPECIES 38 2 3 1 1821 ESTER 2 20 0 2 ESTER

To parse multiple lipid names from a file via the commmand line, run

S20

java -jar jgoslin-cli-<VERSION>.jar -f lipidNames.txt

To use a specific grammar, instead of trying all, run
java -jar jgoslin-cli-<VERSION>.jar -f lipidNames.txt -g GOSLIN

To write output to the tab-separated output file ’goslin-out.tsv’ instead of to the termi-
nal, run

java -jar jgoslin-cli-<VERSION>.jar -f lipidNames.txt -g GOSLIN -o

If you want to use all available grammars, simply omit the -g GOSLIN argument.
Please note that you will then receive N times M lines in the output file, where N
is the number of lipid names and M the number of grammars.

Using jgoslin

To integrate jgoslin in your own projects as a library, please see the README file at
https://github.com/lifs-tools/jgoslin for more details.

The following snippet shows how to parse a shorthand lipid name with the different
parsers:

import de.isas.lipidomics.domain.*; // contains Domain objects like LipidAdduct,
LipidSpecies ...

import de.isas.lipidomics.palinom.*; // contains the parser implementations
...

String ref = "Cer(d18:1/20:2)";
try {

// use the SwissLipids parser
SwissLipidsVisitorParser slParser = new SwissLipidsVisitorParser();
LipidAdduct sllipid = slParser.parse(ref);
System.out.println(sllipid.getLipidString()); // to print the lipid name to

the console
} catch (ParsingException pe) {
// catch this for any syntactical issues with the name during parsing with a

particular parser
pe.printStackTrace();

} catch (ParseTreeVisitorException ptve) {
// catch this for any structural issues with the name during parsing with a

particular parser
ptve.printStackTrace();

}

//alternatively, use the other parsers. Don’t forget to place try catch blocks
around the following lines, as for the SwissLipids parser example
// use the LipidMAPS parser
LipidMapsVisitorParser lmParser = new LipidMapsVisitorParser();
LipidAdduct lmlipid = lmParser.parse(ref);
// use the shorthand notation parser GOSLIN
GoslinVisitorParser goslinParser = new GoslinVisitorParser();
LipidAdduct golipid = goslinParser.parse(ref);
// use the shorthand notation parser with support for fragments

GOSLIN_FRAGMENTS

S21

GoslinFragmentsVisitorParser goslinFragmentsParser = new
GoslinFragmentsVisitorParser();

LipidAdduct gflipid = goslinFragmentsParser.parse(ref);

To retrieve a parsed lipid name on a higher hierarchy of lipid level, simply define the
level when requesting the lipid name:

System.out.println(sllipid.getLipidString(LipidLevel.CATEGORY));
System.out.println(sllipid.getLipidString(LipidLevel.CLASS));
System.out.println(sllipid.getLipidString(LipidLevel.SPECIES));
System.out.println(sllipid.getLipidString(LipidLevel.MOLECULAR_SUBSPECIES));
System.out.println(sllipid.getLipidString(LipidLevel.STRUCTURAL_SUBSPECIES));
System.out.println(sllipid.getLipidString(LipidLevel.ISOMERIC_SUBSPECIES)); //

will throw a ConstraintViolationException since this lipid is only on
structural subspecies level

This functionality allows easy computation of aggregate statistics of lipids on lipid
class, category or arbitrary levels. Requesting a lipid name on a lower level than the
provided will raise an exception.

For an overview of the domain model used by jgoslin, please see Supplementary
Section 6.

S22

6 Goslin Object Model

Adduct

adductString: String
charge: Integer

LipidAdduct

lipid: LipidSpecies
adduct: Adduct
fragment: Fragment

Fragment

name: String

LipidSpecies

head_group: String
lipid_category: LipidCategory
lipid_class: LipidClass
info: LipidSpeciesInfo
fa: Dict<string, FattyAcid>

FattyAcid

num_carbon: Integer
num_double_bonds: Integer
num_hydroxyl: Integer
position: Integer
name: String
lipid_fa_bond_type: LipidFaBondType
lcb: Bool
double_bond_positions: Dict<Integer, String>

LipidSpeciesInfo

lipid_level: LipidLevel

LipidMolecularSubspecies

LipidStructuralSubspecies

LipidIsomericSubspecies

<enumeration>
LipidCategory

GL
GP
SP
ST
FA
PK
SL

<enumeration>
LipidClass

CER
PA

MAG
...

<autogenerated>

<enumeration>
LipidLevel

CATEGORY
CLASS

SPECIES
MOLECULAR_SUBSPECIES
STRUCTURAL_SUBSPECIES

ISOMERIC_SUBSPECIES

<enumeration>
LipidFaBondType

ESTER
ETHER_PLASMANYL
ETHER_PLASMENYL

lipid-list.csv

Figure S7: Goslin object model.

All goslin implementations are implementing the goslin object model as illustrated in
Supplementary Figure S7. The classes LipidCategory, LipidLevel, LipidClass,
and LipidFaBondType are predefined enumerations. Here, LipidClass is being gen-
erated automatically from a list containing lipid information (name, description, cate-
gory, abbreviation, synonyms) for all implementations, see Supplementary Table S1
for details. This especially eases the maintenance and ensures that the goslin imple-
mentations have the same data base. The main class unifying all classes and being
provided by the parsers is LipidAdduct. It contains information about the pure lipid,
the adduct as well as the fragment (if defined). The different lipid classes inherit from
each other in a hierarchical fashion as defined by Liebisch et al.4. A dictionary with
the class LipidSpecies is storing all its associated fatty acyl chains which are defined
within the class FattyAcid. For storing the cummulated information on species level
for the carbon length, double bonds, etc, the class LipidSpeciesInfo is utilized.

S23

7 List of Supported Lipids

Table S1: List of supported lipids, lipid classes and their normalized abbreviations

Category Description Abbreviation

Fatty acyls

Other Docosanoids 10-HDoHE
Epoxyeicosatrienoic acids 11(12)-EET
Hydroxy/hydroperoxyeicosatetraenoic acids 11,12-DHET
Other Docosanoids 11-HDoHE
Hydroxy/hydroperoxyeicosatetraenoic acids 11-HETE
Other Octadecanoids 12(13)-EpOME
Hydroxy/hydroperoxyeicosapentaenoic acids 12-HEPE
Hydroxy/hydroperoxyeicosatetraenoic acids 12-HETE
Hydroxy/hydroperoxyeicosatrienoic acids 12-HHTrE
Fatty acids and conjugates 12-OxoETE
Other Octadecanoids 13-HODE
Other Octadecanoids 13-HOTrE
Epoxyeicosatrienoic acids 14(15)-EET
Other Eicosanoids 14(15)-EpETE
Hydroxy/hydroperoxyeicosatetraenoic acids 14,15-DHET
Hydroxy/hydroperoxyeicosapentaenoic acids 15-HEPE
Hydroxy/hydroperoxyeicosatetraenoic acids 15-HETE
Prostaglandins 15d-PGJ2
Other Docosanoids 16-HDoHE
Hydroxy/hydroperoxyeicosatetraenoic acids 16-HETE
Hydroxy/hydroperoxyeicosapentaenoic acids 18-HEPE
Epoxyeicosatrienoic acids 5(6)-EET
Hydroxy/hydroperoxyeicosatetraenoic acids 5,12-DiHETE
Lipoxins 5,6,15-LXA4
Hydroxy/hydroperoxyeicosatetraenoic acids 5,6-DiHETE
Hydroxy/hydroperoxyeicosapentaenoic acids 5-HEPE
Hydroxy/hydroperoxyeicosatetraenoic acids 5-HETE
Hydroxy/hydroperoxyeicosatetraenoic acids 5-HpETE
Fatty acids and conjugates 5-OxoETE
Epoxyeicosatrienoic acids 8(9)-EET
Hydroxy/hydroperoxyeicosatetraenoic acids 8,9-DHET
Other Docosanoids 8-HDoHE
Hydroxy/hydroperoxyeicosatetraenoic acids 8-HETE
Other Octadecanoids 9(10)-EpOME
Hydroxy/hydroperoxyeicosapentaenoic acids 9-HEPE
Hydroxy/hydroperoxyeicosatetraenoic acids 9-HETE
Other Octadecanoids 9-HODE
Other Octadecanoids 9-HOTrE
Unsaturated fatty acids AA
Fatty acyl carnitines CAR
Fatty acyl CoAs CoA
Unsaturated fatty acids DHA

S24

Category Description Abbreviation

Fatty acyls

Unsaturated fatty acids EPA
Fatty acids and conjugates FA
Fatty acyl FA
Wax monoesters FAHFA
Glycerophosphoethanolamine GP-NAE
Leukotrienes LTB4
Eicosanoid derivatives LTC4
Leukotrienes LTD4
Unsaturated fatty acids Linoleic acid
Maresins Maresin 1
Fatty amides NAE
Prostaglandins PGB2
Prostaglandins PGD2
Prostaglandins PGE2
Prostaglandins PGF2alpha
Prostaglandins PGI2
Straight chain fatty acids Palmitic acid
Resolvin Ds Resolvin D1
Resolvin Ds Resolvin D2
Resolvin Ds Resolvin D3
Resolvin Ds Resolvin D5
Thromboxanes TXB1
Thromboxanes TXB2
Thromboxanes TXB3
Fatty esters WE
Fatty acids and conjugates alpha-LA
Hydroxy/hydroperoxyeicosatetraenoic acids tetranor-12-HETE

Glycero-
lipids

Diacylglycerols DAG
Other Glycerolipids DGCC
Glycosyldiradylglycerols DGDG
Dihexosyldiacylglycerol DHDG
Monoacylglycerols MAG
Glycosyldiacylglycerols MGDG
Monohexosyldiacylglycerol MHDG
Glycosyldiradylglycerols SQDG
Glycosylmonoacylglycerols SQMG
Triacylglycerols TAG

Glycero-
phospho-
lipids

Glycosylglycerophospholipids 6-Ac-Glc-GP
Monoacylglycerophosphomonoradylglycerols BMP
CDP-diacylglycerols CDPDAG
Cardiolipins CL
Glycerophosphoinositolglycans CPA
Glycerophosphoglycerophosphoglycerols DLCL
Dimethylphosphatidylethanolamine DMPE
Glycosyldiradylglycerols Glc-DG
Diacylglycosylglycerophospholipids Glc-GP

S25

Category Description Abbreviation

Glycero-
phospho-
lipids

Lyso-CDP-diacylglycerol LCDPDAG
Lysodimethylphosphatidylethanolamine LDMPE
Lysomonomethylphosphatidylethanolamine LMMPE
Monoacylglycerophosphates LPA
Monoacylglycerophosphocholines LPC
Monoacylglycerophosphoethanolamines LPE
1Z-alkenylglycerophosphoglycerols LPG
Monoacylglycerophosphoinositols LPI
Monoacylglycerophosphoinositolglycans LPIM1
Glycerophosphoinositolglycans LPIM2
Glycerophosphoinositolglycans LPIM3
Glycerophosphoinositolglycans LPIM4
Glycerophosphoinositolglycans LPIM5
Glycerophosphoinositolglycans LPIM6
Lysophosphatidylinositol- mannosideinositolphos-
phate

LPIMIP

Lysophosphatidylinositol-glucosamine LPIN
Monoacylglycerophosphoserines LPS
Glycerophosphoglycerophosphoglycerols MLCL
Monomethylphosphatidylethanolamine MMPE
Glycerophosphoethanolamine NAPE
Diacylglycerophosphates PA
Oxidized glycerophosphocholines PC
Oxidized glycerophosphoethanolamines PE
Glycerophosphoethanolamines PE-NMe
Glycerophosphoethanolamines PE-NMe2
Glycerophosphoethanolamines PEt
Diacylglycerophosphoglycerols PG
Diacylglycerophosphoglycerophosphates PGP
Diacylglycerophosphoinositols PI
Diacylglycerophosphoinositolglycans PIM1
Glycerophosphoinositolglycans PIM2
Glycerophosphoinositolglycans PIM3
Glycerophosphoinositolglycans PIM4
Glycerophosphoinositolglycans PIM5
Glycerophosphoinositolglycans PIM6
Phosphatidylinositol mannoside inositol phosphate PIMIP
Diacylglycerophosphoinositol monophosphates PIP
Diacylglycerophosphoinositol bisphosphates PIP2
Glycerophosphoinositolbisphosphates PIP2[3’,4’]
Glycerophosphoinositolbisphosphates PIP2[3’,5’]
Glycerophosphoinositolbisphosphates PIP2[4’,5’]
Diacylglycerophosphoinositol trisphosphates PIP3
Glycerophosphoinositoltrisphosphates PIP3[3’,4’,5’]
Glycerophosphoinositolmonophosphates PIP[3’]
Glycerophosphoinositolmonophosphates PIP[4’]

S26

Category Description Abbreviation

Glycerophosphoinositolmonophosphates PIP[5’]
Diacylglyceropyrophosphates PPA
Diacylglycerophosphoserines PS
Diacylglycerophosphoserines PS-NAc
Other Glycerophospholipids PT
Glycerophosphonocholines PnC
Glycerophosphoinositolglycans PnE
Diacylglycerophosphomonoradylglycerols SLBPA

Saccharo-
lipids

Acyltrehaloses AC2SGL
Acyltrehaloses DAT
Acyltrehaloses PAT16
Acyltrehaloses PAT18

Sphingo-
lipids

Glycosphingolipids (3’-sulfo)LacCer
Glycosphingolipids (Fuc)iGb3Cer
Acylceramides 1-O-behenoyl-Cer
Acylceramides 1-O-carboceroyl-Cer
Acylceramides 1-O-cerotoyl-Cer
Acylceramides 1-O-eicosanoyl-Cer
Acylceramides 1-O-lignoceroyl-Cer
Acylceramides 1-O-myristoyl-Cer
Acylceramides 1-O-palmitoyl-Cer
Acylceramides 1-O-stearoyl-Cer
Acylceramides 1-O-tricosanoyl-Cer
Globoside Ac-O-9-GD1a
Globoside Ac-O-9-GT1b
Globoside Ac-O-9-GT3
Glycosphingolipids Branched-Forssman
Ceramide-1-phosphates C1P
N-acylsphingosines (ceramides) Cer
Ceramide 1-phosphates CerP
Glycosphingolipids DSGG
Ceramide phosphoethanolamines EPC
Simple Glc series FMC-5
Neutral glycosphingolipids FMC-6
Glycosphingolipids Forssman
Acidic glycosphingolipids Fuc(Gal)-GM1
Glycosphingolipids Fuc(Gal)Gal-

iGb4Cer
Glycosphingolipids Fuc-Branched-

Forssman
Globoside Fuc-GA1
Globoside Fuc-GD1b
Globoside Fuc-GM1
Globoside Fuc-GM1(NeuGc)
Glycosphingolipids Fuc-iGb3Cer

Sphingo-
lipids

Glycosphingolipids FucGalGb3Cer

S27

Category Description Abbreviation

Glycosphingolipids GA1
Glycosphingolipids GA2
Neutral glycosphingolipids GB4
Glycosphingolipids GD1
Ganglioside GD1a(d18:1(4E)) GD1a
Ganglioside GD1a alpha(d18:1(4E)) GD1a alpha
Globoside GD1a(NeuAc/NeuGc)
Globoside GD1a(NeuGc/NeuAc)
Globoside GD1a(NeuGc/NeuGc)
Ganglioside GD1b(d18:1(4E)) GD1b
Ganglioside GD1c(d18:1(4E)) GD1c
Globoside GD1c(NeuGc/NeuGc)
Glycosphingolipids GD2
Glycosphingolipids GD3
Glycosphingolipids GM1
Globoside GM1 alpha
Globoside GM1(NeuGc)
Ganglioside GM1b(d18:1(4E)) GM1b
Globoside GM1b(NeuGc)
Glycosphingolipids GM2
Globoside GM2(NeuGc)
Glycosphingolipids GM3
Gangliosides GM4
Glycosphingolipids GP1
Ganglioside GP1c(d18:1(4E)) GP1c
Ganglioside GP1c alpha(d18:1(4E)) GP1c alpha
Glycosphingolipids GQ1
Ganglioside GQ1b(d18:1(4E)) GQ1b
Ganglioside GQ1b alpha(d18:1(4E)) GQ1b alpha
Ganglioside GQ1c(d18:1(4E)) GQ1c
Glycosphingolipids GT1
Ganglioside GT1a(d18:1(4E)) GT1a
Ganglioside GT1a alpha(d18:1(4E)) GT1a alpha
Ganglioside GT1b(d18:1(4E)) GT1b
Globoside GT1b alpha
Globoside GT1b alpha(NeuGc)
Ganglioside GT1c(d18:1(4E)) GT1c
Glycosphingolipids GT2
Glycosphingolipids GT3
Globoside Gal(Fuc)-GA1
Globoside Gal(Fuc)-GD1b
Globoside Gal-GD1b
Glycosphingolipids Gal-iGb4Cer
Globoside GalGal-GD1b
Glycosphingolipids GalGalGalGb3Cer

Sphingo-
lipids

Glycosphingolipids GalGalGb3Cer

S28

Category Description Abbreviation

Globoside GalGalNAc-
GM1b(NeuGc)

Glycosphingolipids GalGb3Cer
Glycosphingolipids GalGb4Cer
Glycosphingolipids GalGlcNAc-

GalGb4Cer
Globoside GalNAc-GD1a
Globoside GalNAc-

GD1a(NeuAc/NeuGc)
Globoside GalNAc-

GD1a(NeuGc/NeuAc)
Globoside GalNAc-GM1
Globoside GalNAc-GM1b
Globoside GalNAc-

GM1b(NeuGc)
Globoside GalNAcGal(Fuc)-

GA1
Glycosphingolipids GalNAcGalGb3Cer
Glycosphingolipids Gb3
Glycosphingolipids Gb3Cer
Glycosphingolipids Gb4Cer
Glycosphingolipids GlcNAc-GalGb4Cer
Glycosphingolipids GlcNAcGb3Cer
Glycosphingolipids Globo-A
Glycosphingolipids Globo-B
Glycosphingolipids Globo-H
Glycosphingolipids Globo-Lex-9
Glycosphingolipids Hex2Cer
Neutral glycosphingolipids Hex3Cer
Glycosphingolipids HexCer
Ceramide phosphoinositols IPC
Sphinganines LCB
Sphingoid base 1-phosphates LCBP
Hexosylsphingosine LHexCer
Ceramides LSM
Globoside Lex-GM1
Phosphosphingolipids M(IP)2C
Phosphosphingolipids MIPC
Glycosphingolipids MSGG
Glycosphingolipids NOR1
Glycosphingolipids NOR2
Glycosphingolipids NORint
Glycosphingolipids NeuAc(alpha2-6)-

MSGG
Glycosphingolipids NeuAc(alpha2-8)-

MSGG

S29

Category Description Abbreviation

Sphingo-
lipids

Glycosphingolipids NeuAcGal-iGb4Cer
Glycosphingolipids NeuGc-GalGb4Cer
Globoside NeuGc-LacNAc-

GM1(NeuGc)
Glycosphingolipids NeuGcNeuGc-

GalGb4Cer
Glycosphingolipids Para-Forssman
Globoside SB1a
Glycosphingolipids SHex2Cer
Sulfoglycosphingolipids (sulfatides) SHexCer
Ceramide phosphocholines (sphingomyelins) SM
Globoside SM1a
Globoside SM1b
Globoside SO3-GM1(NeuGc)
Glycosphingolipids SO3-Gal-iGb4Cer
Glycosphingolipids SO3-GalGb4Cer
Glycosphingolipids SO3-Gb4Cer
Glycosphingolipids SO3-iGb4Cer
Glycosphingolipids SulfoGalCer
Glycosphingolipids i-Forssman
Glycosphingolipids iGb3Cer
Glycosphingolipids iGb4Cer

Sterols

Sterol esters SE
Steryl esters SE 27:1
Desmosterol Ester SE 27:2
Ergostadienol Ester SE 28:2
Ergosterol Ester SE 28:3
Stigmasterol Ester SE 29:2
Lanosterol Ester SE 30:2
Sterols ST
Cholesterol and derivatives ST 27:1;1
Desmosterol ST 27:2;1
Ergostadienol ST 28:2;1
Ergosterol ST 28:3;1
Stigmasterol ST 29:2;1
Lanosterol ST 30:2;1

Polyketides

Anacardic acids and derivatives ANACARD
Alkyl catechols and derivatives CATECHOL
Alkyl phenols and derivatives PHENOL
Alkyl resorcinols and derivatives RESORCINOL

S30

Acronyms

API application programming interface. 6, 7

CLI command line interface. 20

Goslin grammar of succinct lipid nomenclatures. 2, 3, 6, 9, 12, 16, 19, 23

HTTP hypertext transfer protocol. 6, 7

JDK Java Development Kit. 19

JRE Java Runtime Environment. 19

JSON JavaScript object notation. 6

LCB long chain base. 7

REST representational state transfer. 6, 7

References

[1] Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R. H.;
Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M. J. O.; Dennis, E. A. Update of
the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid
Research 2009, 50, S9–S14.

[2] Aimo, L.; Liechti, R.; Hyka-Nouspikel, N.; Niknejad, A.; Gleizes, A.; Götz, L.;
Kuznetsov, D.; David, F. P.; van der Goot, F. G.; Riezman, H.; Bougueleret, L.;
Xenarios, I.; Bridge, A. The SwissLipids knowledgebase for lipid biology. Bioinfor-
matics 2015, 31, 2860–2866.

[3] Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids
Research 2007, 35, D521–D526.

[4] Liebisch, G.; Vizcaíno, J. A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W. J.;
Schmitz, G.; Spener, F.; Wakelam, M. J. O. Shorthand notation for lipid structures
derived from mass spectrometry. Journal of Lipid Research 2013, 54, 1523–1530.

S31

