

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Protocol for Project Recovery: Cardiac Surgery - Leveraging Digital Platform for Efficient Collection of Longitudinal Patient-Reported Outcome Data Towards Improving Postoperative Recovery

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-036959
Article Type:	Protocol
Date Submitted by the Author:	13-Jan-2020
Complete List of Authors:	Mori, Makoto; Yale School of Medicine, Cardiac Surgery Brooks, Cornell; Yale School of Medicine, Cardiac Surgery Spatz, Erica; Yale University, Section of Cardiovascular Medicine; Yale University School of Medicine, Center for Outcomes Research and Evaluation Mortazavi, Bobak; Texas A&M University System, Computer Science and Engineering Dhruva, Sanket; University of California San Francisco Linderman, George; Yale School of Medicine Grab, Lawrence; Yale School of Medicine Zhang, Yawei; School of Public Health, Geirsson, Arnar; Yale School of Medicine Chaudhry, Sarwat; Yale School of Medicine Krumholz, Harlan; Yale School of Medicine,
Keywords:	Cardiac surgery < SURGERY, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Telemedicine < BIOTECHNOLOGY & BIOINFORMATICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title: Protocol for Project Recovery: Cardiac Surgery - Leveraging Digital
2	Platform for Efficient Collection of Longitudinal Patient-Reported Outcome Data
3	Towards Improving Postoperative Recovery
4	
5	Authors: Makoto Mori MD ^{1, 2} , Cornell Brooks II BA ¹ , Erica Spatz MD MHS ^{2, 3} ,
6	Bobak J Mortazavi PhD ⁴ , Sanket S. Dhruva MD MHS ^{5,6} , George C. Linderman
7	PhD ¹ , Lawrence A. Grab MBA ¹ , Yawei Zhang PhD MD ⁷ , Arnar Geirsson MD ¹ ,
8	Sarwat I. Chaudhry MD ⁸ , Harlan M. Krumholz MD SM ⁹
9	
10	Key word: Cardiac surgery, postoperative recovery, patient-centered outcome,
11	longitudinal, latent class
12	Affiliations:
13	¹ Section of Cardiac Surgery, Yale School of Medicine, New Haven, Connecticut
14	² Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New
15	Haven, Connecticut
16	³ Section of Cardiovascular Medicine, Department of Internal Medicine, Yale
17	School of Medicine, New Haven, Connecticut
18	⁴ Department of Computer Science and Engineering, Texas A&M University,
19	College Station, Texas
20	⁵ Department of Medicine, University of California San Francisco School of
21	Medicine, San Francisco, California
22	⁶ San Francisco VA Medical Center, San Francisco, California

/	

2		
3 4	23	⁷ Department of Environmental Health Sciences, Yale School of Public Health,
5 6	24	Department of Surgery, Yale School of Medicine, New Haven, Connecticut
7 8	25	⁸ Section of General Internal Medicine, Department of Medicine, Yale School of
9 10 11	26	Medicine, New Haven, Connecticut
12 13	27	⁹ Section of Cardiovascular Medicine, Department of Internal Medicine, Yale
14 15 16	28	School of Medicine and the Department of Health Policy and Management, Yale
16 17 18	29	School of Public Health, New Haven, Connecticut
19 20	30	
21 22	31	Corresponding author:
23 24	32	Harlan M. Krumholz, MD SM
25 26	33	Center for Outcomes Research and Evaluation (CORE)
27 28	34	1 Church Street, Suite 200, New Haven, Connecticut 06510
29 30	35	Telephone: 203-764-5885; Fax: 203-764-5653
31 32 33	36	Email: harlan.krumholz@yale.edu
34 35	37 38	
36 37	50	
38 39		
40 41		
42 43		
44 45		
46 47		
48		
49 50		
51		
52 53		
54 55		
56		
57 58		

Abstract (287/300)

41 Introduction

Improving postoperative patient recovery after cardiac surgery is a priority,
but our current understanding of individual variations in recovery and factors
associated with poor recovery is limited. We are using a health-information
exchange platform to collect patient-reported outcome measures (PROMs) and
wearable device data to phenotype recovery patterns in the 30-day period after
cardiac surgery hospital discharge, to identify factors associated with these
phenotypes and to investigate phenotype associations with clinical outcomes.

50 Methods and analysis

We designed a prospective cohort study to enroll 200 patients undergoing valve, coronary artery bypass graft, or aortic surgery at a tertiary center in the U.S. We are enrolling patients postoperatively after the intensive care unit (ICU) discharge, and delivering electronic surveys directly to patients every 3 days for 30 days after hospital discharge. We will conduct medical record reviews to collect patient demographics, comorbidity, operative details and hospital course using the Society of Thoracic Surgeons (STS) data definitions. We will use phone interview and medical record review data for adjudication of survival, readmission, and complications. We will apply group-based trajectory modeling to the time-series PROM and device data to classify patients into distinct categories of recovery trajectories. We will evaluate whether certain recovery

BMJ Open

2		
3	62	pattern predicts death or hospital readmissions, as well as whether clinical
5 6	63	factors predict a patient having poor recovery trajectories. We will evaluate
7 8 9	64	whether early recovery patterns predict the overall trajectory at the patient-level.
10 11 12	65	
13 14 15	66	Ethics and dissemination
16 17 18	67	The Yale Institutional Review Board approved this study. Following the
19 20	68	description of the study procedure, we obtain written informed consent from all
21 22	69	study participants. The consent form states that all personal information, survey
23 24 25	70	response, and any medical records are confidential, will not be shared, and are
26 27	71	stored in an encrypted database.
28 29	72	
30 31 32	73	Strengths and limitations of this study
33 34	74	This study will assess the patient perspective on recovery after cardiac
35 36	75	surgery at a high frequency within the 30-day postoperative period with
37 38 39	76	surveys and activity monitoring via a health information platform and
40 41	77	wearable devices.
42 43	78	Using longitudinal patient-reported outcomes measure (PROM) data, this
44 45	79	study will define recovery patterns and factors associated with different
46 47 48	80	recovery trajectories and guide the development interventions to improve
49 50	81	recovery and support expansion of the study to additional sites.
51 52 53 54 55 56 57 58	82	 The study is single center and the sample size is limited.

83 Text (4081 words)

84	Background

Improving postoperative patient recovery is a priority. Readmission rates in the post-operative period are high. Moreover, in the United States, the expansion of episode-based payments and performance measures is increasing interest in the post-acute experience of patients^{1, 2}. However, we generally lack systematically-collected information on the experience of patients in the post-acute period, as few studies rigorously collecting information using established patient-reported outcomes measures (PROMs). We have, for example, little information about the variation of the trajectories of recovery and the factors most strongly associated with better outcomes³.

The assessment of the patient experience can provide important insights into the process of recovery that is not evident through clinical outcomes or intermittent clinical office visits. PROMs and wearable devices can provide complementary information by providing measurements of how the patient's experience and functional status change over time⁴. Current digital platforms allow us to efficiently collect PROMs and wearable-generated data at high frequencies and with little cost and burden. These automated data collection approaches may minimize the bias introduced by clinician-directed patient interviews⁵. Such a platform is highly suited to obtain repeated measures to characterize a time-dependent process such as recovery⁶.

104 Cardiac surgery is an ideal area for the study of recovery. Many patients
105 have good outcomes, but the limited existing evidence suggests a wide variation

1		6
2 3 4	106	in the post-operative experience of these patients ⁷ . However, these patients'
5 6	107	experience has been poorly studied, as most studies of recovery simply assess
7 8	108	deaths and complications.
9 10 11	109	Characterizing the recovery from the patient perspective is important for
12 13	110	many reasons. First, shared decision-making and informed consent should be
14 15	111	guided not only by the risk of mortality and complications but also by the recovery
16 17 18	112	experience. Understanding variations in recovery could enable the early
19 20	113	identification of people who are struggling and require additional attention.
21 22	114	Recovery data from the patient perspective may enable remote monitoring after
23 24 25	115	the procedure to selectively and preemptively intervene on those at high risk of
25 26 27	116	poor recovery to improve outcomes. Characterization of recovery can also be
28 29	117	used to identify patient, surgeon, procedural, and institutional factors that are
30 31	118	associated with different patterns. With this information we can identify modifiable
32 33 34	119	risk factors for poor recovery.
35 36	120	Thus, at this juncture, there are several notable gaps in knowledge. First,
37 38	121	although recovery occurs over time, most studies of recovery included a small
39 40 41	122	number of timepoints, and the recovery trajectory phenotypes remains poorly
42 43	123	defined ³ . Cohort-level average of recovery trajectories is a common way of
44 45	124	reporting ³ and can indicate how patients recover on average ⁷ , but it obscures
46 47	125	individual variation such as rapid early recovery, gradual recovery, or initial
48 49 50	126	recovery followed by a decline. Second, we have limited understanding of how
51 52 53	127	recovery trajectories vary by patient factors, operation types, center or surgeon
55 54 55		

Page 8 of 39

characteristics, procedural processes, and complications, which limit opportunities to identify high risk patients preemptively and intervene. Accordingly, our overall objective is to characterize short-term trajectories of patient recovery after cardiac surgery using PROMs and wearable data. We are conducting a prospective study to characterize trajectories of postoperative recovery in multiple domains after cardiac surgery. The specific aims of this study are to: 1) leverage a digital data platform to collect PROM and wearable device data to bring forth the variable individual recovery trajectories, 2) describe distinct classes of recovery trajectories and clinical factors associated with the classes, and 3) to evaluate whether early postoperative recovery trajectory predicts later recovery trajectory. In addition, we will investigate optimal ways to manage missing data specific to these time-series data This study is a step toward using this approach to prospectively monitor and preemptively identify patients at risk of poor recovery and facilitate intervention to reduce the risk of adverse events. Methods Design Overview This is a prospective cohort study of patients who are undergoing valve, CABG, or aortic surgery at a tertiary center in the U.S. We chose the operations because they are the most common cardiac operations performed⁸. We are

- 148 enrolling patients postoperatively after ICU discharge in order to ensure clinical
- 149 stability, and we electronically delivering surveys directly to patients every 3 days
- 150 for 30 days after hospital discharge to study patient trajectories in multiple

151	domains characterizing recovery. The closing phone interview after 30 days,
152	electronic medical record review, and linkage to the Society of Thoracic
153	Surgeons database are used to confirm survival, readmission, and complications.
154	The closing interview asks about details of readmissions if they occurred,
155	patients' overall satisfaction with the study, and whether their experience was
156	well captured by the summary of their PROM data. We will apply group-based
157	trajectory modeling to the longitudinal PROM data to identify distinct categories of
158	recovery trajectories in a data-driven fashion. We also identify predictors of
159	protracted recovery trajectory and evaluate whether early recovery patterns (<10
160	days) predict the overall trajectory (30 days) at the patient-level. The Yale
161	Institutional Review Board approved this study.
162	

163 Patient Population

This study began in January 2019 and is ongoing. The study is taking place at Yale-New Haven Hospital, a tertiary center in the United States, where over 1,100 cardiac surgeries are performed annually. Inclusion criteria are patients of age 18 and older who are undergoing coronary artery bypass grafting (CABG), valve replacement or repair, or aortic operations. Exclusion criteria are those who undergo heart transplant, extracorporeal membrane oxygenation (ECMO), adult congenital operations, or ventricular assist device implantation, as these patient populations tend to have a longer course of intensive care unit stay⁹, precluding the timely enrollment necessary to capture immediate postoperative recovery. We also excluded those who do not own a smartphone

or a tablet or those who do not speak or read English, because the digital
platform for PROM data collection relies on patients responding to surveys
displayed on web browser via email or text, and the surveys were written in
English language. We do not allow proxy for survey response and consequently
excluded patients who were not able to respond by themselves as determined by
the research assistant.

181 Recruitment

Recruitment takes place postoperatively after the patient has left the intensive care unit (ICU) for the step-down or floor unit (Figure 1). We chose to enroll patients postoperatively, as opposed to preoperatively, because postoperative enrollment allows for enrollment of patients who undergo surgery under non-elective settings. Recruitment after transfer from the ICU setting ensures clinical stability. A research assistant (RA) visits the patient and after confirming the patient is eligible to participate and following the description of the study procedure, obtains written informed consent (Supplementary Material S1) from all study participants. The informed consent form states that all personal information, survey response, and any medical records are confidential, will not be shared, and will be stored in an encrypted database.

We iteratively refined the enrollment process to minimize the onboarding
time, which includes obtaining informed consent and signup process directed by
the RA on a tablet device to enter patient name and email address or phone
number and takes approximately 10-15 minutes.

59

60

BMJ Open

1		10
2 3 4	197	
5 6	198	PROM instrument and administration
7 8 9	199	We use 24-item quality of recovery (QoR-24) to characterize patients'
9 10 11	200	postoperative recovery in various domains. The questionnaire consists of 24
12 13	201	items that were developed and validated in inpatient and outpatient surgical
14 15 16	202	populations ¹⁰⁻¹³ . The instrument was previously adapted into a mobile format and
17 18	203	was successfully used to administer the survey daily for 14 days ^{11, 12} . We added 3
19 20	204	items to QoR-24 to capture the self-reported time patients went to sleep, the time
21 22	205	they awakened, and their global perception of how much they have 'recovered' in
23 24 25	206	a 0-100% scale. The resulting 27-item questionnaire takes 2-4 minutes to
26 27	207	complete, making its frequent administration feasible (Supplementary Material
28 29	208	S2). Among the published studies in cardiac surgery, this study will have the
30 31 32	209	highest number of PROM data points collected in the first postoperative month ³ .
33 34	210	
35 36	211	Digital data platform
37 38 39	212	We are delivering surveys on the day of enrollment and every 3 days for
40 41	213	30 days. This method provides detailed longitudinal data across multiple domains
42 43	214	of recovery (Figure 2). To facilitate data organization and scheduled survey
44 45 46	215	delivery, we use Hugo (Me2Health, LLC, Guilford CT, USA) a patient-centered
40 47 48	216	health data sharing platform, which has a customizable survey delivery function
49 50	217	and reminder feature to facilitate data collection. Hugo platform allows for
51 52	218	automated delivery of surveys without researchers having to directly contact
53 54 55 56 57 58 50	219	patients, which facilitates high-frequency data collection. Additionally, it imports

Page 12 of 39

2 3 4	220	data from connected wearable devices to facilitate centralization of patient health
5 6	221	data. The patients retain access to their own data in a cloud-based account.
7 8 9	222	
9 10 11	223	Identifying common reasons for low response rate
12 13	224	Recognizing that the survey response will be incomplete for some
14 15	225	participants, we have conducted a phone interview with the first 22 patients to
16 17 18	226	learn reasons for low responses and identify strategies to minimize the barriers
19 20	227	toward survey response for subsequent participants. In the first 22 patients, we
21 22	228	identified 5 with response rate of <50% and conducted recorded phone
23 24 25	229	interviews. Our interview guide (Supplementary Material S3) contained questions
26 27	230	to elucidate technical barriers, differential preferences for engagement, and or
28 29	231	any other issues precluding survey completion. We also asked whether the
30 31 32	232	length of the questionnaire or types of questions asked made it difficult to
33 34	233	complete the survey. Two members of the research team (CB and MM)
35 36	234	evaluated the interview recordings to identify common reasons for low response
37 38	235	rate. This suggested the potential importance of reminder to maintain patient
39 40 41	236	engagement. We modified the protocol to contact all participants approximately
42 43	237	10 days after enrollment.
44 45	238	
46 47 48	239	
49 50	240	Additional clinical data and adjudication of hospitalization and survival
51 52	241	Additionally, we are using the Society of Thoracic Surgeons (STS) Adult
53 54 55 56 57 58 59	242	Cardiac Surgery Database data specifications to retrospectively collect clinically

BMJ Open

1	2

2 3	243	relevant data in this patient population. Pre-specified candidate predictors in this
4 5 6	244	database will be used to identify clinical predictors of recovery trajectories (Table
7 8	245	1). The STS database contains patient demographics, comorbidities, presenting
9 10	246	clinical status, operative details, and postoperative mortality and morbidity up to
11 12	247	30 days after the time of operation ¹⁴ . These data are routinely collected at Yale
13 14		
15 16	248	New Haven Hospital.
17 18	249	We will determine mortality and hospital readmissions by several
19 20	250	approaches: review of hospital records, review of cardiac surgery clinic notes,
21 22	251	and conducting closing phone interviews with the patient or contact person
23 24 25	252	previously identified.
25 26 27	253	
28 29	254	Patient Involvement
30 31 32 33	255	Prior to launching the study, we interviewed 5 patients both in pre and
	256	postoperative settings to evaluate whether the frequency of survey delivery and
34 35 36	257	PROM instrument were likely to adequately capture their experience of recovery.
37 38	258	All patients agreed that the frequency of questionnaire administration and the
39 40 41	259	length of the PROM instrument were reasonable and provided face validity that
41 42 43	260	the questionnaire captured aspects of recovery that were important to the
44 45	261	patients. Additionally, this article is authored with a patient (LG) who participated
46 47	262	in the study to reflect his perspective on the study design and experience in
48 49 50	263	responding to the surveys.
51 52	264	
53 54	265	Sample size
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	266	The study sample target is 200 patients. Adequate sample size for studies
	267	using group-based trajectory modeling depends on the dataset's
	268	representativeness of the population of interest ¹⁵ . Therefore, the concept of
) 1	269	statistical power traditionally used for sample size calculation does not apply to
2 3	270	latent class analyses. We may generate a larger simulation dataset from the
4 5 6	271	measured patient trajectory data to perform a split-sample testing, evaluating
5 7 8	272	whether trajectories generated from the derivation sample would allow for
- 9 0	273	satisfactory categorization of the testing dataset. Additionally, the study setting is
1 2 3	274	scalable to increase the sample size by increasing the enrollment period, should
4	275	a larger sample size become necessary.
5 6 7	276	
8 9	277	Analytical approach – group-based trajectory modeling
) 1 2	278	The resulting dataset is a complex time-series data, with each patient having 10
2 3 4	279	data points (one every three days) at different postoperative times for each item. A
5	280	practical approach to dimension reduction is group-based trajectory modeling, which is a
7 8 9	281	type of latent class analysis that groups similar patient trajectories according to a number
) 1	282	of features derived from the time-series data ^{16, 17} . This approach allows for dimension
2 3	283	reduction of the complex time-series data into several distinct classes of recovery
4 5 6 7	284	trajectories. These trajectories can be labeled according to the observed clinical
	285	phenotype of trajectories, for example 'fast recovery,' 'average recovery,' or 'protracted
8 9 0	286	recovery,'. This data-driven categorization enables additional regression modeling to
1 2 3	287	identify predictors of patients belonging to a certain class of recovery path.
5 4		

Page 15 of 39

BMJ Open

2		
- 3 4	288	The dataset will be classified into distinct categories of trajectories at domain
5 6	289	level, using group-based trajectory modeling ^{16, 17} . Traj package on R ¹⁸ or Proc Traj
7 8 9	290	package on SAS ¹⁵ , performs trajectory modeling by first extracting 24 features of patient-
10 11	291	level trajectory, selecting a subset of features that describes the overall trajectory, and
12 13	292	identifying optimal number of classes to group the trajectories based on the longitudinal
14 15	293	k-means method. The 24 features include range, mean change per unit time, and slope of
16 17 18	294	the linear model (Table 2), which have been demonstrated to discriminate between stable-
19 20	295	unstable, increasing-decreasing, linear-nonlinear, and monotonic-nonmonotonic patterns
21 22	296	of trajectories ¹⁸ . K-means method partitions the time-series data into k groups such that
23 24 25	297	the mean squared error distance of each data point from the assigned cluster is
26 27	298	minimized ¹⁹ . The optimal number of clusters is determined by the minimization of
28 29	299	Bayesian information criterion, which signifies the balance between model's complexity
30 31	300	and the ability to describe the dataset. This process yields distinct classes of patient
32 33 34	301	trajectories in a data-driven fashion. Trajectories will be identified separately for the 5
35 36	302	domains and 1 global recovery measure.
37 38	303	
39 40 41	304	Analytical approach – missing data
42 43	305	Because missing data are inevitable in longitudinal PROMs, there is a
44 45	306	need employ an appropriate handling of missing data. Multiple imputation prior to
46 47 48	307	latent class analysis may yield a less biased estimate of the resulting trajectories.
49 50	308	An alternative approach used in group-based trajectory models assumes the data
51 52	309	are missing at random (MAR) and generates the maximum likelihood of the
53 54 55	310	model parameters ²⁰ . MAR is valid when the response attrition is independent of
56 57 58		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
17	
15	
16	
17	
18	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	
20	
21	
22	
23	
24	
25	
26	
27	
20 20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
58 59	
60	
50	

311	the group membership. However, patient attrition is oftentimes dependent on
312	clinical characteristics and likely related to the class of trajectory itself. An
313	extension of the model allows for modeling of attrition across trajectory groups ²¹ ,
314	permitting dropout probability to vary as a function of covariates or observed
315	outcomes prior to dropout and yields a more robust estimate of the probability of
316	group membership. As such, we will perform sensitivity analysis to compare the
317	trajectories generated via raw data vs. data preprocessed with multiple
318	imputation vs. trajectories generated via trajectory model accounting for response
319	attrition.
320	
321	Results
322	Between January and May 2019, we have enrolled 22 patients who
323	completed the 30-day follow-up. In this cohort, median age was 58.5 years
324	(interquartile range 53.5-67.0) and 7 (32%) were women. There were 9 (41%)
325	mitral valve repair cases and 6 isolated or concomitant CABG (27%).
326	
327	Barriers to completing surveys
328	Of the 22 patients enrolled, 3 (14%) did not complete any surveys, 19
329	(86%) completed at least 3 surveys, and 17 patients (77%) completed at least 6
330	of 11 delivered surveys (>50% of delivered surveys). Of the 5 patients who
331	completed less than half of the surveys, we successfully contacted 4, and 1 could
332	not be reached after 5 attempts. All 4 reported that the major barriers precluding
333	survey completion were their clinical conditions: 2 described readmissions as an

BMJ Open

2		
3 4	334	overwhelming event that made them feel continuing survey participation
5 6	335	challenging, and 2 described not feeling well in general, which precluded
7 8 9	336	participation. All 4 patients noted that text or email reminders might have been
9 10 11	337	helpful to sustain participation. Based on these responses, we modified the
12 13	338	protocol to contact all participants approximately 10 days after enrollment to
14 15	339	improve engagement and resolve any patient-specific issues in completing the
16 17 18	340	surveys.
19 20	341	
21 22	342	Clinical outcomes
23 24 25	343	There were no deaths during follow-up. Two (9%) patients experienced at
25 26 27	344	least 1 hospital readmission. Figure 2 depicts the breadth in recovery trajectories
28 29	345	in pain, sleep, ability to take care of own hygiene, and perception of overall
30 31	346	recovery in five patients with complete response.
32 33 34	347	
35 36	348	Patient perspective
37 38	349	An author (LG) participated in this study as he underwent cardiac surgery.
39 40 41	350	He noted that the length and frequency of the questionnaire was reasonable and
42 43	351	helped him to be more aware of the recovery process because responding to the
44 45	352	questions facilitated introspection on his progress across different domains. He
46 47 48	353	recommended that the study platform feedback the data to study participants,
49 50	354	such as a visual summary of the trajectory or response for patients to better
51 52	355	gauge their progress. Additionally, he noted that responses may differ across the
53 54 55	356	time of the day, as he was able to better function physically in the afternoon
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 39

compared with in the morning. Finally, he suggested the potential value of reviewing the guestionnaire during preoperative counseling to highlight important aspects of recovery to provide better patient and family expectations. Investigators plan on providing a brochure to the clinic that contains this information. Discussion This study will provide time-series data on short-term recovery after cardiac surgery using PROM instruments complemented by clinical records obtained via the STS database and electronic health records. This study will provide one of the highest density of postoperative PROM data in existing cardiac surgery literature³, and it will characterize the variability in individual recovery processes with a high temporal resolution. This study will be important in closing knowledge gaps around patient-level variations in trajectories because prior studies have mostly focused on changes in PROM scores at a limited number of time points³ or reporting group-level aggregate of longitudinal recovery data^{7, 22}. Because recovery is an individual, variable, and time-dependent process, we designed our data collection and analytical approach to capture such features important to recovery. This study has the potential to make a variety of contributions toward improving post-acute phase of care. First, we will be able to develop a preliminary nomogram of postoperative recovery for each domain and overall perception of recovery, which would be instrumental for patients and clinicians to

Page 19 of 39

BMJ Open

2		
3 4	380	gauge the breadth of possible recovery trajectories to facilitate informed shared
5 6	381	decision-making. Second, identifying predictors of accelerated or protracted
7 8	382	recovery, as classified by group-based trajectory model, may allow for
9 10 11	383	individualized prediction of the postoperative recovery course to better inform the
12 13	384	patients and family members. Third, early detection of recovery signals related to
14 15	385	adverse events, such as mortality and readmission, may eventually facilitate
16 17	386	preemptive intervention and focused monitoring of patients at an elevated risk for
18 19 20	387	such events. Our design of the longitudinal PROM data collection allows for
20 21 22	388	incremental update of such prediction as patients progress through the phase of
23 24	389	recovery.
25 26	390	There are many challenges to the successful acquisition of patient
27 28 29	391	measurements during recovery: efficient administration of PROMs in a way that
30 31	392	does not require prohibitive amount of resources, minimizing selection bias
32 33	393	originating from barriers to survey completion, handling of missing data that
34 35 36	394	inevitably occurs in PROMs, and summarizing the complex data in a way that is
37 38	395	interpretable to surgeons and patients ²³ . Additionally, the use of wearables and
39 40	396	device data require active patient participation in periodically charging the device,
41 42	397	wearing them correctly, and reliably syncing the device to the server for data
43 44 45	398	uploads. Moreover, there is a need to provide value to the patients for providing
46 47	399	their recovery profile, such as giving them access to their health data in a
48 49	400	meaningful way.
50 51	401	The resulting data collection, analytical, and output platforms have the
52 53 54	402	potential of being implemented in the clinical setting where an integration of
54 55	TUL	potential of being implemented in the onlinear setting where an integration of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

59

60

Page 20 of 39

2		
3 4	403	incrementally increasing PROM and clinical data provides the near-real time
5 6	404	estimate of individual patient risk of adverse post-operative events. Such a model
7 8	405	may allow for triggering of preemptive clinical intervention. An output may
9 10 11	406	assimilate a form of clinical dashboard within the electronic health record system,
12 13	407	which may be monitored at a centralized location where a trained clinician
14 15	408	reviews high-risk cases filtered by the algorithm to further evaluate whether the
16 17	409	patient condition warrants an intervention. Together, this workflow has a
18 19 20	410	tremendous potential to improve post-acute phase of care following surgery.
21 22	411	
23 24	412	Lessons Learned from the initial experience
25 26 27	413	Through this first group of enrolled patients, we learned that most of the
27 28 29	414	patients approached were willing to participate and consented to the study. By
30 31	415	streamlining the enrollment process, the enrollment time shortened from over 1
32 33	416	hour on the first patient to approximately 10-15 minutes for the current
34 35 36	417	enrollment. The overall response rate is acceptable, with 77% of the participants
37 38	418	completing more than half of the delivered surveys independently without any
39 40	419	intervention by researchers. Challenging recovery course, including readmissions
41 42	420	may have interfered with patient engagement. While this would have resulted in
43 44 45	421	an underrepresentation of those with protracted recovery or with complications,
46 47	422	our preliminary data show we were able to capture variations in the trajectories of
48 49	423	recovery.
50 51	424	To sustain patient engagement through challenging recovery course, we
52 53	425	implemented a protocol for a research assistant to call the patient around 10
54 55 56	723	
57		
58		

Page 21 of 39

BMJ Open

20

1		20
2 3 4	426	days after enrollment to troubleshoot any issues and reemphasize the
5 6	427	importance of their participation. We believe that once the survey becomes part
7 8	428	of clinical workflow with clinicians monitoring and responding to the PROM
9 10 11	429	response, patient response rate would improve further.
12 13	430	We modified the enrollment protocol to reduce the enrollment time,
14 15	431	because to some patients, the complexity and prolonged time spent for
16 17 18	432	enrollment discouraged signups. Initial protocol for enrollment required patients
19 20	433	to download an app and register. This resulted in a wide range of time spent for
21 22	434	enrollment between 15 minutes and 90 minutes, with longer enrollment owing to
23 24 25	435	technical challenges. These challenges include patients forgetting the password
26 27	436	for app download, having to reset the password, and not having immediate email
28 29	437	access to check account confirmation emails. Because our cardiac surgery
30 31 32	438	patient population tended to be older, these technical challenges may have been
33 34	439	pronounced. By not including the app download and allowing for the research
35 36	440	assistant to enroll the patient via an online form with their permission, the
37 38 39	441	enrollment time shortened significantly to 10-15 minutes.
40 41	442	Examining the initial individual data on recovery, there were wide
42 43	443	variations in the trajectories of recovery even among only 5 patients. The
44 45	444	variation suggests that the instrument we used was sensitive to capturing such
46 47 48	445	differences. We also noted variations in improvement over time across different
49 50	446	domains of recovery, where overall perception of recovery seemed to have a
51 52	447	steady improvement pattern, while pain varied between consecutive
53 54 55 56 57	448	measurements in some patients.
58		

58

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 39

2		
3 4	449	
5 6	450	Limitations
7 8 9	451	There are several limitations to this study. First, the single-center tertiary
9 10 11	452	care setting limits the sample size and applicability of the findings to patients
12 13	453	cared for in different settings. A multi-center study following the current study
14 15	454	would address this limitation and evaluate whether the findings at our center are
16 17 18	455	comparable to findings in other centers. Additionally, group-based trajectory
19 20	456	modeling will classify patients into distinct trajectories based on similar recovery
21 22	457	patterns, and this analytical approach may allow for generalization of the
23 24 25	458	variations in the trajectories as long as our sample represents the breadth of the
25 26 27	459	possible variation in recovery.
28 29	460	Another limitation is the exclusion of patients who cannot participate for
30 31	461	various reasons. The use of digital platform is advantageous in reducing the
32 33 34	462	resource intensity for data collection, but leads to exclusion of patients who do
35 36	463	not own mobile devices, which likely affects older patients disproportionately. As
37 38	464	the number of adults using mobile devices is increasing ²⁴ , we believe this will
39 40 41	465	become less of a limitation over time. Initiating this study now despite this
41 42 43	466	limitation is important to establish a platform that may become the standard of
44 45	467	postoperative care when the vast majority of patient population own digital
46 47	468	devices in a predictably near future. Those who cannot participate due to lack of
48 49 50	469	interest represent an important population that may be distinct in characteristics
50 51 52	470	and risk profiles. We plan on minimizing the non-participation for the lack of
53 54 55 56	471	interest by intermittent phone check-ins to sustain interests and identify barriers

Page 23 of 39		BMJ Open
1		22
2 3 4	472	to inform strategies to increase engagement. In following studies, we may
5 6	473	consider other forms of incentives to participate, if this population is indeed
7 8	474	distinct and large in proportion. Additionally, when the PROM data are integrated
9 10 11	475	into routine clinical care, patient engagement will likely increase substantially
12 13	476	because they will be more inspired to share these data if they are used by their
14 15	477	clinicians.
16 17 18	478	Finally, postoperative enrollment and retrospective assessment of
19 20	479	preoperative health status, as opposed to preoperative enrollment, may introduce
21 22	480	recall bias. We decided on postoperative enrollment, because preoperative
23 24 25	481	enrollment precluded standardized enrollment of patients operated on under non-
25 26 27	482	elective settings. Given the retrospective assessment of baseline health status
28 29	483	takes place on the first postoperative survey, we believe the recall bias is
30 31	484	minimized owing to the temporal proximity.
32 33 34	485	
35 36	486	Conclusion
37 38	487	This study will generate highly granular, longitudinal PROM data to
39 40 41	488	characterize individual trajectories of patient recovery after cardiac surgery.
42 43	489	Digital data sharing platforms promise to minimize the patient and researcher
44 45	490	burden in administering and completing PROMs, allowing for characterization of
46 47 48	491	granular progression of patients' state of health over time in the postoperative
49 50	492	period. Implementation of such study is complex but feasible, and it will serve as
51 52	493	an important platform to facilitate clinical use of PROM data to improve the
53 54	494	overall patient recovery.
55 56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	495	
5 6 7	496	Authors contributions
7 8 9	497	MM, HMK, SD, and AG developed the study and research question. MM
10 11	498	and HMK developed analytical strategy with inputs from BJM, GCL, and
12 13	499	YZ. SIC and ES guided refining the enrollment strategy and interpretation
14 15	500	of the phone interview responses. LAG provided patient perspective on the
16 17	501	study protocol and interpretation of the preliminary results. All authors
17 18 19 20	502 503	developed and approved the final manuscript before submission.
21 22	504	Funding statement
23 24 25 26 27 28 29	505 506 507 508 509	This publication was made possible by K12HL138046 by the National Institutes of Health (NIH) and the Yale Clinical and Translational Science Award, grant UL1TR001863, from the National Center for Advancing Translational Science, a component of the NIH.
30 31 32	510	Competing interest statement
33	511	Dr. Chaudhry is a paid reviewer for the CVS Caremark State of CT Clinical
34 35	512	Pharmacy Program.
36	513	Dr. Mortazavi is supported in part by the Center for Remote Health Technologies
37	514	and Systems and Texas A&M University, as well as awards 1R01EB028106-01
38	515	and 1R21EB028486-01 from the National Institute for Biomedical Imaging and
39	516	Bioengineering (NIBIB) for work employing machine learning on health data. Dr.
40	517	Mortazavi reported having a patent US10201746B1 approved for "Near-realistic
41 42	518	sports motion analysis and activity monitoring" and a patent to
42	519	US20180315507A1 is pending.
44	520	Dr. Krumholz works under contract with the Centers for Medicare & Medicaid
45	521 522	Services to support quality measurement programs; was a recipient of a research
46	522	grant, through Yale, from Medtronic and the U.S. Food and Drug Administration to develop methods for post-market surveillance of medical devices; was a recipient of
47	524	a research grant with Medtronic and is the recipient of a research grant from Johnson
48	525	& Johnson, through Yale University, to support clinical trial data sharing; was a
49 50	526	recipient of a research agreement, through Yale University, from the Shenzhen
50	527	Center for Health Information for work to advance intelligent disease prevention and
52	528	health promotion; collaborates with the National Center for Cardiovascular Diseases
53	529	in Beijing; receives payment from the Arnold & Porter Law Firm for work related to
54	530 531	the Sanofi clopidogrel litigation, from the Ben C. Martin Law Firm for work related to
55	531	the Cook Celect IVC filter litigation, and from the Siegfried and Jensen Law Firm for work related to Vioxx litigation; chairs a Cardiac Scientific Advisory Board for
56	002	Noncreated to Your hegation, chang a cardiac belefithe Advisory board for
57 58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

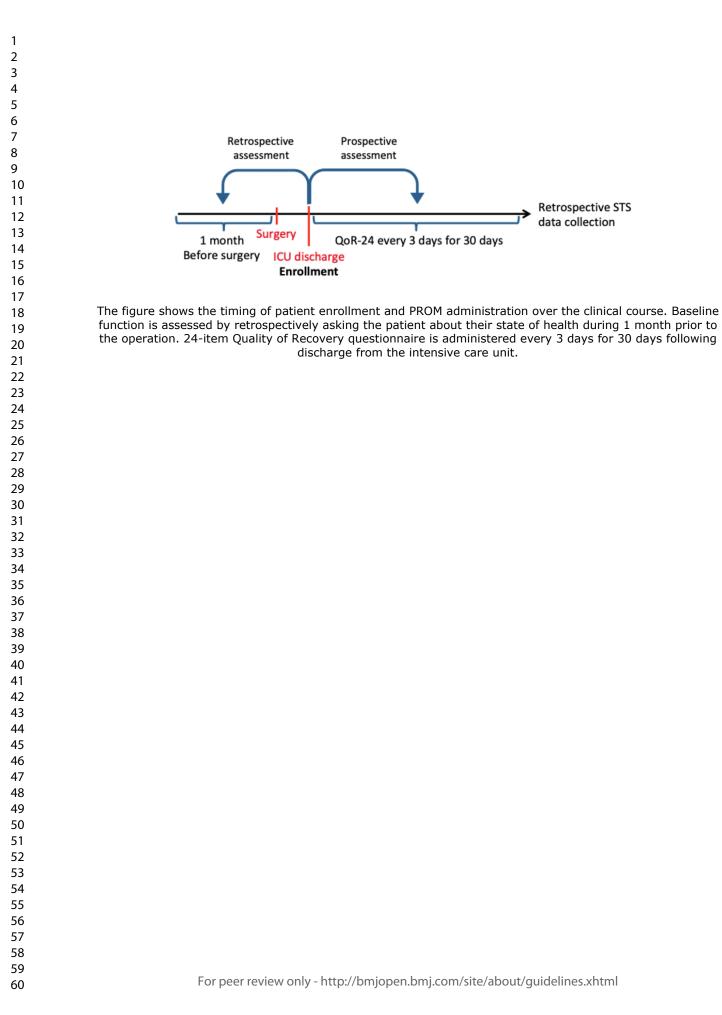
1		24
2 3 4 5 6 7 8 9 10	533 534 535 536 537 538 539	UnitedHealth; was a participant/participant representative of the IBM Watson Health Life Sciences Board; is a member of the Advisory Board for Element Science, the Advisory Board for Facebook, and the Physician Advisory Board for Aetna; and is the co-founder of HugoHealth, a personal health information platform, and co-founder of Refactor Health, an enterprise healthcare AI-augmented data management company.
11 12 13	540	References
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ \end{array}$	$\begin{array}{c} 541\\ 542\\ 543\\ 544\\ 545\\ 546\\ 547\\ 548\\ 550\\ 551\\ 555\\ 556\\ 557\\ 556\\ 556\\ 566\\ 568\\ 566\\ 568\\ 566\\ 568\\ 566\\ 568\\ 560\\ 571\\ 572\\ 573\\ 574\\ 573\\ 574\\ 573\\ 574\\ 575\\ 576\\ 576\\ 568\\ 566\\ 568\\ 567\\ 572\\ 573\\ 574\\ 577\\ 573\\ 574\\ 577\\ 577\\ 577\\ 577\\ 577\\ 577\\ 577$	 Wadhera RK, Yeh RW and Joynt Maddox KE. The Rise and Fall of Mandatory Cardiac Bundled Payments. <i>JAMA</i>. 2018;319:335-336. Khera R, Dharmarajan K, Wang Y, Lin Z, Bernheim SM, Normand ST and Krumholz HM. Association of the Hospital Readmissions Reduction Program With Mortality During and After Hospital Readmissions Reduction Program With Mortality During and After Hospitalization for Acute Myocardial Infarction, Heart Failure, and Pneumonia. <i>JAMA Netw Open</i>. 2018;1:e182777. Mori M, Angraal S, Chaudhry SI, Suter LG, Geirsson A, Wallach JD and Krumholz HM. Characterizing Patient-Centered Postoperative Recovery After Adult Cardiac Surgery: A Systematic Review. <i>J Am Heart Assoc</i>. 2019;8:e013546. Gill TM, Gahbauer EA, Han L and Allore HG. Trajectories of disability in the last year of life. <i>N Engl J Med</i>. 2010;362:1173-80. Pakhomov SV, Jacobsen SJ, Chute CG and Roger VL. Agreement between patient-reported symptoms and their documentation in the medical record. <i>Am J Manag Care</i>. 2008;14:530-9. Moore FD. Getting well: the biology of surgical convalescence. <i>Ann N Y Acad Sci</i>. 1958;73:387-400. Diab MS, Bilkhu R, Soppa G, Edsell M, Fletcher N, Heiberg J, Royse C and Jahangiri M. The influence of prolonged intensive care stay on quality of life, recovery, and clinical outcomes following cardiac surgery: A prospective cohort study. <i>J Thorac Cardiovasc Surg</i>. 2018;156:1906-1915.e3. Thourani VH, Badhwar V, Shahian DM, O'Brien S, Kitahara H, Vemulapalli S, Brennan JM, Habib RH, Fernandez F, D'Agostino RS, Lobdell K, Rankin JS, Gammie JS, Higgins R, Sabik J, Schwann TA and Jacobs JP. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2019 Update on Research. <i>Ann Thorac Surg</i>. 2019;108:334-342. Blanche C, Blanche DA, Kearney B, Sandhu M, Czer LS, Kamlot A, Hickey A and Trento A. Heart transplantation in patients seventy years of age and older: A comparative analysis of outcome. <i>J Thorac Cardi</i>
53 54 55 56 57 58 59	575 576 577	11. Jaensson M, Dahlberg K, Eriksson M and Nilsson U. Evaluation of postoperative recovery in day surgery patients using a mobile phone application: a multicentre randomized trial. <i>Br J Anaesth</i> . 2017;119:1030-1038.
59		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

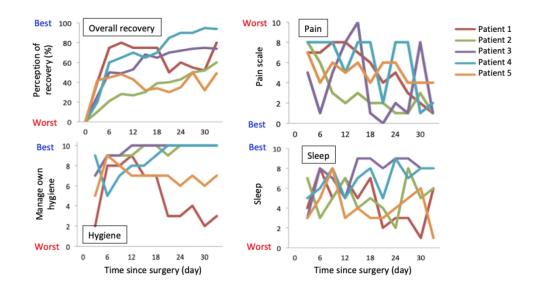
12. Halleberg Nyman M, Nilsson U, Dahlberg K and Jaensson M. Association Between Functional Health Literacy and Postoperative Recovery, Health Care Contacts, and Health-Related Quality of Life Among Patients Undergoing Day Surgery: Secondary Analysis of a Randomized Clinical Trial. JAMA Surg. 2018;153:738-745. Myles PS, Weitkamp B, Jones K, Melick J and Hensen S. Validity and 13. reliability of a postoperative quality of recovery score: the QoR-40. Br J Anaesth. 2000;84:11-5. O'Brien SM, Feng L, He X, Xian Y, Jacobs JP, Badhwar V, Kurlansky PA, 14. Furnary AP, Cleveland JC, Lobdell KW, Vassileva C, Wyler von Ballmoos MC, Thourani VH, Rankin JS, Edgerton JR, D'Agostino RS, Desai ND, Edwards FH and Shahian DM. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 2-Statistical Methods and Results. Ann Thorac Surg. 2018;105:1419-1428. Loughran T and Nagin DS. Finite Sample Effects in Group-Based 15. Trajectory Models. Sociological Methods & Research. 2006;35:250-278. 16. Nagin DS and Odgers CL. Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol. 2010;6:109-38. Savage SA, Sumislawski JJ, Bell TM and Zarzaur BL. Utilizing Group-17. based Trajectory Modeling to Understand Patterns of Hemorrhage and Resuscitation. Ann Surg. 2016;264:1135-1141. Leffondré K, Abrahamowicz M, Regeasse A, Hawker GA, Badley EM, 18. McCusker J and Belzile E. Statistical measures were proposed for identifying longitudinal patterns of change in guantitative health indicators. J Clin Epidemiol. 2004;57:1049-62. 19. Hartigan JA and Wong MA. Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics. 1979;28:100--108. Jones BL, Nagin DS and Roeder K. A SAS Procedure Based on Mixture 20. Models for Estimating Developmental Trajectories. Sociological Methods & Research. 2001;29:374-393. Haviland AM, Jones BL and Nagin DS. Group-based Trajectory Modeling 21. Extended to Account for Nonrandom Participant Attrition. Sociological Methods & Research. 2011:40:367-390. Petersen J, Vettorazzi E, Winter L, Schmied W, Kindermann I and 22. Schäfers HJ. Physical and mental recovery after conventional aortic valve surgery. J Thorac Cardiovasc Surg. 2016:152:1549-1556.e2. Calvert M, Kyte D, Price G, Valderas JM and Hjollund NH. Maximising the 23. impact of patient reported outcome assessment for patients and society. BMJ. 2019;364:k5267. 24. Anderson M, Perrin A. Tech Adoption Climbs Among Older Adults. https://www.pewinternet.org/wp-content/uploads/sites/9/2017/05/PI 2017.05.17 Older-Americans-Tech FINAL.pdf. Published 2017. Accessed March 30, 2019. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 5 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ \end{array} $	623	
51		For peer review only - http://bmjopen.bmj.com/site/about/guide

625 Tables and Figures

626 Table 1: Candidate predictors of recovery trajectory


Demographic	Comorbidity	Operative factors	Postoperative factors
Age	Diabetes	Cardiopulmonary bypass time	Length of ICU stay
Sex	Prior stroke	Cross clamp time	Length of hospital star
Race	Congestive heart failure	Operation type	Surgical site infection
Insurance status	Chronic kidney disease	Non-elective status	Prolonged ventilation
BMI	Dialysis requirement	Transfusion requirement	
	Prior MI	Minimally invasive approach	Stroke
	Prior cardiac surgery		Reoperation for any
			reasons
	Ejection fraction Arrhythmias		Death Readmission
	Prior PCI		Pneumonia
	Cardiogenic shock		meanionia
	Hypertension		
	Dyslipidemia		
	Smoking status		
	Chronic lung disease		
	Endocarditis		
	Pneumonia		
	Peripheral artery disease		
	Immunocompromised Mechanical circulatory		
	support use		
	Valvular disease severity		


	N	Features			
	1	Range			
	2	Mean-over-time			
	3	Standard deviation (SD)			
	4	Coefficient of variation (CV)			
	5	Change			
	6	Mean change per unit time			
	7	Change relative to the first score			
	8	8 Change relative to the mean over time			
	9 Slope of the linear model10 Proportion of variance explained by the linear model				
	11	Maximum of the first differences			
	12	SD of the first differences			
	13				
	14				
	15	5 Maximum of the absolute first differences			
	16	Ratio of the maximum absolute difference to the mean-over-time			
	17 Ratio of the maximum absolute first difference to the slope				
	18	Ratio of the SD of the first differences to the slope Mean of the second differences Mean of the absolute second differences			
	19				
	20				
	21	Maximum of the absolute second differences Ration of the maximum absolute second difference to the mean-over-time			
	22				
	23	Ratio of the maximum absolute second difference to mean absolute first dif			
530	24	Ratio of the mean absolute second difference to the mean absolute first diff			
550					
531	Fiaur	e 1: Timing of patient enrollment and PROM administration			
		Retrospective Prospective assessment assessment			
		(Y)			
		▼ ▼ Retrospective S			
		data collection			
		1 month Surgery QoR-24 every 3 days for 30 days			
	B	before surgery ICU discharge			
200		Enrollment			
632					

The figure shows the timing of patient enrollment and PROM administration over

the clinical course. Baseline function is assessed by retrospectively asking the

patient about their state of health during 1 month prior to the operation. 24-item Quality of Recovery questionnaire is administered every 3 days for 30 days following discharge from the intensive care unit. Figure 2: Sample trajectories of recovery in 5 patients Best 100 Worst 10 Overall recovery Pain Patient 1 Patient 2 Perception of recovery (%) Pain scale Patient 3 Patient 4 Patient 5 Worst Best Best 10 Best 10 Sleep Manage own hygiene Sleep Hygiene Worst 0 Worst o Time since surgery (day) Time since surgery (day) The figures display trajectories of recovery in different domains in 5 patients. Each color corresponds to the same patient. Overall recovery is the patient's perception of overall recovery in 0 to 100% scale. Pain in surgical site is reported in 0 to 10 point scale, with 10 representing the worst pain. Being able to take care of own hygiene is reported in 0 to 10 point scale, with 10 representing complete independence in managing own hygiene. Patient's perception of sleep quality is reported in 0 to 10 point scale, with 10 being the best sleep.

The figures display trajectories of recovery in different domains in 5 patients. Each color corresponds to the same patient. Overall recovery is the patient's perception of overall recovery in 0 to 100% scale. Pain in surgical site is reported in 0 to 10 point scale, with 10 representing the worst pain. Being able to take care of own hygiene is reported in 0 to 10 point scale, with 10 representing complete independence in managing own hygiene. Patient's perception of sleep quality is reported in 0 to 10 point scale, with 10 being the best sleep.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Modification of Quality of Recovery (QoR-24) Questionnaire

*Answered in visual analogue scale: 0 [none of the time] to 10 [all of the time] 'During the last 24 hours, I have been...'

Modified:

- 1. Able to breathe easily
- 2. Having normal bowel function
- 3. Able to enjoy food
- 4. Speaking normally
- 5. Able to think clearly
- 6. Able to remember things
- 7. Able to make decisions quickly
- 8. Able to take care of own hygiene
- 9. Able to write
- 10. Able to dress easily
- 11. Having pain in the surgical wound
- 12. Having nausea
- 13. Shivering or twitching
- 14. Feeling dizziness
- 15. Feeling restless
- 16. Feeling rested
- 17. Feeling depressed
- 18. Feeling lonely
- 19. Having anxiety
- 20. Sleeping well
- 21. Difficulties getting to sleep
- elezon 22. What time did you fall asleep? What time did you wake up without going back to sleep?
- 23. How much do you think you have recovered? (0-100%)
- 24. Open ended question: 'Please describe what you are feeling (good and bad), what bothers you, and what has been helpful to your recovery'

COMPOUND AUTHORIZATION AND CONSENT FOR PARTICIPATION IN A RESEARCH PROJECT 200 FR. 4 (2016-2) YALE UNIVERSITY SCHOOL OF MEDICINE – YALE-NEW HAVEN HOSPITAL

Study Title: Understanding Recovery After Cardiac Surgery

Principal Investigator: Arnar Geirsson, MD

Associate Professor of Surgery (Cardiac) Yale School of Medicine Best Contact Number: 475-201-8349

Funding Source: None

What is this study about?

You are invited to take part in a research study to understand how you recover after heart surgery. We use an app to centralize your healthcare information from multiple sources so it is easy for you and researchers to understand your health status and how you are doing after the surgery. You have been asked to take part in this study because you are planned to undergo or have undergone cardiac surgery at Yale New Haven Hospital (YNHH). If you agree to take part in this study, you will be asked to answer questionnaire through a mobile application platform called Hugo. Through Hugo, you will be asked to answer short questionnaires on your smartphone or email for up to 90 days.

This research study will examine the ability of the mobile health application, Hugo, to quickly and securely obtain healthcare information from multiple sources to monitor your outcomes after a procedure. Among the advantages of this system are that, with your permission, we will be able to access your records at multiple health systems. The risks for this study are similar to the risks associated with traditional research methods: you are sharing your personal health information with researchers and there is a risk to your privacy. However, researchers will only be able to view the heath data that you sync with the Hugo platform. There will also be audit logs of who has accessed your data via Hugo and other safeguards that do not exist with paper and faxed records. Researchers will also access your records within the YNHH electronic medical record (EMR) system. This access is to allow the researchers to confirm that your data has fully come into the Hugo, and that there are no major missing data points.

In order to decide whether you would like to be a part of this research study you should know enough about its risks and benefits to make an informed decision. This consent form gives you detailed information about the study, which a member of the research team will discuss with you. This discussion should review all aspects of this research, especially the confidentiality risks of you having personal health information on your mobile device.

How is this study conducted?

Setup process

The initial set up process will take about 30 minutes in total and entails the following:

- 1. Using your own mobile device, a research associate (RA) will help you with the registration process for the mobile platform Hugo. Hugo will be downloaded from Google Play Store or Apple app store. Registration for Hugo will ask for basic information including first name, last name, email address, and to choose a password. You will then be prompted to accept standard terms and conditions and a privacy notice for the Hugo platform.
- 2. You will check your email and click the confirmation link to activate your new Hugo account.
- 3. The Hugo mobile application will prompt you to link your patient portal accounts by presenting a list of participating health systems. You can select the systems where you have received care and enter your patient portal credentials (all of these are password-protected).
- 4. You will be asked to agree to share data from Hugo. The medical record data being shared may include Medications, Problems, Allergies, Procedures, Encounters, Lab Results, Diagnoses, Vital Signs, Notes, and possibly other data that becomes available.
- 5. The questionnaires will be delivered to you via email or text, whichever you prefer.
- 6. We are asking your permission at the end of this consent form to give the researchers permission to see health information that you sync and share via the Hugo app along with your YNHH medical record.

<u>Please note</u>: The investigators of this study will not be watching or evaluating your symptoms as part of this study, including those that you reply to on the questionnaires. If at any point you begin to experience new symptoms or any medical issues arise, **please contact your doctor or call 911 immediately.**

Continuous Study Process

After the initial in office set up is complete you will be asked to answer questionnaires periodically until the study completion. If you have any questions or experience technical issues at any time, please reach out to the study team via email at **makoto.mori@yale.edu**:

• An RA will follow up in-person with you the day after you are transferred out of the intensive care unit to make sure your accounts and applications are working correctly, and to answer any additional questions you may have.

- Short questionnaires will be sent to your email or text, depending on your preference, initially every 3 days and eventually every 2 weeks up to 90 days following the surgery. This questionnaire should take around 4 minutes on average to complete. The RA may also call you or reach out via email to check in about any technical issues.
- You will receive reminder emails from the Hugo application 1 and 2 days after your questionnaires are sent, reminding you to complete them. These are automated messages and will be sent even if you have completed the surveys. You will also receive reminder messages to use & sync your provided devices.

New Information

You will be informed of anything that happens during the study that may cause you to re-think your decision to continue participation.

Risks and Inconveniences

The risk to patient privacy is that of any computer system that collects personally identifiable information or protected health information. The Hugo application, like many other personal health record applications, is not a considered a covered entity; this means that the HIPAA privacy rule does not apply to this platform. The Hugo platform takes all necessary precautions, including industry-standard encryption, to minimize privacy and security risks to personally identifiable information stored on behalf of study participants. Hugo makes publicly available its Security Statement (http://hugophr.com/security), its Privacy Notice (http://hugophr.com/privacy-notice), and Terms of Service (http://hugophr.com/terms-of-service/). Access to your YNHH medical record will only be within the Epic electronic medical records system; information will not be entered or removed.

You will be asked to volunteer your time to answer questions, and this is considered inconvenience.

There is no extra procedure or medications given for this study, and being on this study does not alter your care from the care you would receive had you not participated in this study.

Benefits

A possible benefit of this study is that you will have easy access to the information contained in your Yale New Haven Health and outside health records that may exist at other participating health systems. Seeing the summary of questionnaire response may also help you and the family to gain awareness and information regarding your health.

You will still be responsible for any costs associated with routine follow-ups or doctor visits, but there will be no additional follow-ups or doctor visits necessary for this study. You are responsible for data charges that may be incurred for utilizing online features of the Hugo when not connected to Wi-Fi.

Treatment Alternatives/Alternatives

If you decide not to participate in this study, you will still have access to your medical records as you would normally. The alternative is to not to participate.

Confidentiality and Privacy

The risk to patient privacy is no different with this study than it is with any other study that securely collects and appropriately stores personally identifiable information or protected health information. Any data transferred as part of the research protocol will be sent via secure and encrypted standard methods. Any identifiable information that is obtained in connection with this study will remain confidential and will be disclosed only with your permission. When the results of the research are published, or discussed in conferences, no information will be included that would reveal your identity, unless your specific consent is obtained.

The information about your health that will be collected in this study includes:

- Electronic medical records from health systems that you import into the Hugo Health, including from Yale New Haven Health system
- Mobile questionnaires that you respond to
- Records about phone calls or emails made as part of this research
- Records about your clinical visits
- Pre-operative, intra-operative and discharge notes within Hugo or the YNHH Electronic Medical Record

Information about you and your health which might identify you may be used by or given to:

- 1. Representatives from Yale University, the Yale Human Research Protection Program and the Yale Human Investigation Committee (the committee that reviews, approves, and monitors research on human subjects), who are responsible for ensuring research compliance. These individuals are required to keep all information confidential.
- 2. The Principal Investigator, along with other research staff and collaborators who are assisting with this study
- 3. Me2Health, the company that owns the mobile application for troubleshooting purposes
- 4. Health care providers who provide services to you in connection with this study

All health care providers subject to HIPAA (Health Insurance Portability and Accountability Act) are required to protect the privacy of your information. The research staff at the Yale School of Medicine are required to comply with HIPAA and to ensure the confidentiality of your information. Some of the individuals or agencies listed above may not be subject to HIPAA and, therefore, may not be required to provide the same type of confidentiality protection. They could use or disclose your information in ways not mentioned in this form. However, to better protect your health information, agreements are in place with these individuals and/or companies that require that they keep your information confidential. In addition, note that the Hugo is not

required to comply with HIPAA but is required to maintain the confidentiality of your information as described in the privacy notice to be provided when you sign up for Hugo.

This authorization to use and disclose your health information collected during your participation in this study will never expire.

Voluntary Participation and Withdrawal

Participating in this study is voluntary and you are free to choose not to take part in this study. **Declining to participate or withdrawing will involve no penalty or loss of benefits to which you are otherwise entitled** (such as your health care outside the study, the payment for your health care, and your health care benefits). It will not harm your relationship with your own doctors or with Yale-New Haven Health or the care that you receive.

If you do become a study participant, you are free to stop and withdraw from this study at any time during its course.

To withdraw from the study, you can call a member of the research team to let them know that you would no longer like to take part. The telephone number to do this is 475-201-8349. You may also email the intent to makoto.mori@yale.edu.

When you withdraw from this study, no new health information identifying you will be gathered after that date. Information that has already been collected may still be used until the end of the research study, as necessary to ensure the integrity of the study and/or study oversight.

Questions

We have used some technical terms in this form. Please feel free to ask about anything you don't understand and to consider this research and the consent form carefully – as long as you feel is necessary – before you make a decision.

Authorization and Permission

I have read (or someone has read to me) this form and have decided to participate in the project described above. Its general purposes, the particulars of my involvement and possible hazards and inconveniences have been explained to my satisfaction. My signature also indicates that I have received a copy of this consent form.

By signing this form, I give permission to the researchers to use [and give out] information about me for the purposes described in this form. By refusing to give permission, I understand that I will not be able to be in this research.

Print Name of Participant:	
Signature:	
Date:	

If after you have signed this form you have any questions about your privacy rights, please contact the Yale Privacy Officer at 203-432-5919.

If you have further questions about this project or if you have a research-related problem, you may contact the Research Associate, Makoto Mori, at 475-201-8349 or at makoto.mori@yale.edu. If you would like to talk with someone other than the researchers to discuss problems, concerns, and questions you may have concerning this research, or to discuss your rights as a research participant, you may contact the Yale Human Investigation Committee at 203-785-4688.

Page 6 of 6 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hugo recovery interview guide

Logistics:

- Email or call patient with response rate <50% to set up time or proceed directly with interview
- The interview likely takes 10-15 minutes
- Likely use Zoom to record interview

Before interview:

- Make clear that the intent is to learn from the interview and no hard feelings about not being able to complete the survey
- Make clear that honest opinion is most helpful for us to improve

Interview guide:

- What challenges or difficulties did you have in completing surveys?
- Did you know that surveys were emailed/texted to you? (How often do you check your email/texts?)
- What would have helped to engage you better? (better interface, better explanations of the study, why the study is important, other incentives, etc)
- Were there any technical issues with the surveys? (email/text didn't deliver, interface was not friendly, etc)
- Would reminder emails have been helpful?
- Were there too many questions?
- Did any questions feel irrelevant to you?

BMJ Open

Protocol for Project Recovery: Cardiac Surgery – A Singlecenter Cohort Study Leveraging Digital Platform to Characterize Longitudinal Patient-Reported Postoperative Recovery Patterns

Journal:	BMJ Open
Journal	
Manuscript ID	bmjopen-2020-036959.R1
Article Type:	Protocol
Date Submitted by the Author:	13-Jul-2020
Complete List of Authors:	Mori, Makoto; Yale School of Medicine, Cardiac Surgery Brooks, Cornell; Yale School of Medicine, Cardiac Surgery Spatz, Erica; Yale University, Section of Cardiovascular Medicine; Yale University School of Medicine, Center for Outcomes Research and Evaluation Mortazavi, Bobak; Texas A&M University System, Computer Science and Engineering Dhruva, Sanket; University of California San Francisco Linderman, George; Yale School of Medicine Grab, Lawrence; Yale School of Medicine Zhang, Yawei; School of Public Health, Geirsson, Arnar; Yale School of Medicine Chaudhry, Sarwat; Yale School of Medicine Krumholz, Harlan; Yale School of Medicine,
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Cardiac surgery < SURGERY, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Telemedicine < BIOTECHNOLOGY & BIOINFORMATICS
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title: Protocol for Project Recovery: Cardiac Surgery – A Single-center Cohort
2	Study Leveraging Digital Platform to Characterize Longitudinal Patient-Reported
3	Postoperative Recovery Patterns
4	
5	Authors: Makoto Mori MD ^{1, 2} , Cornell Brooks II BA ¹ , Erica Spatz MD MHS ^{2, 3} ,
6	Bobak J Mortazavi PhD ⁴ , Sanket S. Dhruva MD MHS ^{5,6} , George C. Linderman
7	PhD ¹ , Lawrence A. Grab MBA ¹ , Yawei Zhang PhD MD ⁷ , Arnar Geirsson MD ¹ ,
8	Sarwat I. Chaudhry MD ⁸ , Harlan M. Krumholz MD SM ⁹
9	
10	Key word: Cardiac surgery, postoperative recovery, patient-centered outcome,
11	longitudinal, latent class
12	Affiliations:
13	¹ Section of Cardiac Surgery, Yale School of Medicine, New Haven, Connecticut
14	² Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New
15	Haven, Connecticut
16	³ Section of Cardiovascular Medicine, Department of Internal Medicine, Yale
17	School of Medicine, New Haven, Connecticut
18	⁴ Department of Computer Science and Engineering, Texas A&M University,
19	College Station, Texas
20	⁵ Department of Medicine, University of California San Francisco School of
21	Medicine, San Francisco, California
22	⁶ San Francisco VA Medical Center, San Francisco, California

2		
3 4	23	⁷ Department of Environmental Health Sciences, Yale School of Public Health,
5 6	24	Department of Surgery, Yale School of Medicine, New Haven, Connecticut
7 8	25	⁸ Section of General Internal Medicine, Department of Medicine, Yale School of
9 10 11	26	Medicine, New Haven, Connecticut
12 13	27	⁹ Section of Cardiovascular Medicine, Department of Internal Medicine, Yale
14 15	28	School of Medicine and the Department of Health Policy and Management, Yale
16 17 19	29	School of Public Health, New Haven, Connecticut
18 19 20	30	
21 22	31	Corresponding author:
23 24	32	Harlan M. Krumholz, MD SM
25 26	33	Center for Outcomes Research and Evaluation (CORE)
27 28	34	1 Church Street, Suite 200, New Haven, Connecticut 06510
29 30	35	Telephone: 203-764-5885; Fax: 203-764-5653
31 32 33	36	Email: harlan.krumholz@yale.edu
34 35	37 38	
36 37	00	
38 39		
40 41		
42		
43 44		
45		
46		
47		
48 49		
50		
51		
52		
53		
54 55		
55 56		
50 57		
58		

3940 Abstract (287/300)

41 Introduction

Improving postoperative patient recovery after cardiac surgery is a priority,
but our current understanding of individual variations in recovery and factors
associated with poor recovery is limited. We are using a health-information
exchange platform to collect patient-reported outcome measures (PROMs) and
wearable device data to phenotype recovery patterns in the 30-day period after
cardiac surgery hospital discharge, to identify factors associated with these
phenotypes and to investigate phenotype associations with clinical outcomes.

50 Methods and analysis

We designed a prospective cohort study to enroll 200 patients undergoing valve, coronary artery bypass graft, or aortic surgery at a tertiary center in the U.S. We are enrolling patients postoperatively after the intensive care unit (ICU) discharge, and delivering electronic surveys directly to patients every 3 days for 30 days after hospital discharge. We will conduct medical record reviews to collect patient demographics, comorbidity, operative details and hospital course using the Society of Thoracic Surgeons (STS) data definitions. We will use phone interview and medical record review data for adjudication of survival, readmission, and complications. We will apply group-based trajectory modeling to the time-series PROM and device data to classify patients into distinct categories of recovery trajectories. We will evaluate whether certain recovery pattern predicts death or hospital readmissions, as well as whether clinical

BMJ Open

2		
3 4	63	factors predict a patient having poor recovery trajectories. We will evaluate
5 6	64	whether early recovery patterns predict the overall trajectory at the patient-level.
7 8 9	65	
10 11	66	Ethics and dissemination
12 13 14	67	The Yale Institutional Review Board approved this study. Following the
15 16	68	description of the study procedure, we obtain written informed consent from all
17 18	69	study participants. The consent form states that all personal information, survey
19 20 21	70	response, and any medical records are confidential, will not be shared, and are
22 23	71	stored in an encrypted database. We plan to publish our study findings in peer-
24 25	72	reviewed journals.
26 27 28	73	
20 29 30	74	Strengths and limitations of this study
31 32	75	This study will assess the patient perspective on recovery after cardiac
33 34 25	76	surgery at a high frequency within the 30-day postoperative period with
35 36 37	77	surveys and activity monitoring via a health information platform and
38 39	78	wearable devices.
40 41	79	• Using longitudinal patient-reported outcomes measure (PROM) data, this
42 43 44	80	study will define recovery patterns and factors associated with different
45 46	81	recovery trajectories and guide the development interventions to improve
47 48	82	recovery and support expansion of the study to additional sites.
49 50 51 52 53 54 55 56	83	• The study is single center and the sample size is limited.
57 58		

84 Text (4081 words)

85	Background

Improving postoperative patient recovery is a priority. Readmission rates in the post-operative period are high. Moreover, in the United States, the expansion of episode-based payments and performance measures is increasing interest in the post-acute experience of patients^{1, 2}. However, we generally lack systematically-collected information on the experience of patients in the post-acute period, as few studies rigorously collecting information using established patient-reported outcomes measures (PROMs). We have, for example, little information about the variation of the trajectories of recovery and the factors most strongly associated with better outcomes³.

The assessment of the patient experience can provide important insights into the process of recovery that is not evident through clinical outcomes or intermittent clinical office visits. PROMs and wearable devices can provide complementary information by providing measurements of how the patient's experience and functional status change over time⁴. Current digital platforms allow us to efficiently collect PROMs and wearable-generated data at high frequencies and with little cost and burden. These automated data collection approaches may minimize the bias introduced by clinician-directed patient interviews⁵. Such a platform is highly suited to obtain repeated measures to characterize a time-dependent process such as recovery⁶.

105 Cardiac surgery is an ideal area for the study of recovery. Many patients
106 have good outcomes, but the limited existing evidence suggests a wide variation

BMJ Open

2		
3 4	107	in the post-operative experience of these patients ⁷ . However, these patients'
5 6	108	experience has been poorly studied, as most studies of recovery simply assess
7 8	109	deaths and complications.
9 10 11	110	Characterizing the recovery from the patient perspective is important for
12 13	111	many reasons. First, shared decision-making and informed consent should be
14 15	112	guided not only by the risk of mortality and complications but also by the recovery
16 17	113	experience. Understanding variations in recovery could enable the early
18 19 20	114	identification of people who are struggling and require additional attention.
20 21 22	115	Recovery data from the patient perspective may enable remote monitoring after
23 24	116	the procedure to selectively and preemptively intervene on those at high risk of
25 26	117	poor recovery to improve outcomes. Characterization of recovery can also be
27 28 29	118	used to identify patient, surgeon, procedural, and institutional factors that are
30 31	119	associated with different patterns. With this information we can identify modifiable
32 33	120	risk factors for poor recovery.
34 35	121	Thus, at this juncture, there are several notable gaps in knowledge. First,
36 37 38	122	although recovery occurs over time, most studies of recovery included a small
39	122	
40 41	123	number of timepoints, and the recovery trajectory phenotypes remains poorly
42 43	124	defined ³ . Cohort-level average of recovery trajectories is a common way of
44 45	125	reporting ³ and can indicate how patients recover on average ⁷ , but it obscures
46 47	126	individual variation such as rapid early recovery, gradual recovery, or initial
48 49 50	127	recovery followed by a decline. Second, we have limited understanding of how
50 51 52	128	recovery trajectories vary by patient factors, operation types, center or surgeon
53		
54 55		
56 57		

Page 8 of 44

characteristics, procedural processes, and complications, which limit opportunities to identify high risk patients preemptively and intervene. Accordingly, our overall objective is to characterize short-term trajectories of patient recovery after cardiac surgery using PROMs and wearable data. We are conducting a prospective study to characterize trajectories of postoperative recovery in multiple domains after cardiac surgery. The specific aims of this study are to: 1) leverage a digital data platform to collect PROM and wearable device data to bring forth the variable individual recovery trajectories, 2) describe distinct classes of recovery trajectories and clinical factors associated with the classes, and 3) to evaluate whether early postoperative recovery trajectory predicts later recovery trajectory. In addition, we will investigate optimal ways to manage missing data specific to these time-series data This study is a step toward using this approach to prospectively monitor and preemptively identify patients at risk of poor recovery and facilitate intervention to reduce the risk of adverse events. The purpose of this study protocol summary is to describes a new approach to studying recovery in order to address the knowledge gap as well as to prespecify our approach. Methods

148 Design Overview

This is a prospective cohort study of patients who are undergoing valve,
CABG, or aortic surgery at a tertiary center in the U.S. We chose the operations
because they are the most common cardiac operations performed⁸ while having

Page 9 of 44

1 2

60

BMJ Open

2 3 4	152	different patient and operative characteristics, such as the use of deep
4 5 6	153	hypothermic circulatory arrest, to potentially provide insights into the recovery
7 8	154	pattern associated with such variations. Subgroup analysis will be conducted to
9 10 11	155	evaluate whether there is a distinct patient experience by operation types. We
11 12 13	156	are enrolling patients postoperatively after ICU discharge in order to ensure
14 15	157	clinical stability, and we electronically delivering surveys directly to patients every
16 17	158	3 days for 30 days after hospital discharge to study patient trajectories in multiple
18 19 20	159	domains characterizing recovery. The closing phone interview after 30 days,
20 21 22	160	electronic medical record review, and linkage to the Society of Thoracic
23 24	161	Surgeons database are used to confirm survival, readmission, and complications.
25 26 27	162	The closing interview asks about details of readmissions if they occurred,
27 28 29	163	patients' overall satisfaction with the study, and whether their experience was
30 31	164	well captured by the summary of their PROM data. We will apply group-based
32 33 34	165	trajectory modeling to the longitudinal PROM data to identify distinct categories of
35 36	166	recovery trajectories in a data-driven fashion. We also identify predictors of
37 38	167	protracted recovery trajectory and evaluate whether early recovery patterns (<10
39 40 41	168	days) predict the overall trajectory (30 days) at the patient-level. The Yale
41 42 43	169	Institutional Review Board approved this study (IRB # 2000025689).
44 45	170	
46 47	171	Patient Population
48 49 50	172	This study began in January 2019 and is ongoing. The study is taking
51 52	173	place at Yale-New Haven Hospital, a tertiary center in the United States, where
53 54	174	over 1,100 cardiac surgeries are performed annually. Inclusion criteria are
55 56 57		
58 59		
60		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml

BMJ Open

2		
3 4	175	patients of age 18 and older who are undergoing coronary artery bypass grafting
5 6	176	(CABG), valve replacement or repair, or aortic operations. Exclusion criteria are
7 8 9	177	those who undergo heart transplant, extracorporeal membrane oxygenation
9 10 11	178	(ECMO), adult congenital operations, or ventricular assist device implantation, as
12 13	179	these patient populations tend to have a longer course of intensive care unit
14 15	180	stay9, precluding the timely enrollment necessary to capture immediate
16 17	181	postoperative recovery. We also excluded those who do not own a smartphone
18 19 20	182	or a tablet or those who do not speak or read English, because the digital
21 22	183	platform for PROM data collection relies on patients responding to surveys
23 24	184	displayed on web browser via email or text, and the surveys were written in
25 26 27	185	English language. We do not allow proxy for survey response and consequently
28 29	186	excluded patients who were not able to respond by themselves as determined by
30 31	187	the research assistant.
32 33	188	In order to provide the sense of patient selection resulting from these
34 35 36	189	criteria, we will compare patient characteristics of those who were approached
37 38	190	and were and were not able to participate in the study for any reasons.
39 40	191	
41 42 43	192	Recruitment
44 45	193	Recruitment takes place postoperatively after the patient has left the
46 47	194	intensive care unit (ICU) for the step-down or floor unit (Figure 1). We chose to
48 49	195	enroll patients postoperatively, as opposed to preoperatively, because
50 51 52	196	postoperative enrollment allows for enrollment of patients who undergo surgery
53	107	
54 55	197	under non-elective settings. Recruitment after transfer from the ICU setting
56 57		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1		10
2 3 4	198	ensures clinical stability. A research assistant (RA) visits the patient and after
5 6	199	confirming the patient is eligible to participate and following the description of the
7 8 9	200	study procedure, obtains written informed consent (Supplementary Material S1)
9 10 11	201	from all study participants. The informed consent form states that all personal
12 13	202	information, survey response, and any medical records are confidential, will not
14 15 16	203	be shared, and will be stored in an encrypted database.
17 18	204	We iteratively refined the enrollment process to minimize the onboarding
19 20	205	time, which includes obtaining informed consent and signup process directed by
21 22	206	the RA on a tablet device to enter patient name and email address or phone
23 24 25	207	number and takes approximately 10-15 minutes.
26 27	208	
28 29	209	PROM instrument and administration
30 31 32	210	We use 24-item quality of recovery (QoR-24) to characterize patients'
33 34	211	postoperative recovery in various domains. The questionnaire consists of 24
35 36	212	items that were developed and validated in inpatient and outpatient surgical
37 38	213	populations in terms of convergent validity with visual analogue scale, construct
39 40 41	214	validity compared with length of hospital stay and sex-based difference, along
42 43 44	215	with good internal consistency and test-retest reliability ¹⁰⁻¹³ . We chose QoR-24
45 46	216	among 5 other PROMs developed specifically to measure postoperative
47 48 49	217	recovery. QoR-24 possessed many qualities advantageous for the purpose of our
50 51	218	study, including the robust validation of psychometric property, extensive use
52 53	219	cases in various surgical populations, ability for self-administration, and the ease
54 55 56	220	of interpreting item-wise scores (Supplementary Table 1-2). The instrument was
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 44

2		
3 4	221	previously adapted into a mobile format and was successfully used to administer
5 6 7 8	222	the survey daily for 14 days ^{11, 12} . We added 3 items to QoR-24 to capture the
9 10	223	self-reported time patients went to sleep, the time they awakened, and their
11 12	224	global perception of how much they have 'recovered' in a 0-100% scale. The
13 14	225	resulting 27-item questionnaire takes 2-4 minutes to complete, making its
15 16 17	226	frequent administration feasible (Supplementary Material S2). Among the
18 19	227	published studies in cardiac surgery, this study will have the highest number of
20 21	228	PROM data points collected in the first postoperative month ³ .
22 23	229	
24 25 26	230	Digital data platform
27 28	231	We are delivering surveys on the day of enrollment and every 3 days for
29 30	232	30 days. This method provides detailed longitudinal data across multiple domains
31 32 33	233	of recovery (Figure 2). To facilitate data organization and scheduled survey
34 35	234	delivery, we use Hugo (Me2Health, LLC, Guilford CT, USA) a patient-centered
36 37	235	health data sharing platform, which has a customizable survey delivery function
38 39	236	and reminder feature to facilitate data collection. Hugo platform allows for
40 41 42	237	automated delivery of surveys without researchers having to directly contact
43 44	238	patients, which facilitates high-frequency data collection. Additionally, it imports
45 46	239	data from connected wearable devices to facilitate centralization of patient health
47 48 49	240	data. The patients retain access to their own data in a cloud-based account.
50 51	241	Hugo does not fall under the Covered Entity that Health Insurance Portability and
52 53	242	Accountability Act (HIPAA) regulates, but employs all the security measures that
54 55	243	would be required by HIPAA had it been a Covered Entity.
56 57 58		
-		

BMJ Open

2		
3	244	
4 5		
6	245	Identifying common reasons for low response rate
7 8 9	246	Recognizing that the survey response will be incomplete for some
10 11	247	participants, we have conducted a phone interview with the first 22 patients to
12 13	248	learn reasons for low responses and identify strategies to minimize the barriers
14 15 16	249	toward survey response for subsequent participants. In the first 22 patients, we
17 18	250	identified 5 with response rate of <50% and conducted recorded phone
19 20	251	interviews. Our interview guide (Supplementary Material S3) contained questions
21 22 23	252	to elucidate technical barriers, differential preferences for engagement, and or
23 24 25	253	any other issues precluding survey completion. We also asked whether the
26 27	254	length of the questionnaire or types of questions asked made it difficult to
28 29	255	complete the survey. Two members of the research team (CB and MM)
30 31 32	256	evaluated the interview recordings to identify common reasons for low response
33 34	257	rate. This suggested the potential importance of reminder to maintain patient
35 36	258	engagement. We modified the protocol to contact all participants approximately
37 38 39	259	10 days after enrollment. We will continue to conduct this phone interview for
40 41	260	patients with low response rate and describe engagement and barriers to
42 43	261	participation in the final cohort. Survey response rate and time spent to complete
44 45	262	each survey will be reported descriptively to evaluate the degree of patient
46 47 48	263	engagement. This approach likely allows us to identify patients who either did not
49 50	264	respond or completed the survey in an unrealistically short time that may not
51 52	265	represent a meaningful response.
53 54 55 56	266	
57		

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

267	Additional clinical data and adjudication of hospitalization and survival
268	Additionally, we are using the Society of Thoracic Surgeons (STS) Adult
269	Cardiac Surgery Database data specifications to retrospectively collect clinically
270	relevant data in this patient population. Pre-specified candidate predictors in this
271	database will be used to identify clinical predictors of recovery trajectories (Table
272	1). The STS database contains patient demographics, comorbidities, presenting
273	clinical status, operative details, and postoperative mortality and morbidity up to
274	30 days after the time of operation ¹⁴ . These data are routinely collected at Yale
275	New Haven Hospital. At our program, 30-day mortality rates for isolated aortic
276	valve replacement and isolated CABG are stable around 1%, with 30-day
277	readmission rate of about 10%, which are slightly lower than the national
278	average.
279	We will determine mortality and hospital readmissions by several
280	approaches: review of hospital records, review of cardiac surgery clinic notes,
281	and conducting closing phone interviews with the patient or contact person
282	
202	previously identified.
283	previously identified.
	previously identified.
283	
283 284	Patient Involvement
283 284 285	Patient Involvement Prior to launching the study, we interviewed 5 patients both in pre and

289 length of the PROM instrument were reasonable and provided face validity that

Page 15 of 44

BMJ Open

2		
3 4	290	the questionnaire captured aspects of recovery that were important to the
5 6 7 8 9	291	patients. Additionally, this article is authored with a patient (LG) who participated
	292	in the study to reflect his perspective on the study design and experience in
9 10 11	293	responding to the surveys.
12 13	294	
14 15	295	Sample size
16 17 18	296	The study sample target is 200 patients. Adequate sample size for studies
19 20	297	using group-based trajectory modeling depends on the dataset's
21 22	298	representativeness of the population of interest ¹⁵ . Therefore, the concept of
23 24 25	299	statistical power traditionally used for sample size calculation does not apply to
25 26 27	300	latent class analyses. We may generate a larger simulation dataset from the
28 29 30 31 32 33 34 35 36	301	measured patient trajectory data to perform a split-sample testing, evaluating
	302	whether trajectories generated from the derivation sample would allow for
	303	satisfactory categorization of the testing dataset. Additionally, the study setting is
	304	scalable to increase the sample size by increasing the enrollment period, should
37 38	305	a larger sample size become necessary.
39 40 41	306	
42 43	307	Analytical approach – group-based trajectory modeling
44 45		
46 47 48	308	The resulting dataset is a complex time-series data, with each patient
49 50	309	having 10 data points (one every three days) at different postoperative times for
51 52		
53 54 55	310	each item. A practical approach to dimension reduction is group-based trajectory
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Page 16 of 44

3 4 5	311	modeling, which is a type of latent class analysis that groups similar patient
6 7 8 9	312	trajectories according to a number of features derived from the time-series data ^{16,}
10 11 12	313	¹⁷ . This approach allows for dimension reduction of the complex time-series data
13 14 15 16	314	into several distinct classes of recovery trajectories. These trajectories can be
17 18 19	315	labeled according to the observed clinical phenotype of trajectories, for example
20 21 22 23	316	'fast recovery,' 'average recovery,' or 'protracted recovery,'. This data-driven
24 25 26	317	categorization enables additional regression modeling to identify predictors of
27 28 29	318	patients belonging to a certain class of recovery path.
30 31 32 33	319	The dataset will be classified into distinct categories of trajectories at
34 35 36 37	320	domain level, using group-based trajectory modeling ^{16, 17} . Traj package on R ¹⁸ or
37 38 39 40	321	Proc Traj package on SAS ¹⁵ , performs trajectory modeling by first extracting 24
41 42 43	322	features of patient-level trajectory, selecting a subset of features that describes
44 45 46 47	323	the overall trajectory, and identifying optimal number of classes to group the
48 49 50 51 52 53 54	324	trajectories based on the longitudinal k-means method. The 24 features include
	325	range, mean change per unit time, and slope of the linear model (Table 2), which
55 56 57	326	have been demonstrated to discriminate between stable-unstable, increasing-
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 44

1

BMJ Open

2	
3	
4	
4 5	
ر د	
6 7 8 9 10	
7	
8	
9	
10	
11	
12	
12	
13	
12 13 14 15	
15	
16	
17	
18	
10	
20	
20	
21	
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32 33 34 35	
33	
24	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

327	decreasing, linear-nonlinear, and monotonic-nonmonotonic patterns of
328	trajectories ¹⁸ . K-means method partitions the time-series data into k groups such
329	that the mean squared error distance of each data point from the assigned
330	cluster is minimized ¹⁹ . The optimal number of clusters is determined by the
331	minimization of Bayesian information criterion, which signifies the balance
332	between model's complexity and the ability to describe the dataset. This process
333	yields distinct classes of patient trajectories in a data-driven fashion. Trajectories
334	will be identified separately for the 5 domains and 1 global recovery measure.
335	With the characterization of trajectories, we will then fit multinomial logistic
336	regression models using clinical variables outlined in Table 1, including patient
337	demographics, comorbidity, and postoperative event such as complications and
338	ICU readmissions, to identify predictors of patients belonging to each trajectory
339	class. As some variables interact with each other, such as history of chronic lung
340	disease increasing the risk of postoperative pneumonia, which likely impacts the
341	recovery experience, we plan to stratify the cohort with and without the index
342	complications defined by the STS (prolonged ventilation, renal failure, sternal
343	wound infection, pneumonia, stroke, all-cause reoperation). Further analyses on
344	interaction and mediation effects likely requires a larger sample size and are of
345	interest in the future.

		BMJ Open
1		17
2 3 4 5	346	
4 5 6	347	Analytical approach – missing data
7 8	348	Because missing data are inevitable in longitudinal PROMs, there is a
9 10 11	349	need employ an appropriate handling of missing data. Multiple imputation prior to
12 13	350	latent class analysis may yield a less biased estimate of the resulting trajectories.
14 15	351	An alternative approach used in group-based trajectory models assumes the data
16 17 18	352	are missing at random (MAR) and generates the maximum likelihood of the
19 20	353	model parameters ²⁰ . MAR is valid when the response attrition is independent of
21 22	354	the group membership. However, patient attrition is oftentimes dependent on
23 24 25	355	clinical characteristics and likely related to the class of trajectory itself. An
26 27	356	extension of the model allows for modeling of attrition across trajectory groups ²¹ ,
28 29	357	permitting dropout probability to vary as a function of covariates or observed
30 31 32	358	outcomes prior to dropout and yields a more robust estimate of the probability of
33 34	359	group membership. As such, we will perform sensitivity analysis to compare the
35 36	360	trajectories generated via raw data vs. data preprocessed with multiple
37 38 39	361	imputation vs. trajectories generated via trajectory model accounting for response
40 41	362	attrition.
42 43	363	
44 45 46	364	Results
40 47 48	365	Between January and May 2019, we have enrolled 22 patients who
49 50	366	completed the 30-day follow-up. In this cohort, median age was 58.5 years
51 52 53	367	(interquartile range 53.5-67.0) and 7 (32%) were women. There were 9 (41%)
53 54 55	368	mitral valve repair cases and 6 isolated or concomitant CABG (27%).
56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

1		18
2 3 4	369	
5 6	370	Barriers to completing surveys
7 8	371	Of the 22 patients enrolled, 3 (14%) did not complete any surveys, 19
9 10 11	372	(86%) completed at least 3 surveys, and 17 patients (77%) completed at least 6
12 13	373	of 11 delivered surveys (>50% of delivered surveys). Of the 5 patients who
14 15	374	completed less than half of the surveys, we successfully contacted 4, and 1 could
16 17 18	375	not be reached after 5 attempts. All 4 reported that the major barriers precluding
19 20	376	survey completion were their clinical conditions: 2 described readmissions as an
21 22	377	overwhelming event that made them feel continuing survey participation
23 24 25	378	challenging, and 2 described not feeling well in general, which precluded
26 27	379	participation. All 4 patients noted that text or email reminders might have been
28 29	380	helpful to sustain participation. Based on these responses, we modified the
30 31 32	381	protocol to contact all participants approximately 10 days after enrollment to
33 34	382	improve engagement and resolve any patient-specific issues in completing the
35 36	383	surveys.
37 38 39	384	
40 41	385	Clinical outcomes
42 43	386	There were no deaths during follow-up. Two (9%) patients experienced at
44 45	387	least 1 hospital readmission. Figure 2 depicts the breadth in recovery trajectories
46 47 48	388	in pain, sleep, ability to take care of own hygiene, and perception of overall
49 50	389	recovery in five patients with complete response.
51 52	390	
53 54 55 56 57	391	Discussion
58 50		

1 2		
2 3 4	392	This study will provide time-series data on short-term recovery after
5 6	393	cardiac surgery using PROM instruments complemented by clinical records
7 8 9	394	obtained via the STS database and electronic health records. This study will
9 10 11	395	provide one of the highest density of postoperative PROM data in existing
12 13	396	cardiac surgery literature ³ , and it will characterize the variability in individual
14 15	397	recovery processes with a high temporal resolution. This study will be important
16 17 18	398	in closing knowledge gaps around patient-level variations in trajectories because
19 20	399	prior studies have mostly focused on changes in PROM scores at a limited
21 22	400	number of time points ³ or reporting group-level aggregate of longitudinal recovery
23 24 25	401	data ^{7, 22} . Because recovery is an individual, variable, and time-dependent
25 26 27	402	process, we designed our data collection and analytical approach to capture such
28 29	403	features important to recovery.
30 31	404	This study has the potential to make a variety of contributions toward
32 33 34	405	improving post-acute phase of care. First, we will be able to develop a
35 36	406	preliminary nomogram of postoperative recovery for each domain and overall
37 38	407	perception of recovery, which would be instrumental for patients and clinicians to
39 40 41	408	gauge the breadth of possible recovery trajectories to facilitate informed shared
42 43	409	decision-making. Second, identifying predictors of accelerated or protracted
44 45	410	recovery, as classified by group-based trajectory model, may allow for
46 47	411	individualized prediction of the postoperative recovery course to better inform the
48 49 50	412	patients and family members. Third, early detection of recovery signals related to
50 51 52	413	adverse events, such as mortality and readmission, may eventually facilitate
53 54	414	preemptive intervention and focused monitoring of patients at an elevated risk for
55 56 57		
57		

20

1	
2	
3	
4 5	
5	
6 7	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
20 21 22 23 24 25	
22	
22	
23	
24	
25	
26	
Z/	
28	
29	
30	
31	
32	
33	
34 35	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
60	

such events. Our design of the longitudinal PROM data collection allows for
incremental update of such prediction as patients progress through the phase of
recovery.

418 There are many challenges to the successful acquisition of patient 419 measurements during recovery: efficient administration of PROMs in a way that 420 does not require prohibitive amount of resources, minimizing selection bias 421 originating from barriers to survey completion, handling of missing data that 422 inevitably occurs in PROMs, and summarizing the complex data in a way that is 423 interpretable to surgeons and patients²³. Additionally, the use of wearables and 424 device data require active patient participation in periodically charging the device, 425 wearing them correctly, and reliably syncing the device to the server for data 426 uploads. Moreover, there is a need to provide value to the patients for providing 427 their recovery profile, such as giving them access to their health data in a 428 meaningful way.

429 The resulting data collection, analytical, and output platforms have the 430 potential of being implemented in the clinical setting where an integration of 431 incrementally increasing PROM and clinical data provides the near-real time 432 estimate of individual patient risk of adverse post-operative events. Such a model 433 may allow for triggering of preemptive clinical intervention. An output may 434 assimilate a form of clinical dashboard within the electronic health record system, 435 which may be monitored at a centralized location where a trained clinician 436 reviews high-risk cases filtered by the algorithm to further evaluate whether the

2		
- 3 4	437	patient condition warrants an intervention. Together, this workflow has a
5 6	438	tremendous potential to improve post-acute phase of care following surgery.
7 8	439	
9 10	440	Lessons Learned from the initial experience
11		
12 13 14	441	Through this first group of enrolled patients, we learned that most of the
14 15 16	442	patients approached were willing to participate and consented to the study. By
17 18	443	streamlining the enrollment process, the enrollment time shortened from over 1
19 20	444	hour on the first patient to approximately 10-15 minutes for the current
21 22	445	enrollment. The overall response rate is acceptable, with 77% of the participants
23 24	446	completing more than half of the delivered surveys independently without any
25 26	447	intervention by researchers. Challenging recovery course, including readmissions
27 28 29	448	may have interfered with patient engagement. While this would have resulted in
30		
31 32	449	an underrepresentation of those with protracted recovery or with complications,
33 34	450	our preliminary data show we were able to capture variations in the trajectories of
35 36	451	recovery.
37 38	452	To sustain patient engagement through challenging recovery course, we
39 40 41	453	implemented a protocol for a research assistant to call the patient around 10
42 43	454	days after enrollment to troubleshoot any issues and reemphasize the
44 45	455	importance of their participation. By the protocol, research assistant making this
46 47	456	call does not act in clinical capacity and does not provide clinical evaluation or
48 49	457	advise, which is an important boundary for this call to not act as an intervention to
50 51	450	
52 53	458	alter recovery course. We believe that once the survey becomes part of clinical
54		
55 56		
20		

60

BMJ Open

1		22
2 3 4	459	workflow with clinicians monitoring and responding to the PROM response,
5 6	460	patient response rate would improve further.
7 8	461	We modified the enrollment protocol to reduce the enrollment time,
9 10 11	462	because to some patients, the complexity and prolonged time spent for
12 13	463	enrollment discouraged signups. Initial protocol for enrollment required patients
14 15	464	to download an app and register. This resulted in a wide range of time spent for
16 17 18	465	enrollment between 15 minutes and 90 minutes, with longer enrollment owing to
19 20	466	technical challenges. These challenges include patients forgetting the password
21 22	467	for app download, having to reset the password, and not having immediate email
23 24 25	468	access to check account confirmation emails. Because our cardiac surgery
26 27	469	patient population tended to be older, these technical challenges may have been
28 29	470	pronounced. By not including the app download and allowing for the research
30 31 32	471	assistant to enroll the patient via an online form with their permission, the
32 33 34	472	enrollment time shortened significantly to 10-15 minutes.
35 36	473	Examining the initial individual data on recovery, there were wide
37 38	474	variations in the trajectories of recovery even among only 5 patients. The
39 40 41	475	variation suggests that the instrument we used was sensitive to capturing such
42 43	476	differences. We also noted variations in improvement over time across different
44 45	477	domains of recovery, where overall perception of recovery seemed to have a
46 47 48	478	steady improvement pattern, while pain varied between consecutive
49 50	479	measurements in some patients.
51 52	480	
53 54 55 56 57 58	481	Limitations

There are several limitations to this study. First, the single-center tertiary care setting limits the sample size and applicability of the findings to patients cared for in different settings. A multi-center study following the current study would address this limitation and evaluate whether the findings at our center are comparable to findings in other centers. Additionally, group-based trajectory modeling will classify patients into distinct trajectories based on similar recovery patterns, and this analytical approach may allow for generalization of the variations in the trajectories as long as our sample represents the breadth of the possible variation in recovery. Another limitation is the exclusion of patients who cannot participate for various reasons. The use of digital platform is advantageous in reducing the resource intensity for data collection, but leads to exclusion of patients who do not own mobile devices, which likely affects older patients disproportionately. As the number of adults using mobile devices is increasing²⁴, we believe this will become less of a limitation over time. Initiating this study now despite this limitation is important to establish a platform that may become the standard of postoperative care when the vast majority of patient population own digital devices in a predictably near future. Those who cannot participate due to lack of interest or technological barrier represent an important population that may be distinct in characteristics and risk profiles. While acknowledging the selection bias originating from this inclusion threshold, we believe there is a need to initiate collection of patient-centered outcome measures in the proposed approach, in order to further engage hospitals and programs for a broader implementation of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 44

BMJ Open

2		
- 3 4	505	this approach in the context of extremely limited evidence base. We plan on
5 6	506	minimizing the non-participation for the lack of interest by intermittent phone
7 8 9	507	check-ins to sustain interests and identify barriers to inform strategies to increase
9 10 11	508	engagement. While recognizing that clinical implemenation of this protocol would
12 13	509	preclude the use of incentives, in following studies, we may consider other forms
14 15	510	of incentives to participate, if this population is indeed distinct and large in
16 17	511	proportion. Additionally, when the PROM data are integrated into routine clinical
18 19 20	512	care, patient engagement will likely increase substantially because they will be
20 21 22	513	more inspired to share these data if they are used by their clinicians.
23 24	514	Finally, postoperative enrollment and retrospective assessment of
25 26	515	preoperative health status, as opposed to preoperative enrollment, may introduce
27 28 29	516	recall bias. We decided on postoperative enrollment, because preoperative
30 31	517	enrollment precluded standardized enrollment of patients operated on under non-
32 33	518	elective settings. Given the retrospective assessment of baseline health status
34 35	519	takes place on the first postoperative survey, we believe the recall bias is
36 37	520	minimized owing to the temporal proximity.
38 39 40		minimized owing to the temporal proximity.
40 41 42	521	
43	522	Conclusion
44 45	523	This study will generate highly granular, longitudinal PROM data to
46 47 48	524	characterize individual trajectories of patient recovery after cardiac surgery.
48 49 50	525	Digital data sharing platforms promise to minimize the patient and researcher
50 51 52	526	burden in administering and completing PROMs, allowing for characterization of
53	E07	granular prograssion of potients' state of boolth over time in the posteporative
54 55	527	granular progression of patients' state of health over time in the postoperative
56		
57		

Page 26 of 44

BMJ Open

2		
3 4 5 6 7 8	528	period. Implementation of such study is complex but feasible, and it will serve as
	529	an important platform to facilitate clinical use of PROM data to improve the
	530	overall patient recovery.
9 10 11	531	
12 13 14 15 16 17	532	Authors contributions
	533	MM, HMK, SD, and AG developed the study and research question. MM and
	534	HMK developed analytical strategy with inputs from BJM, GCL, and YZ. SIC, CB,
18 19 20	535	and ES guided refining the enrollment strategy and interpretation of the phone
20 21 22	536	interview responses. LAG provided patient perspective on the study protocol and
23 24	537	interpretation of the preliminary results. All authors developed and approved the
25 26 27	538	final manuscript before submission.
27 28 29 30 31 32 33 34 35 36 37 38	539	
	540	Funding statement
	541	This publication was made possible by K12HL138046 by the National Institutes
	542	of Health (NIH) and the Yale Clinical and Translational Science Award, grant
	543	UL1TR001863, from the National Center for Advancing Translational Science, a
39 40 41	544	component of the NIH.
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	545	
	546	Competing interest statement
	547	Dr. Chaudhry is a paid reviewer for the CVS Caremark State of CT Clinical
	548	Pharmacy Program.
	549	Dr. Mortazavi is supported in part by the Center for Remote Health Technologies
	550	and Systems and Texas A&M University, as well as awards 1R01EB028106-01
59		

60

BMJ Open

	26
551	and 1R21EB028486-01 from the National Institute for Biomedical Imaging and
552	Bioengineering (NIBIB) for work employing machine learning on health data. Dr.
553	Mortazavi reported having a patent US10201746B1 approved for "Near-realistic
554	sports motion analysis and activity monitoring" and a patent to
555	US20180315507A1 is pending.
556	Dr. Krumholz works under contract with the Centers for Medicare & Medicaid
557	Services to support quality measurement programs; was a recipient of a research
558	grant, through Yale, from Medtronic and the U.S. Food and Drug Administration
559	to develop methods for post-market surveillance of medical devices; was a
560	recipient of a research grant with Medtronic and is the recipient of a research
561	grant from Johnson & Johnson, through Yale University, to support clinical trial
562	data sharing; was a recipient of a research agreement, through Yale University,
563	from the Shenzhen Center for Health Information for work to advance intelligent
564	disease prevention and health promotion; collaborates with the National Center
565	for Cardiovascular Diseases in Beijing; receives payment from the Arnold &
566	Porter Law Firm for work related to the Sanofi clopidogrel litigation, from the Ben
567	C. Martin Law Firm for work related to the Cook Celect IVC filter litigation, and
568	from the Siegfried and Jensen Law Firm for work related to Vioxx litigation; chairs
569	a Cardiac Scientific Advisory Board for UnitedHealth; was a
570	participant/participant representative of the IBM Watson Health Life Sciences
571	Board; is a member of the Advisory Board for Element Science, the Advisory
572	Board for Facebook, and the Physician Advisory Board for Aetna; and is the co-
	foundar of Huga Haalth a naroanal baalth information platform, and as foundar of
573	founder of HugoHealth, a personal health information platform, and co-founder of
	552 553 554 555 556 557 558 559 560 561 562 563 564 563 564 563 564 565 566 567 568 566 567 568 569 570 570

1		
2		
3	574	Refactor Health, an enterprise healthcare Al-augmented data management
4		
5	575	company
6	575	company.
7		
8	576	
9		
10	577	
11		
12	578	References
13	570	
14		
15	579	1. Wadhera RK, Yeh RW and Joynt Maddox KE. The Rise and Fall of
16	580	Mandatory Cardiac Bundled Payments. JAMA. 2018;319:335-336.
17	581	2. Khera R, Dharmarajan K, Wang Y, Lin Z, Bernheim SM, Normand ST and
18	582	Krumholz HM. Association of the Hospital Readmissions Reduction Program
19	583	With Mortality During and After Hospitalization for Acute Myocardial Infarction,
20	584	
21		Heart Failure, and Pneumonia. JAMA Netw Open. 2018;1:e182777.
22	585	3. Mori M, Angraal S, Chaudhry SI, Suter LG, Geirsson A, Wallach JD and
23	586	Krumholz HM. Characterizing Patient-Centered Postoperative Recovery After
24	587	Adult Cardiac Surgery: A Systematic Review. J Am Heart Assoc.
25	588	2019;8:e013546.
26	589	4. Gill TM, Gahbauer EA, Han L and Allore HG. Trajectories of disability in
27	590	the last year of life. N Engl J Med. 2010;362:1173-80.
28	591	
29		5. Pakhomov SV, Jacobsen SJ, Chute CG and Roger VL. Agreement
30	592	between patient-reported symptoms and their documentation in the medical
31	593	record. Am J Manag Care. 2008;14:530-9.
32	594	6. Moore FD. Getting well: the biology of surgical convalescence. <i>Ann N Y</i>
33	595	Acad Sci. 1958;73:387-400.
34	596	7. Diab MS, Bilkhu R, Soppa G, Edsell M, Fletcher N, Heiberg J, Royse C
35	597	and Jahangiri M. The influence of prolonged intensive care stay on quality of life,
36	598	recovery, and clinical outcomes following cardiac surgery: A prospective cohort
37		
38	599	study. J Thorac Cardiovasc Surg. 2018;156:1906-1915.e3.
39	600	8. Thourani VH, Badhwar V, Shahian DM, O'Brien S, Kitahara H, Vemulapalli
40	601	S, Brennan JM, Habib RH, Fernandez F, D'Agostino RS, Lobdell K, Rankin JS,
41	602	Gammie JS, Higgins R, Sabik J, Schwann TA and Jacobs JP. The Society of
42	603	Thoracic Surgeons Adult Cardiac Surgery Database: 2019 Update on Research.
43	604	Ann Thorac Surg. 2019;108:334-342.
44	605	9. Blanche C, Blanche DA, Kearney B, Sandhu M, Czer LS, Kamlot A,
45		
46	606	Hickey A and Trento A. Heart transplantation in patients seventy years of age
47	607	and older: A comparative analysis of outcome. J Thorac Cardiovasc Surg.
48	608	2001;121:532-41.
49	609	10. Dahlberg K, Jaensson M, Eriksson M and Nilsson U. Evaluation of the
50	610	Swedish Web-Version of Quality of Recovery (SwQoR): Secondary Step in the
51	611	Development of a Mobile Phone App to Measure Postoperative Recovery. <i>JMIR</i>
52		
53	612	research protocols. 2016;5:e192.
54		
55		
56		
57		
58		
59		For poor review only http://breice.org/aite/chave/aite/chave/aite/
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		28
2 3 4 5	613 614	11. Jaensson M, Dahlberg K, Eriksson M and Nilsson U. Evaluation of postoperative recovery in day surgery patients using a mobile phone application:
6 7 8 9 10	615 616 617 618 619	a multicentre randomized trial. <i>Br J Anaesth</i> . 2017;119:1030-1038. 12. Halleberg Nyman M, Nilsson U, Dahlberg K and Jaensson M. Association Between Functional Health Literacy and Postoperative Recovery, Health Care Contacts, and Health-Related Quality of Life Among Patients Undergoing Day Surgery: Secondary Analysis of a Randomized Clinical Trial. <i>JAMA Surg</i> .
11 12 13 14 15	620 621 622 623	2018;153:738-745. 13. Myles PS, Weitkamp B, Jones K, Melick J and Hensen S. Validity and reliability of a postoperative quality of recovery score: the QoR-40. <i>Br J Anaesth</i> . 2000;84:11-5.
16 17 18 19 20 21	624 625 626 627 628	14. O'Brien SM, Feng L, He X, Xian Y, Jacobs JP, Badhwar V, Kurlansky PA, Furnary AP, Cleveland JC, Lobdell KW, Vassileva C, Wyler von Ballmoos MC, Thourani VH, Rankin JS, Edgerton JR, D'Agostino RS, Desai ND, Edwards FH and Shahian DM. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 2-Statistical Methods and Results. <i>Ann Thorac Surg</i> .
22 23 24	629 630 631	 2018;105:1419-1428. 15. Loughran T and Nagin DS. Finite Sample Effects in Group-Based Trajectory Models. <i>Sociological Methods & Research</i>. 2006;35:250-278.
25 26	632 633	16. Nagin DS and Odgers CL. Group-based trajectory modeling in clinical research. <i>Annu Rev Clin Psychol.</i> 2010;6:109-38.
27 28	634 635	17. Savage SA, Sumislawski JJ, Bell TM and Zarzaur BL. Utilizing Group- based Trajectory Modeling to Understand Patterns of Hemorrhage and
29 30	636	Resuscitation. Ann Surg. 2016;264:1135-1141.
31 32 33	637 638 639	18. Leffondré K, Abrahamowicz M, Regeasse A, Hawker GA, Badley EM, McCusker J and Belzile E. Statistical measures were proposed for identifying longitudinal patterns of change in quantitative health indicators. <i>J Clin Epidemiol</i> .
34 35	640 641	2004;57:1049-62. 19. Hartigan JA and Wong MA. Algorithm AS 136: A K-Means Clustering
36 37	642	Algorithm. Applied Statistics. 1979;28:100108.
38 39	643 644	20. Jones BL, Nagin DS and Roeder K. A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories. <i>Sociological Methods</i> &
40 41	645 646	Research. 2001;29:374-393.
42	640 647	21. Haviland AM, Jones BL and Nagin DS. Group-based Trajectory Modeling Extended to Account for Nonrandom Participant Attrition. <i>Sociological Methods</i> &
43 44	648	Research. 2011;40:367-390.
45	649	22. Petersen J, Vettorazzi E, Winter L, Schmied W, Kindermann I and
46 47	650 651	Schäfers HJ. Physical and mental recovery after conventional aortic valve surgery. <i>J Thorac Cardiovasc Surg</i> . 2016;152:1549-1556.e2.
47	652	23. Calvert M, Kyte D, Price G, Valderas JM and Hjollund NH. Maximising the
49	653	impact of patient reported outcome assessment for patients and society. <i>BMJ</i> .
50 51	654	2019;364:k5267.
52	655	24. Anderson M, Perrin A. Tech Adoption Climbs Among Older Adults.
53	656	https://www.pewinternet.org/wp-
54	657	content/uploads/sites/9/2017/05/PI_2017.05.17_Older-Americans-
55 56 57	658	Tech_FINAL.pdf. Published 2017. Accessed March 30, 2019.
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4 5	659 660	
6 7	661	
8		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 33 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 32 33 43 5 36 37 839 40 41 42 43 44 50 51 52 53 54 55 56 7 58 59	662	to been keriewony
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

663 Tables and Figures

664 Table 1: Candidate predictors of recovery trajectory

		-		
	Demographic	Comorbidity	Operative factors	Postoperative factors
)	Age	Diabetes	Cardiopulmonary	Length of ICU stay
) I	Age	Diabetes	bypass time	Length of ICO stay
<u>2</u>	Sex	Prior stroke	Cross clamp time	Length of hospital stay
3	Race	Congestive heart failure	Operation type	Surgical site infection
1	Insurance status	Chronic kidney disease	Non-elective status	Prolonged ventilation
5	DNAL	Distais	Transfusion	Transfusion
7	BMI	Dialysis	requirement	requirement
3			Minimally invasive	Charles
Ð		Prior MI	approach	Stroke
)		D. i the second		Reoperation for any
l 2		Prior cardiac surgery		reasons
3		Ejection fraction		Death
1		Arrhythmias		Readmission
5		Prior PCI		Pneumonia
5		Cardiogenic shock		
7 3		Hypertension		
)		Dyslipidemia		
)		Smoking status		
I		Chronic lung disease		
2		Endocarditis		
3 4		Pneumonia		
5		Peripheral artery disease		
5		Immunocompromised		
7		Mechanical circulatory		
3 9				
)		support use Valvular disease severity		
1		valvular disease severity		
<u>665</u>				
³ 4 666				
4 000 5				
5				
7				
3				
9				
) I				
<u>2</u>				
3				
1				
5				
5 7				
3				
5				

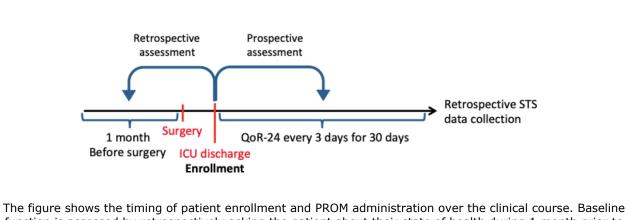
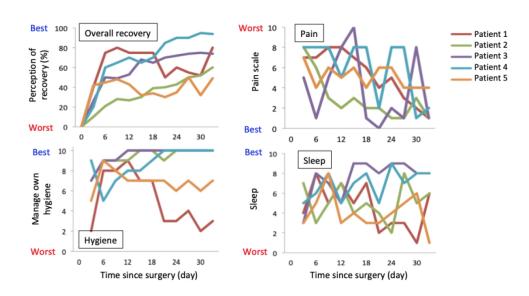

4	
1	Range
2	Mean-over-time
3	Standard deviation (SD)
4	Coefficient of variation (CV)
5	Change
6	Mean change per unit time
7	Change relative to the first score
8	Change relative to the mean over time
9	Slope of the linear model
10	Proportion of variance explained by the linear model
11	Maximum of the first differences
12	SD of the first differences
13	SD of the first differences per time unit
14	Mean of the absolute first differences
15	Maximum of the absolute first differences
16	Ratio of the maximum absolute difference to the mean-over-time
17	Ratio of the maximum absolute first difference to the slope
18	Ratio of the SD of the first differences to the slope
19	Mean of the second differences
20	Mean of the absolute second differences
21	Maximum of the absolute second differences
22	Ration of the maximum absolute second difference to the mean-over-time
23	Ratio of the maximum absolute second difference to mean absolute first difference
24	Ratio of the mean absolute second difference to the mean absolute first difference
9	

Table 2: 24 features of trajectory used in group-based trajectory model


BMJ Open

2		
3 4	670	Figure 1: Timing of patient enrollment and PROM administration
5 6	671	
7 8	672	
9 10 11	673	The figure shows the timing of patient enrollment and PROM administration over
12 13	674	the clinical course. Baseline function is assessed by retrospectively asking the
14 15	675	patient about their state of health during 1 month prior to the operation. 24-item
16 17 18	676	Quality of Recovery questionnaire is administered every 3 days for 30 days
19 20	677	following discharge from the intensive care unit.
21 22	678	
23 24 25	679	
26 27	680	Figure 2: Sample trajectories of recovery in 5 patients
28 29	681	
30 31	682	
32 33 34	683	The figures display trajectories of recovery in different domains in 5 patients.
35 36	684	Each color corresponds to the same patient. Overall recovery is the patient's
37 38	685	perception of overall recovery in 0 to 100% scale. Pain in surgical site is reported
39 40 41	686	in 0 to 10 point scale, with 10 representing the worst pain. Being able to take care
42 43	687	of own hygiene is reported in 0 to 10 point scale, with 10 representing complete
44 45	688	independence in managing own hygiene. Patient's perception of sleep quality is
46 47 48	689	reported in 0 to 10 point scale, with 10 being the best sleep.
49		
50 51		
52 53		
54		
55 56		
57		
58 59		

BMJ Open

The figure shows the timing of patient enrollment and PROM administration over the clinical course. Baseline function is assessed by retrospectively asking the patient about their state of health during 1 month prior to the operation. 24-item Quality of Recovery questionnaire is administered every 3 days for 30 days following discharge from the intensive care unit.

The figures display trajectories of recovery in different domains in 5 patients. Each color corresponds to the same patient. Overall recovery is the patient's perception of overall recovery in 0 to 100% scale. Pain in surgical site is reported in 0 to 10 point scale, with 10 representing the worst pain. Being able to take care of own hygiene is reported in 0 to 10 point scale, with 10 representing complete independence in managing own hygiene. Patient's perception of sleep quality is reported in 0 to 10 point scale, with 10 being the best sleep.

COMPOUND AUTHORIZATION AND CONSENT FOR PARTICIPATION IN A RESEARCH PROJECT 200 FR. 4 (2016-2) YALE UNIVERSITY SCHOOL OF MEDICINE – YALE-NEW HAVEN HOSPITAL

Study Title: Understanding Recovery After Cardiac Surgery

Principal Investigator: Arnar Geirsson, MD

Associate Professor of Surgery (Cardiac) Yale School of Medicine Best Contact Number: 475-201-8349

Funding Source: None

What is this study about?

You are invited to take part in a research study to understand how you recover after heart surgery. We use an app to centralize your healthcare information from multiple sources so it is easy for you and researchers to understand your health status and how you are doing after the surgery. You have been asked to take part in this study because you are planned to undergo or have undergone cardiac surgery at Yale New Haven Hospital (YNHH). If you agree to take part in this study, you will be asked to answer questionnaire through a mobile application platform called Hugo. Through Hugo, you will be asked to answer short questionnaires on your smartphone or email for up to 90 days.

This research study will examine the ability of the mobile health application, Hugo, to quickly and securely obtain healthcare information from multiple sources to monitor your outcomes after a procedure. Among the advantages of this system are that, with your permission, we will be able to access your records at multiple health systems. The risks for this study are similar to the risks associated with traditional research methods: you are sharing your personal health information with researchers and there is a risk to your privacy. However, researchers will only be able to view the heath data that you sync with the Hugo platform. There will also be audit logs of who has accessed your data via Hugo and other safeguards that do not exist with paper and faxed records. Researchers will also access your records within the YNHH electronic medical record (EMR) system. This access is to allow the researchers to confirm that your data has fully come into the Hugo, and that there are no major missing data points.

In order to decide whether you would like to be a part of this research study you should know enough about its risks and benefits to make an informed decision. This consent form gives you detailed information about the study, which a member of the research team will discuss with you. This discussion should review all aspects of this research, especially the confidentiality risks of you having personal health information on your mobile device.

How is this study conducted?

Setup process

The initial set up process will take about 30 minutes in total and entails the following:

- 1. Using your own mobile device, a research associate (RA) will help you with the registration process for the mobile platform Hugo. Hugo will be downloaded from Google Play Store or Apple app store. Registration for Hugo will ask for basic information including first name, last name, email address, and to choose a password. You will then be prompted to accept standard terms and conditions and a privacy notice for the Hugo platform.
- 2. You will check your email and click the confirmation link to activate your new Hugo account.
- 3. The Hugo mobile application will prompt you to link your patient portal accounts by presenting a list of participating health systems. You can select the systems where you have received care and enter your patient portal credentials (all of these are password-protected).
- 4. You will be asked to agree to share data from Hugo. The medical record data being shared may include Medications, Problems, Allergies, Procedures, Encounters, Lab Results, Diagnoses, Vital Signs, Notes, and possibly other data that becomes available.
- 5. The questionnaires will be delivered to you via email or text, whichever you prefer.
- 6. We are asking your permission at the end of this consent form to give the researchers permission to see health information that you sync and share via the Hugo app along with your YNHH medical record.

<u>Please note</u>: The investigators of this study will not be watching or evaluating your symptoms as part of this study, including those that you reply to on the questionnaires. If at any point you begin to experience new symptoms or any medical issues arise, **please contact your doctor or call 911 immediately.**

Continuous Study Process

After the initial in office set up is complete you will be asked to answer questionnaires periodically until the study completion. If you have any questions or experience technical issues at any time, please reach out to the study team via email at **makoto.mori@yale.edu**:

• An RA will follow up in-person with you the day after you are transferred out of the intensive care unit to make sure your accounts and applications are working correctly, and to answer any additional questions you may have.

- Short questionnaires will be sent to your email or text, depending on your preference, initially every 3 days and eventually every 2 weeks up to 90 days following the surgery. This questionnaire should take around 4 minutes on average to complete. The RA may also call you or reach out via email to check in about any technical issues.
- You will receive reminder emails from the Hugo application 1 and 2 days after your questionnaires are sent, reminding you to complete them. These are automated messages and will be sent even if you have completed the surveys. You will also receive reminder messages to use & sync your provided devices.

New Information

You will be informed of anything that happens during the study that may cause you to re-think your decision to continue participation.

Risks and Inconveniences

The risk to patient privacy is that of any computer system that collects personally identifiable information or protected health information. The Hugo application, like many other personal health record applications, is not a considered a covered entity; this means that the HIPAA privacy rule does not apply to this platform. The Hugo platform takes all necessary precautions, including industry-standard encryption, to minimize privacy and security risks to personally identifiable information stored on behalf of study participants. Hugo makes publicly available its Security Statement (<u>http://hugophr.com/security</u>), its Privacy Notice (<u>http://hugophr.com/privacy-notice</u>), and Terms of Service (<u>http://hugophr.com/terms-of-service/</u>). Access to your YNHH medical record will only be within the Epic electronic medical records system; information will not be entered or removed.

You will be asked to volunteer your time to answer questions, and this is considered inconvenience.

There is no extra procedure or medications given for this study, and being on this study does not alter your care from the care you would receive had you not participated in this study.

Benefits

A possible benefit of this study is that you will have easy access to the information contained in your Yale New Haven Health and outside health records that may exist at other participating health systems. Seeing the summary of questionnaire response may also help you and the family to gain awareness and information regarding your health.

You will still be responsible for any costs associated with routine follow-ups or doctor visits, but there will be no additional follow-ups or doctor visits necessary for this study. You are responsible for data charges that may be incurred for utilizing online features of the Hugo when not connected to Wi-Fi.

Treatment Alternatives/Alternatives

If you decide not to participate in this study, you will still have access to your medical records as you would normally. The alternative is to not to participate.

Confidentiality and Privacy

The risk to patient privacy is no different with this study than it is with any other study that securely collects and appropriately stores personally identifiable information or protected health information. Any data transferred as part of the research protocol will be sent via secure and encrypted standard methods. Any identifiable information that is obtained in connection with this study will remain confidential and will be disclosed only with your permission. When the results of the research are published, or discussed in conferences, no information will be included that would reveal your identity, unless your specific consent is obtained.

The information about your health that will be collected in this study includes:

- Electronic medical records from health systems that you import into the Hugo Health, including from Yale New Haven Health system
- Mobile questionnaires that you respond to
- Records about phone calls or emails made as part of this research
- Records about your clinical visits
- Pre-operative, intra-operative and discharge notes within Hugo or the YNHH Electronic Medical Record

Information about you and your health which might identify you may be used by or given to:

- 1. Representatives from Yale University, the Yale Human Research Protection Program and the Yale Human Investigation Committee (the committee that reviews, approves, and monitors research on human subjects), who are responsible for ensuring research compliance. These individuals are required to keep all information confidential.
- 2. The Principal Investigator, along with other research staff and collaborators who are assisting with this study
- 3. Me2Health, the company that owns the mobile application for troubleshooting purposes
- 4. Health care providers who provide services to you in connection with this study

All health care providers subject to HIPAA (Health Insurance Portability and Accountability Act) are required to protect the privacy of your information. The research staff at the Yale School of Medicine are required to comply with HIPAA and to ensure the confidentiality of your information. Some of the individuals or agencies listed above may not be subject to HIPAA and, therefore, may not be required to provide the same type of confidentiality protection. They could use or disclose your information in ways not mentioned in this form. However, to better protect your health information, agreements are in place with these individuals and/or companies that require that they keep your information confidential. In addition, note that the Hugo is not

required to comply with HIPAA but is required to maintain the confidentiality of your information as described in the privacy notice to be provided when you sign up for Hugo.

This authorization to use and disclose your health information collected during your participation in this study will never expire.

Voluntary Participation and Withdrawal

Participating in this study is voluntary and you are free to choose not to take part in this study. **Declining to participate or withdrawing will involve no penalty or loss of benefits to which you are otherwise entitled** (such as your health care outside the study, the payment for your health care, and your health care benefits). It will not harm your relationship with your own doctors or with Yale-New Haven Health or the care that you receive.

If you do become a study participant, you are free to stop and withdraw from this study at any time during its course.

To withdraw from the study, you can call a member of the research team to let them know that you would no longer like to take part. The telephone number to do this is 475-201-8349. You may also email the intent to makoto.mori@yale.edu.

When you withdraw from this study, no new health information identifying you will be gathered after that date. Information that has already been collected may still be used until the end of the research study, as necessary to ensure the integrity of the study and/or study oversight.

Questions

We have used some technical terms in this form. Please feel free to ask about anything you don't understand and to consider this research and the consent form carefully – as long as you feel is necessary – before you make a decision.

Authorization and Permission

I have read (or someone has read to me) this form and have decided to participate in the project described above. Its general purposes, the particulars of my involvement and possible hazards and inconveniences have been explained to my satisfaction. My signature also indicates that I have received a copy of this consent form.

By signing this form, I give permission to the researchers to use [and give out] information about me for the purposes described in this form. By refusing to give permission, I understand that I will not be able to be in this research.

Print Name of Participant:	
Signature:	
Date:	

If after you have signed this form you have any questions about your privacy rights, please contact the Yale Privacy Officer at 203-432-5919.

If you have further questions about this project or if you have a research-related problem, you may contact the Research Associate, Makoto Mori, at 475-201-8349 or at makoto.mori@yale.edu. If you would like to talk with someone other than the researchers to discuss problems, concerns, and questions you may have concerning this research, or to discuss your rights as a research participant, you may contact the Yale Human Investigation Committee at 203-785-4688.

Modification of Quality of Recovery (QoR-24) Questionnaire

*Answered in visual analogue scale: 0 [none of the time] to 10 [all of the time] *'During the last 24 hours, I have been...'*

Modified:

- 1. Able to breathe easily
- 2. Having normal bowel function
- 3. Able to enjoy food
- 4. Speaking normally
- 5. Able to think clearly
- 6. Able to remember things
- 7. Able to make decisions quickly
- 8. Able to take care of own hygiene
- 9. Able to write
- 10. Able to dress easily
- 11. Having pain in the surgical wound
- 12. Having nausea
- 13. Shivering or twitching
- 14. Feeling dizziness
- 15. Feeling restless
- 16. Feeling rested
- 17. Feeling depressed
- 18. Feeling lonely
- 19. Having anxiety
- 20. Sleeping well
- 21. Difficulties getting to sleep
- 22. What time did you fall asleep? What time did you wake up without going back to sleep?

- 23. How much do you think you have recovered? (0-100%)
- 24. Open ended question: 'Please describe what you are feeling (good and bad), what bothers you, and what has been helpful to your recovery'

Hugo recovery interview guide

Logistics:

- Email or call patient with response rate <50% to set up time or proceed directly with interview
- The interview likely takes 10-15 minutes
- Likely use Zoom to record interview

Before interview:

- Make clear that the intent is to learn from the interview and no hard feelings about not being able to complete the survey
- Make clear that honest opinion is most helpful for us to improve

Interview guide:

- What challenges or difficulties did you have in completing surveys?
- Did you know that surveys were emailed/texted to you? (How often do you check your email/texts?)
- What would have helped to engage you better? (better interface, better explanations of the study, why the study is important, other incentives, etc)
- Were there any technical issues with the surveys? (email/text didn't deliver, interface was not friendly, etc)
- Would reminder emails have been helpful?
- Were there too many questions?
- Did any questions feel irrelevant to you?

BMJ Open

Supplementary Table 1: Candidate instruments to measure postoperative recovery

ΤοοΙ	Assessed interval	Population	Number of questions	Published Year	Self- administer?	Surgery type	Derivation size
Postdischarge Surgical Recovery (PSR)	Day 4	Ambulatory	18	2000	Yes	Laparoscopic cholecystectomy, hernia repair	163
Quality of Recovery (QoR)	24 h	Inpatient and ambulatory, adult	24	2000	Yes	Surgery with general anesthesia	160
Surgical Recovery Index (SRI)	Day 7, 14, 21 and 28	Inpatient	24	2004	Yes	Laparoscopic and open surgery (not specified further)	149
Functional Recovery Index (FRI)	Baseline, day 1, 3, 5 and 7	Ambulatory, adult	14	2009	Yes	Various ambulatory	324
Postoperative Quality of Recovery Score (PQRS)	Baseline, 15 and 45 min, day 1 and 3, 3 months	Inpatient, pediatrics + adults	18	2010	No	Elective surgery with general anesthesia	701
Surgical Recovery Scale (SRS)	Baseline, day 3, 7, 30 and 60	Inpatient, adult	13	2011	Yes	Elective colonic resection	150

BMJ Open

Supplementary Table 2: Validity tested and domains assessed in instruments to measure postoperative recovery

ΤοοΙ	Validity assessed	Cognitive	Nociceptive/pain	Emotive	Sleep	Activity of daily living	Physiologic	Reasons not chosen
Postdischarge Surgical Recovery (PSR)	Construct, convergent validity			Y		Y		Low number of domains
Quality of Recovery (QoR)	Convergent, construct, test-retest reliability, responsiveness		Y	Y	Y	Y	Y	-
Surgical Recovery Index (SRI)	Convergent validity		Y Y			Y		Low number of domains
Functional Recovery Index (FRI)	Discriminant validity		Y O			Y		Low number of domains
Postoperative Quality of Recovery Score (PQRS)	Face validity	Y	Y	Y		Y	Y	Requires administer
Surgical Recovery Scale (SRS)	None			Y		Y		Low number o domains
	For pe	eer review only	/ - http://bmjopen.bmj	.com/site/abo	out/guidel	ines.xhtml		