Supporting Information

Surface Modification of Cured Inorganic Foams with Cationic Cellulose Nanocrystals and Their Use as Reactive Filter Media for Anionic Dye Removal

Tuula Selkälä,^a Terhi Suopajärvi,^a Juho Antti Sirviö,^a Tero Luukkonen,^a Paivo Kinnunen,^a Ana Luiza Coelho Braga de Carvalho,^b and Henrikki Liimatainen^{a,*}

^aFiber and Particle Engineering Research Unit, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland ^bClausthal Technical University, Department of Mineral and Waste Processing, Walther-Nernst-Straße 9, 38678 Clausthal-Zellerfeld, Germany

*Corresponding author; Tel: +358505659711. Email: henrikki.liimatainen@oulu.fi

Number of pages: 9 Number of figures: 7 Number of schemes: 0 Number of tables: 2

Figure S1. Set-ups used in the (A) CNC filtration and (B) dye adsorption experiments. The geopolymer samples in the photographs were shorter than what were used in the actual experiments reported in the article.

Figure S2. (A) Methyl orange calibration curve showing UV-vis absorbance as a function of solution concentration (λ_{max} 464 nm, 0–20 mg/L in deionized water, pH 7). (B) UV-vis spectra of methyl orange in deionized water (0–20 mg/L, pH 7).

Figure S3. Field emission scanning electron microscope (FESEM) images and photographs of: (A1-A2) geopolymer (GP); (B1-B2) hydrothermally treated geopolymer (GP-HT); and (C1-C2) heat-treated geopolymer (GP-H) samples. FESEM images of (D) acid-washed (GP-AA) and (E) heat-treated acid-washed (GP-H-AA) geopolymers.

Figure S4. TGA curves of geopolymer (GP), acid-washed geopolymer (GP-AA), heat-treated geopolymer (GP-H) and heat-treated acid-washed geopolymer (GP-H-AA) samples under air atmosphere between 22–950 °C.

Figure S5. (A) Incremental and (B) cumulative pore volumes of geopolymer (GP), acid-washed geopolymer (GP-AA), heat-treated geopolymer (GP-H) and heat-treated acid-washed geopolymer (GP-H-AA) samples calculated from the BJH desorption data.

Table S1. Comparison of synthesis of geopolymer foams using a direct foaming method.

	Luukkonen et al. 2020	This manuscript				
Raw materials						
Metakaolin (53.0 wt% SiO ₂ , 44.5 wt% Al ₂ O ₃)	Х	Х				
Sodium silicate solution (molar SiO ₂ /Na ₂ O \approx 3.5, water content \approx 64 wt%)	Х	Х				
NaOH pellets	Х	Х				
30% H ₂ O ₂	Х	Х				
СТАВ	Х	Х				
Amounts						
Alkali activator SiO ₂ /Na ₂ O molar ratio	1.2	1.6				
Metakaolin/alkali activator weight ratio	1.00:1.36	1.00:1.7	79			
Water content of fresh paste [wt%]	33	40				
H ₂ O ₂ content of fresh paste [wt%]	0.6	1.0				
CTAB content of fresh paste [mol/g]	1.947×10 ⁻⁶	1.584×10)-6			
Curing	60 °C 4 h	60 °C 4 ł	1			
Geopolymer		GP	GP-H			
SiO_2/Al_2O_3 molar ratio	3.24	3.65	3.65			
Na_2O/SiO_2 molar ratio	0.31	0.27	0.27			
Na ₂ O/Al ₂ O ₃ molar ratio	1.00	1.00	1.00			
H ₂ O/Na ₂ O molar ratio	9.80	14.1	14.1			
Total porosity (gas pycnometer) [%]	88.8	93.3	93.0			

Reference:

Luukkonen, T., Yliniemi, J., Sreenivasan, H., Ohenoja, K., Finnilä, M., Franchin, G., & Colombo, P. (2020). Ag-or Cumodified geopolymer filters for water treatment manufactured by 3D printing, direct foaming, or granulation. *Scientific Reports*, *10*(1), 1-14. https://doi.org/10.1038/s41598-020-64228-5

		a					T T •/
Parameter		Source	Value				Unit
Cellulose density	ρ	Assumption	1500			[kg/m ³]	
CNC width	d	EFTEM images	8.00×10 ⁻⁹			[m]	
CNC length	1	EFTEM images	9.80×10 ⁻⁸			[m]	
Surface area of one	A _{CNC}	Assumption:	7.84×10^{-16}			[m ²]	
longitudinal side of one		Rectangular shape,					
CNC		$A = d \times l$					-
Volume of one CNC	V	$V = d \times d \times l$	6.27×10 ⁻²⁴			[m ³]	
Mass of one CNC	m_1	$m_1 = \rho \times V$	9.41×10 ⁻¹⁸			[g]	
			GP-AA ^a	GP-AA	GP-H- AA	GP-H- AA	
Mass of CNC	m ₂	Experiments	600	600	600	600	[g]
suspension		-					_
Dry matter content of		Experiments	0.1	0.1	0.1	0.1	[% w/w]
CNC suspension							
Mass of CNCs in the	m ₃	$m_3 = 0.001 \times m_2$	0.6	0.6	0.6	0.6	[g]
suspension							
Mass of CNCs	m_4	Experiments	0.297	0.274	0.243	0.346	[g]
adsorbed in the							
geopolymer							
Number of CNCs		m_4/m_1	3.2×10^{16}	2.9×10^{16}	2.6×10^{16}	3.7×10^{16}	pcs
adsorbed in the							
geopolymer							
Total CNC surface area	A _{tot(CNC)}	$A_{tot(CNC)} =$	24.8	22.8	20.3	28.8	$[m^2]$
in contact with the		$(m_4/m_1) \times A_{CNC}$					
geopolymer				21.0		10.0	
Mass of geopolymer	m ₅	Experiments	24.0	21.9	21.2	19.0	[g]
CNCs adsorption on		$(m_4 \times 1000)/m_5$	12	13	11	18	[mg/g]
geopolymers			47.0	47.0	265	265	r 2/ 1
Geopolymer specific	SSA	BET analysis	47.8	47.8	36.5	36.5	$[m^2/g]$
surface area			1117	1016		<i>c</i> 0.2	5 23
Total surface area of	A _{tot(geo)}	$A_{tot(geo)} = SSA \times m_5$	1145	1046	773	693	[m ²]
geopolymer		(A			2.6	1.2	50/3
Surface coverage		(Atot(CNC)/	2.2	2.2	2.6	4.2	[%]
A 6		$A_{tot(geo)}) \times 100$			2.4		F0/]
Average surface			2.2		5.4		[%]
coverage			1		1		1

Table S2. Parameters u	ised in t	the surface	coverage	calculations.
------------------------	-----------	-------------	----------	---------------

^aThere were two pieces of each geopolymer type. One was tested with 5 mg/L MO solution and the other with 10 mg/L MO solution.

Figure S6. UV-vis spectra of methyl orange solution (initial concentration 5 mg/L, pH 7) after filtrations through: (A) acid-washed geopolymer (GP-AA); (B) acid-washed geopolymer combined with CNCs (GP-AA-CNC); (C) heat-treated and acid-washed geopolymer (GP-H-AA); and (D) heat-treated and acid-washed geopolymer combined with CNCs (GP-H-AA-CNC).

Figure S7. UV-vis spectra of methyl orange solution (initial concentration 10 mg/L, pH 7) after filtrations through: (A) acid-washed geopolymer (GP-AA); (B) acid-washed geopolymer combined with CNCs (GP-AA-CNC); (C) heat-treated and acid-washed geopolymer (GP-H-AA); and (D) heat-treated and acid-washed geopolymer combined with CNCs (GP-H-AA-CNC).