Supporting Information 1 2 Unravelling metal speciation in the microenvironment surrounding 3 phytoplankton cells to improve predictions of metal bioavailability Fengjie Liu¹*, Qiao-Guo Tan², Dominik Weiss^{1,3}, Anne Crémazy⁴, Claude Fortin⁵, Peter 4 5 G.C. Campbell⁵ 6 ¹Department of Earth Science and Engineering, Imperial College London, South 7 Kensington Campus, London, SW7 2AZ, United Kingdom 8 ²Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, 9 College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, 10 China 11 ³Department of Civil and Environmental Engineering, Princeton University, NJ 08540, 12 **United States** 13 ⁴Department of Biological Sciences, University of New Brunswick, Saint John (NB), 14 E2L 4L5, Canada 15 ⁵Institut national de la Recherche scientifique, Centre Eau Terre Environnement, 490 16 de la Couronne, Québec (Québec), G1K 9A9, Canada 17

18 *Corresponding author: <u>fengjieliu2012@gmail.com</u>

19

Contents

20	Table S1. A summary of the <i>in situ</i> measured pH and O_2 concentrations in the
21	phycosphere of marine and freshwater phytoplankton cells
22	Table S2. Basic chemical composition of freshwater and seawater used for the
23	calculation of metal speciation6
24	Table S3. Equilibrium modelled relative distribution of free ion, total inorganic
25	complexes and total organic complexes of metals in the phycosphere of marine
26	phytoplankton cells7
27	Table S4. Equilibrium modelled relative distribution of free ion, total inorganic
28	complexes and total organic complexes of metals in the phycosphere of freshwater
29	phytoplankton cells9
30	Figure S1. Fold changes in the calculated oxidation rate of Fe(II), Mn(II) and Cu(I) in
31	the phycosphere of freshwater or marine algae in the light or in the dark, in
32	comparison to the calculated rates in bulk solutions11
33	Figure S2. The relationships between the calculated free Pb ²⁺ concentration in the
34	bulk water or in the phycosphere and the measured Pb uptake rate by the
35	freshwater alga Chlamydomonas reinhardtii CPCC11 under constant light12
36	Figure S3. Bulk solution pH increase/decrease in the exposure solution, by nitrate
37	NO ₃ ⁻ or ammonium NH ₄ ⁺ -fed algae13
38	Figure S4. The relationships between the measured Sm uptake rate by the
39	freshwater alga <i>C. reinhardtii</i> CPCC11 and the calculated free Sm ³⁺ concentration in
40	the bulk water and in the phycosphere14
41	Figure S5. A significant pH decrease of the exposure solution by ammonium NH_4^+ -fed
42	algae15
43	Note S1. Potential influences of several physical/chemical/biological factors, other
44	than pH and O ₂ , on metal behaviour in the phycosphere16
45	Note S2. Calculation of the differences in oxidation rates of Fe(II), Cu(I) and Mn(II)
46	between the phycosphere and bulk water19
47	Table S5. Values used for the calculation of relative changes in metal oxidation rates
48	in the phycosphere, in comparison to bulk waters20
49	Note S3. Estimation of the amount of Cu(I) oxidation and Cu complexation in the
50	phycosphere21
51	Table S6. Calculation of Cu residence time and percentage of total Cu(I) being
52	oxidized by O_2 in the phycosphere22
53	Note S4. Definition of Root Mean Square Logarithmic Error (RMSLE)24
54	References25

55 **Table S1. A summary of the** *in situ* measured pH and O₂ concentrations in the phycosphere of marine and freshwater

56 phytoplankton cells.

Species (Reference)	Habitat	Cell sample	Light (µmol	рН			O ₂ (mM)		
			pnotons m ² s ⁻¹)	Phycosphere	Bulk	difference	Phycosphere	Bulk	difference
Halimeda discoidea ¹	marine	segment	0	8.00	8.10	-0.10	0.15	0.21	-0.06
			12	8.10	8.10	0.00	0.21	0.21	0.00
			36	8.50	8.10	0.40	0.32	0.21	0.11
			93	9.00	8.10	0.90	0.50	0.21	0.29
			200	8.80	8.10	0.70	0.58	0.21	0.37
Odontella sinensis ²	marine	individual	0	7.99	8.00	-0.01	0.24	0.24	0.00
			200	8.35	8.00	0.35	0.32	0.24	0.08
Coscinodiscus sp.² Odontella	marine	individual	200	8.35	8.00	0.35			
mobiliensis² Thalassiosira	marine	individual	200	8.10	8.00	0.10			
weissflogii² Thalassiosira	marine	individual	200	8.05	8.00	0.05			
weissflogii ³	marine	individual	160	8.75	8.55	0.20			
			160	9.05	8.55	0.50			
			160	7.93	7.88	0.05			
			160	7.90	7.88	0.02			
Coscinodiscus									
wailesii ⁴	marine	individual	200	8.40	8.10	0.30			
Coscinodiscus wailesii ⁵	marine	individual	0	7.70	7.70	0.00	0.19	0.22	-0.03

Species (Reference)	Habitat	Cell sample	Light (µmol photons m ⁻²	рН			O ₂ (mM)		
			S ⁻¹)	Phycosphere	Bulk	difference	Phycosphere	Bulk	difference
Coscinodiscus									
wailesii ⁵	marine	individual	170	8.60	7.70	0.90	0.38	0.22	0.16
Trichodesmium ⁶	marine	colony	1000	8.40	8.10	0.30	0.32	0.21	0.11
			0	7.80	8.10	-0.30	0.18	0.21	-0.03
			1000	8.00	7.80	0.20	0.25	0.21	0.04
			0	7.60	7.80	-0.20	0.16	0.21	-0.05
Coscinodiscus granii ⁷	marine	individual		8.32	8.03	0.29			
				8.35	8.14	0.21			
				8.48	8.22	0.26			
Phaeocystis ⁸	marine	natural colony	150	8.90	8.50	0.40	0.54	0.30	0.24
			0	8.46	8.50	-0.04	0.28	0.30	-0.02
			0	8.16	8.19	-0.03	0.28	0.30	-0.02
			20	8.23	8.19	0.04	0.32	0.30	0.02
			25	8.28	8.19	0.09	0.33	0.30	0.03
			50	8.35	8.19	0.16	0.36	0.30	0.06
			80	8.45	8.19	0.26	0.40	0.30	0.10
			130	8.51	8.19	0.32	0.45	0.30	0.15
Ankistrodesmus sp.9	freshwater	aggregate	85	>8.00	6.80	>1.20			
Microcystis sp. ⁹	freshwater	aggregate	85	>8.00	6.80	>1.20			
Chlorella sp.9	freshwater	aggregate	85	>8.00	6.80	>1.20			
Nitzschia sp. ⁹	freshwater	aggregate	85	>8.00	6.80	>1.20			
Anabaena sp.9	freshwater	individual	85	>8.00	6.80	>1.20			
Scenedesmus sp.9	freshwater	individual	85	>8.00	6.80	>1.20			

Species (Reference)	Habitat	Cell sample	Light (µmol photons m ⁻²	рН		O ₂ (mM)			
			S ⁻¹)	Phycosphere	Bulk	difference	Phycosphere	Bulk	difference
Unicellular green ⁹	freshwater	individual	85	>8.00	6.80	>1.20			
Vaucheria sp. ⁹	freshwater	individual	85	>8.00	6.80	>1.20			
Chlorella sp. ¹⁰	freshwater	cell layer natural	108	10.30	7.50	2.80	0.36	0.14	0.22
<i>Microcystis</i> sp. ¹⁰	freshwater	aggregate natural	sunlight	10.40	9.00	1.40	1.10	0.37	0.73
<i>Microcystis</i> sp. ¹⁰	freshwater	aggregate	sunlight	9.25	9.00	0.25	0.40	0.20	0.20

57

58 Note, the Δ pH values in the Figure 1 were calculated as the differences between the bulk waters and the phycosphere, and we

59 didn't convert the numbers into Δ [H⁺].

60 Table S2. Basic chemical composition of freshwater and seawater used for the

	Freshwater	Seawater
Component	(mol L⁻¹)	(mol L ⁻¹)
Na	5.0×10^{-4}	4.8 × 10 ⁻¹
Mg	5.0 × 10 ⁻⁴	5.5 × 10 ⁻²
К	5.0 × 10 ⁻⁵	1.0 × 10 ⁻²
Ca	5.0×10^{-4}	1.0 × 10 ⁻²
Cl	1.0×10^{-3}	5.6 × 10 ⁻¹
SO ₄	5.0 × 10 ⁻⁴	2.9 × 10 ⁻²
CO ₃	open to air	2.4 × 10 ⁻³
NO ₃	5.0 × 10 ⁻⁴	
Br		8.4 × 10 ⁻⁴
BO ₃		4.9 × 10⁻⁵
F		7.2 × 10⁻⁵
Sr		6.4 × 10 ⁻⁵
Al	1.0 × 10 ⁻⁵	1.0 × 10 ⁻⁷
Cd	1.0×10^{-9}	1.0×10^{-10}
Co(II)	1.0 × 10 ⁻⁹	1.0 × 10 ⁻⁹
Cu(II)	2.0 × 10 ⁻⁸	5.0 × 10 ⁻⁸
Cu(I)		2.5 × 10⁻ ⁹
Fe(III)	1.0 × 10 ⁻⁶	1.0 × 10 ⁻⁸
Fe(II)		2.4 × 10 ⁻⁹
Sm*	5.0 × 10 ⁻¹¹	1.0×10^{-11}
Hg		1.0×10^{-12}
Mn(II)		1.0 × 10 ⁻⁷
Ni	5.0 × 10 ⁻⁹	1.0 × 10⁻ ⁸
Pb	1.0 × 10 ⁻⁸	1.0×10^{-10}
Zn	1.0 × 10 ⁻⁷	1.0 × 10⁻ ⁸
DOC (mg/L)	0.3-32	0.14-16

61 calculation of metal speciation.

62 The concentrations of major cations/anions, trace metals, and DOC were taken from

63 several publications.¹¹⁻¹⁴ *The dissolved Sm concentrations refer to two studies.^{15, 16}

Table S3. Equilibrium modelled relative distribution (%) of free ion, total inorganic
complexes (-Inorg.) and total organic complexes (-Org.) of metals in the phycosphere
of marine phytoplankton cells.

Metal	Bulk			Bulk		
species	seawater	Phycospher	e	seawater	Phycospher	е
		рН 8.3	рН 7.9		рН 8.3	рН 7.9
%	рН 8.0	(light)	(dark)	рН 8.0	(light)	(dark)
	in the preser	nce of 0.14 m	ng L ⁻¹ DOC	in the preser	nce of 16 mg	L ⁻¹ DOC
Al ³⁺	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Al-Inorg.	99.99	99.99	99.99	84.68	96.60	77.43
Al-Org.	<0.01	<0.01	<0.01	15.32	3.40	22.57
Cd ²⁺	3.49	3.48	3.49	2.96	2.66	3.05
Cd-Inorg.	96.50	96.50	96.50	81.90	73.58	84.34
Cd-Org.	<0.01	<0.01	<0.01	15.12	23.76	12.61
Co ²⁺	74.51	72.45	74.93	59.05	50.37	61.66
Co-Inorg.	25.48	27.54	25.06	20.20	19.15	20.63
Co-Org.	<0.01	<0.01	<0.01	20.75	30.48	17.71
Cu(I)+	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cu(I)-Inorg.	99.99	99.99	99.99	99.99	99.99	99.99
Cu(I)-Org.	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cu ²⁺	4.45	1.93	5.66	<0.01	<0.01	<0.01
Cu-Inorg.	54.30	48.91	55.26	<0.01	<0.01	<0.01
Cu-Org.	41.25	49.14	39.07	99.99	99.99	99.99
Fe(II) ²⁺	73.80	72.89	73.98	73.57	72.67	73.75
Fe(II)-Inorg.	26.20	27.10	26.02	26.12	27.03	25.94
Fe(II)-Org.	<0.01	<0.01	<0.01	0.31	0.30	0.31
Fe ³⁺	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe-Inorg.	24.85	38.43	22.19	<0.01	<0.01	<0.01
Fe-Org.	75.15	61.56	77.81	99.99	99.99	99.99
Hg ²⁺	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hg-Inorg.	96.49	94.79	96.87	<0.01	<0.01	<0.01
Hg-Org.	3.51	5.21	3.13	99.99	99.99	99.99
Mn ²⁺	67.44	63.97	68.19	67.36	63.90	68.11
Mn-Inorg.	32.56	36.03	31.81	32.53	36.00	31.78
Mn-Org.	<0.01	<0.01	<0.01	0.11	0.10	0.11
Ni ²⁺	72.26	69.16	72.92	67.97	65.29	68.54
Ni-Inorg.	27.69	30.79	27.03	26.05	29.07	25.41
Ni-Org.	0.05	0.04	0.05	5.97	5.63	6.04

64

Metal	Bulk			Bulk			
species	seawater	Phycosph	ere	seawater	seawater Phycosphere		
		pH 8.3	pH 7.9		pH 8.3		
%	pH 8.0	(light)	(dark)	pH 8.0	(light)	pH 7.9 (dark)	
	in the prese	nce of 0.14 r	ng L⁻¹ DOC	in the pre	esence of 2	16 mg L ⁻¹ DOC	
Pb ²⁺	5.29	3.73	5.74	0.12	0.07	0.14	
Pb-Inorg.	91.92	92.87	91.71	2.03	1.65	2.29	
Pb-Org.	2.78	3.39	2.54	97.84	98.27	97.55	
Sm ³⁺	1.41	0.69	1.73	< 0.01	<0.01	<0.01	
Sm-Inorg.	42.18	54.97	38.85	< 0.01	<0.01	<0.01	
Sm-Org.	56.41	44.34	59.42	99.99	99.99	99.99	
Zn ²⁺	49.35	44.04	50.31	8.19	4.97	9.78	
Zn-Inorg.	50.59	55.85	49.63	8.39	6.31	9.64	
Zn-Org.	0.07	0.08	0.06	83.41	88.72	80.57	

Note, data are also shown for bulk seawater at pH 8.0. Here, the average phycosphere

66 pH change (i.e., a 0.3-unit increase in the light, and a 0.1-unit decrease in the dark) was

67 used to calculate the speciation change in the presence of low and high concentrations

68 of dissolved organic carbon (DOC).

- 69 Table S4. Equilibrium modelled relative distribution (%) of free ion, total inorganic
- 70 complexes (-Inorg.) and total organic complexes (-Org.) of metals in the phycosphere
- 71 of freshwater phytoplankton cells.

Metal	Bulk			Bulk		
species	freshwater	Phycosph	iere	freshwater	Phycosph	ere
		pH 8.3	pH 6.5		pH 8.3	pH 6.5
%	рН 7.0	(light)	(dark)	рН 7.0	(light)	(dark)
	in the pres	ence of 0.3	3 mg L ⁻¹ DOC	in the prese	nce of 32	mg L ⁻¹ DOC
Al ³⁺	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Al-Inorg.	99.27	99.99	97.45	10.39	91.47	1.87
Al-Org.	0.72	<0.01	2.54	89.61	8.53	98.13
Cd ²⁺	87.66	86.45	87.76	42.60	5.73	47.53
Cd-Inorg.	11.98	12.85	11.96	5.85	0.85	6.50
Cd-Org.	0.35	0.70	0.28	51.55	93.41	45.96
Co ²⁺	94.55	91.47	94.70	58.46	29.66	61.27
Co-Inorg.	5.18	8.13	5.08	3.24	2.66	3.32
Co-Org.	0.26	0.40	0.21	38.31	67.68	35.41
Cu ²⁺	59.07	3.08	80.46	0.08	<0.01	0.28
Cu-Inorg.	19.35	20.52	11.70	0.02	<0.01	0.04
Cu-Org.	21.58	76.39	7.84	99.89	99.99	99.68
Fe ³⁺	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe-Inorg.	66.36	68.81	74.72	<0.01	<0.01	<0.01
Fe-Org.	33.63	31.19	25.28	99.99	99.99	99.99
Ni ²⁺	93.76	91.33	94.05	23.52	17.85	25.89
Ni-Inorg.	5.11	6.94	5.06	1.29	1.36	1.39
Ni-Org.	1.13	1.73	0.90	75.18	80.78	72.70
Pb ²⁺	63.07	10.38	76.74	0.59	0.01	1.69
Pb-Inorg.	23.29	44.89	17.44	0.22	0.05	0.38
Pb-Org.	13.64	44.72	5.81	99.19	99.94	97.92
Sm ³⁺	2.35	0.09	10.81	<0.01	<0.01	<0.01
Sm-Inorg.	2.46	0.26	10.60	<0.01	<0.01	<0.01
Sm-Org.	95.19	99.65	78.58	99.99	99.99	99.99
Zn ²⁺	92.86	63.04	93.56	30.95	2.96	36.16
Zn-Inorg.	6.49	36.04	5.92	2.17	1.69	2.30
Zn-Org.	0.66	0.91	0.51	66.86	95.34	61.53

72 Note, data are also shown for bulk freshwater at pH 7.0. Here, the average phycosphere

pH change (i.e., a 1.3-unit increase in the light, and an assumed 0.5-unit decrease in the

- 74 dark) was used to calculate the speciation change in the presence of low and high
- 75 concentrations of dissolved organic carbon (DOC).

78 Figure S1. Fold changes in the calculated oxidation rate of Fe(II), Mn(II) and Cu(I) in the

79 phycosphere of freshwater or marine algae in the light (red) or in the dark (grey), in

80 comparison to the calculated rates in bulk solutions. The data are shown on a log scale,

81 and the dashed line indicates no difference between the phycosphere and bulk water.

82 The details of the calculation are given in the Note S2.

83 84

85 **Figure S2. The relationships between the calculated free Pb²⁺ concentration in the bulk**

86 water (left panel) or in the phycosphere (right panel) and the measured Pb uptake rate

87 (J_{Pb}) by the freshwater alga *Chlamydomonas reinhardtii* CPCC11 under constant light

- 88 (100 μmol photons m⁻² s⁻¹). The data are replotted.¹⁷
- 89

105 **the bulk water and in the phycosphere.** The bulk medium pH¹⁹ was 6, and the

106 phycosphere Sm³⁺ concentration was calculated by assuming a phycosphere pH 5 or 5.5.

107 Here, the phycosphere pH was assumed to be lower than the bulk water, because the

108 uptake test was carried out under a low light intensity (< 20 μ mol photons m⁻² s⁻¹) and

109 the algae were cultured with NH_4^+ as the nitrogen source. The low light and the supply

110 of NH₄⁺ would likely result in an overall lower phycosphere pH than that in the bulk

111 water (see Figure S5 for an example).

112

115 Figure S5. A significant pH decrease of the exposure solution by ammonium NH₄⁺-fed

116 **algae** *Chlamydomonas reinhardtii* CPCC11 at 2 × 10⁷ cells mL⁻¹. The experimental details

117 can be found in our previous studies.^{17, 18} The present data are not shown in those

118 papers.

119

Note S1. Potential influences of several physical/chemical/biological factors, other than pH and O₂, on metal behaviour in the phycosphere.

122 In addition to pH changes, redox dynamics in the phycosphere might differ from those in 123 the bulk water. For example, phytoplankton release various reactive oxygen species 124 (ROS) such as H_2O_2 and superoxide into the extracellular environment^{20, 21}. Such solutes have slower diffusive rates (0.6-1.4 \times 10⁻⁹ m² s⁻¹ for H₂O₂)²² than OH⁻/H⁺ (5.3-9.3 \times 10⁻⁹ 125 m² s⁻¹), and they could hence be locally enriched. The ROS-enriched micro-environment 126 127 would facilitate redox transformation of redox-sensitive metals (e.g., Fe, Cu, and Mn) 128 and ligands (e.g., thiol-containing ligands) before metals are taken up.^{23, 24} At present, 129 the level and dynamic of ROS in the phycosphere remain unknown, let alone their 130 potential influence on the local metal speciation.

131

132 Nutritional status of algae might alter chemical conditions in the phycosphere as well.

133 For example, Milligan et al.³ observed that both Fe and carbon availability influenced the

134 phycosphere pH of the marine diatom *Thalassiosira weissflogii*; the enhancement in

135 phycosphere pH of Fe-replete cells was 0.3-unit higher than for Fe-limited cells.

136 Moreover, the phycosphere pH change in high pCO_2 treatments was not as significant as 137 in low pCO_2 treatments.³

138

139 Nitrogen sources for algae might be another factor in influencing both phycosphere pH

and ROS levels. Lavoie et al. ²⁵ modelled the effect of different N sources on the

141 phycosphere pH of freshwater phytoplankton, and their results suggested that

142 NO_3^{-} -grown algae would have a higher phycosphere pH than NH_4^{+} -grown cells. On the

143 other hand, studies with marine algae found that extracellular production of ROS was

associated with nitrogen nutrition; nitrate could stimulate more extracellular ROS than

145 ammonium in some algae species.²⁶

146

147 Extracellular polymeric substances (EPS) secreted by certain phytoplankton species such

S16

as *Phaeocystis*²⁷ might alter the chemical behaviour of metals in the phycosphere. For
example, the residence time of metals would be longer in the phycosphere of algae
having an abundance of EPS than for those without EPS, since diffusion coefficients (D)
of metal ions and complexes are lower in solutions of higher viscosity, η, such as in the
phycosphere of algae that produce EPS (i.e., due to the inverse relationship between D
and η in the Stokes-Einstein equation).

154

155 The local chemistry in the phycosphere might also be influenced by the microbial

156 community living in this micro-environment. In nature, a diversity of smaller

157 microorganisms such as bacteria and viruses frequently cluster near, or attach to,

158 phytoplankton.^{28, 29} Thus, the metabolism of these microbes might alter phycosphere pH

and redox potential (e.g., CO₂ release and O₂ consumption during respiration), and

160 extracellular release of ROS from these bacteria²¹ might influence chemical reactions

- 161 between metals and ligands. However, the potential influence of the microbes on local
- 162 metal speciation has been little examined.
- 163

164 Other than these biological factors, water turbulence can increase interfacial mixing of 165 nutrients and metabolites to and from an organism (> 100 μ m) between bulk waters and 166 the biota. However, the effect from turbulence on the phycosphere conditions for 167 micro-organisms of < 100 μ m in diameter would be weak, because modelling work has 168 suggested that even high levels of turbulence (e.g., at a dissipation rate 10⁻⁶ W kg⁻¹)

169 produce a tiny increase (around 2%) of the flux in the tiny interfacial layer.³⁰

170

Finally, total metal concentrations as well as competing metal interactions might not be
the same as those in the bulk water. For example, a higher pH and [O₂] in the

phycosphere could result in local precipitation of Fe and Mn^{9, 31} and hence alter source

and bioavailability of the metals to algal cells. With respect to metal-metal interactions,

even if there was a simultaneous enhancement of free metal ions (e.g., Zn²⁺ and Cd²⁺) in

the phycosphere, this would not necessarily result in an increase in uptake of both

177 metals since they might compete with each other for the same membrane transporter.³²

178

Note S2. Calculation of the differences in oxidation rates of Fe(II), Cu(I) and Mn(II)
between the phycosphere and bulk water.

181 Fe oxidation kinetics in both freshwater and marine waters follow the rate law:^{33, 34}

182

Fe(II) oxidation rate =
$$\frac{-d[Fe(II)]}{dt} = k_{Fe}[Fe(II)][O_2][OH^-]^2$$

183

184 Thus, the fold change in the Fe(II) oxidation rate can be calculated by the following

185 equation, and it can be calculated based upon the numbers in Table S5:

186
$$\frac{Fe(II) \text{ oxidation rate}_{phycosphere}}{Fe(II) \text{ oxidation rate}_{bulk water}} = \frac{[O_2][OH^-]^2_{phycosphere}}{[O_2][OH^-]^2_{bulk water}}$$

187

188 Similarly, Mn(II) oxidation kinetics in seawater follow the rate law shown below³⁵ and it

189 can be calculated based upon the numbers in the Table S5:

190 Mn(II) oxidation rate =
$$\frac{-d[Mn(II)]}{dt} = k_{Mn}[Mn(II)][O_2][OH^-]^2$$

191

192
$$\frac{\text{Mn(II) oxidation rate}_{\text{phycosphere}}}{\text{Mn(II) oxidation rate}_{\text{bulk water}}} = \frac{[O_2][OH^-]^2_{\text{phycosphere}}}{[O_2][OH^-]^2_{\text{bulk water}}}$$

193

194 Thus, the fold change in the Mn(II) oxidation rate between phycosphere and bulk water

is the same as that of Fe(II).

196

197 Cu oxidation kinetics in seawater follow the rate law shown below³⁶ and it can be

198 calculated based upon the numbers in the Table S5:

199

200 Cu(I) oxidation rate =
$$\frac{-d[Cu(I)]}{dt} = k^* {}_{Cu}[Cu(I)][O_2]$$

201 The k^*_{Cu} (apparent oxidation rate constant, M⁻¹ s⁻¹) was calculated based on the

202 measured Cu(I) oxidation kinetics at different pH levels.³⁷ The k^*_{Cu} values varied with

solution pH. Specifically, the k^*_{Cu} values (M⁻¹ s⁻¹) used for the seawater calculation are

- 204 2.45 at pH 7.9, 2.58 at pH 8.0, and 3.02 at pH 8.32, while in freshwater they are 5.0 at
- 205 pH 6.5, 10.0 at pH 7.0, and 22.9 at pH 8.28.
- 206

Table S5. Values used for the calculation of relative changes in metal oxidation rates in the phycosphere, in comparison to bulk waters.

		bulk	phycosph	er
		water	е	
			light	dark
freshwate	рН	7.00	8.28	6.50
r				
	O ₂ (mM)	0.24	0.62	0.21
seawater	рН	8.00	8.32	7.90
	O ₂ (mM)	0.23	0.40	0.20

Note S3. Estimation of the amount of Cu(I) oxidation and Cu complexation in the phycosphere.

- 211 When the residence time of Cu(I) in the phycosphere is sufficiently long, all Cu(I) can be
- oxidized by oxidants such as O_2 before reacting with membrane-bound Cu reductases.
- 213 However, since the phycosphere of micro-algae is a thin layer of micro-meter
- dimensions, the local residence time might be very short and hence little Cu(I) would be
- oxidized by O_2 within the phycosphere. Here, we calculated the residence time of Cu(I)
- and the percentage of total Cu(I) being oxidized by O₂ in the phycosphere of two marine

217 diatoms *Thalassiosira pseudonana* and *Thalassiosira oceanica*.

218 To calculate the residence time of Cu(I) in the phycosphere, we follow:

219
$$phycosphere residence time = \frac{[Cu(I) concentration] \times [phycosphere volumn]}{[Cu(I) uptake rate] \times [cell surface area]}$$

220

221 For *T. pseudonana*, cell radius = 2.3 μm,³⁸ theoretical phycosphere thickness = cell radius

 39 = 2.3 µm; for *T. oceanica*, cell radius = 3.3 µm,³⁸ theoretical phycosphere thickness =

223 3.3 μm. The ratio between [Cu(I) concentration] in bulk seawater and [Cu(I) uptake rate]

were taken from a short-term algal Cu uptake study,³⁸ assuming that

225
$$\frac{[Cu(I) \text{ concentration}]}{[Cu(I) \text{ uptake rate}]} = \frac{[\text{total Cu concentration}]}{[\text{total Cu uptake rate]}}$$

since data for algal Cu(I) uptake are rare in the literature. The calculated residence time

of Cu ranged from 230 s to 3000 s in the phycosphere of the two species.

228

To calculate the percentage of total Cu(I) being oxidized by O_2 in the phycosphere, we considered:

231
$$Oxidized \ Cu(I)_t \ \% = 100\% - e^{-\frac{K_{Cu}}{t}} \times 100\%$$

232 $t = phycosphere residence time, and K_{Cu} = k^*_{Cu} \times [phycosphere O_2]$. Specifically,

- 233 $k_{Cu}^* = 3 \text{ M}^{-1} \text{ s}^{-1}$ (at pH 8.3)³⁷ and [phycosphere O₂] = 0.4 mM (Table S5). The
- 234 percentage of total Cu(I) being oxidized by O₂ in the phycosphere of two marine diatoms

236

237 Table S6. Calculation of Cu residence time and percentage of total Cu(I) being

238 oxidized by O₂ in the phycosphere.

Seawater Cu	Cu upt	ake rate	Phycosphe	ere residence	Phycosphere oxidized		
(mol L⁻¹)	(mol o	cm⁻² s⁻¹)	tir	ne (s)	C	Cu (%)	
	T. oceanica	T. pseudonana	T. oceanica	T. pseudonana	T. oceanica	T. pseudonana	
2.0×10 ⁻⁹	5.6×10 ⁻¹⁸	4.6×10 ⁻¹⁸	273	232	28	24	
3.0×10 ⁻⁸	6.2×10 ⁻¹⁷	5.5×10 ⁻¹⁷	366	294	36	30	
6.0×10 ⁻⁸	1.0×10 ⁻¹⁶	9.9×10 ⁻¹⁷	442	326	41	32	
1.2×10 ⁻⁷	2.6×10 ⁻¹⁶	9.5×10 ⁻¹⁷	348	680	34	56	
2.4×10 ⁻⁷	1.8×10 ⁻¹⁶	2.2×10 ⁻¹⁶	1039	591	71	51	
5.0×10 ⁻⁷	2.6×10 ⁻¹⁶	2.5×10 ⁻¹⁶	1455	1086	83	73	
1.0×10 ⁻⁶	4.2×10 ⁻¹⁶	2.9×10 ⁻¹⁶	1806	1872	89	89	
2.0×10 ⁻⁶	4.8×10 ⁻¹⁶	4.0×10 ⁻¹⁶	3146	2716	98	96	

239 Note, the Cu uptake data were taken from the literature.³⁸

240

Note, the calculated residence time of Cu in the phycosphere above is much longer than

the time required for the metal diffusion from the bulk water to the cell surface in the

243 diffusive boundary layer. Specifically, the diffusive boundary layer (i.e., a concentration

gradient of Cu) would form when the algal metal uptake is very rapid but the ambient

245 Cu concentration is relatively low.

246 To calculate the diffusion time, we can follow

247 (https://www.physiologyweb.com/calculators/diffusion_time_calculator):

248

 $Diffusion time \approx \frac{\text{thickness of diffusive boundary layer}^2}{2 \times \text{diffusion coefficient}}$

249 Here, the thickness of diffusive boundary layer was assumed comparable to the cell

- radius (i.e., around 2 to 3 μ m for the two diatoms), and the diffusion coefficient of Cu
- ion and its complexes at the order of 10⁻⁶ cm² s⁻¹.⁴⁰ Thus, the diffusion time of Cu ions in
- the phycosphere was around 8 ms.

253

254 Similarly, we calculated whether Cu complexation by DOC is fast enough to allow Cu

255 speciation to reach equilibrium in the phycosphere. Specially, we follow:

256
$$\frac{[Cu]_t}{[Cu]_0}\% = 100\% - e^{-\frac{K_{Cu-DOC}}{t}} \times 100\%$$

257 $t = phycosphere residence time, [Cu]_0 = the initial Cu concentration, and <math>K_{Cu-DOC} =$

258 $k_{Cu-DOC} \times$ [phycosphere DOC]. Specifically, $k_{Cu-DOC} = 6 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ and

259 [phycosphere DOC] = 80 μ M (around 1 mg L⁻¹).⁴¹ The percentage of Cu complexation in

the phycosphere of the two algae was 100%.

261

262 Note S4. Definition of Root Mean Square Logarithmic Error (RMSLE).

Root mean square error (RMSE) measures the difference between model fittings and
observed values and is a measure of goodness of model fitting. In the Figures 3 and S4,
where both the metal ion concentrations and the uptake rates spanned several orders
of magnitude, the logarithmic version of RMSE, i.e., RMSLE, was thus used instead to
achieve a more balanced measure of model performance.

268

269
$$\text{RMSLE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log y_i - \log \hat{y}_i)^2}$$

where y_i is the *i*th observed value; \hat{y}_i is the *i*th value predicted from the fitting; *n* is the number of data points.

272

273 RMSE=
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

Note, the RMSE was used to assess the goodness of fit between algal Pb uptake and Pb²⁺
concentration (i.e., Figure S2), since the uptake test was carried out in a narrow range of
ambient Pb²⁺ concentrations.

277 References

De Beer, D.; Larkum, A. W. D., Photosynthesis and calcification in the calcifying
 algae Halimeda discoidea studied with microsensors. *Plant, Cell Environ.* 2001, *24*, (11),
 1209-1217.

Chrachri, A.; Hopkinson, B. M.; Flynn, K.; Brownlee, C.; Wheeler, G. L., Dynamic
 changes in carbonate chemistry in the microenvironment around single marine
 phytoplankton cells. *Nat. Commun.* **2018**, *9*, (1), 74.

3. Milligan, A. J.; Mioni, C. E.; Morel, F. M. M., Response of cell surface pH to pCO₂ and
iron limitation in the marine diatom *Thalassiosira weissflogii*. *Mar. Chem.* 2009, 114,
(1-2), 31-36.

287 4. Zhang, Y.; Takahashi, Y.; Hong, S. P.; Liu, F.; Bednarska, J.; Goff, P. S.; Novak, P.;

288 Shevchuk, A.; Gopal, S.; Barozzi, I.; Magnani, L.; Sakai, H.; Suguru, Y.; Fujii, T.; Erofeev, A.;

289 Gorelkin, P.; Majouga, A.; Weiss, D. J.; Edwards, C.; Ivanov, A. P.; Klenerman, D.;

290 Sviderskaya, E. V.; Edel, J. B.; Korchev, Y., High-resolution label-free 3D mapping of

291 extracellular pH of single living cells. *Nat. Commun.* **2019**, *10*, (1), 5610.

- 5. Kühn, S. F.; Raven, J. A., Photosynthetic oscillation in individual cells of the marine
 diatom *Coscinodiscus wailesii* (Bacillariophyceae) revealed by microsensor
 measurements. *Photosynth. Res.* 2008, *95*, (1), 37-44.
- Eichner, M. J.; Klawonn, I.; Wilson, S. T.; Littmann, S.; Whitehouse, M. J.; Church, M.
 J.; Kuypers, M. M. M.; Karl, D. M.; Ploug, H., Chemical microenvironments and single-cell
 carbon and nitrogen uptake in field-collected colonies of *Trichodesmium* under different
 pCO₂. *ISME J.* **2017**, *11*, 1305.
- Kühn, S. F.; Köhler-Rink, S., pH effect on the susceptibility to parasitoid infection in
 the marine diatom *Coscinodiscus* spp. (Bacillariophyceae). *Mar. Biol.* 2008, 154, (1),
 109-116.
- Ploug, H.; Stolte, W.; Epping, E. H. G.; Jørgensen, B. B., Diffusive boundary layers,
 photosynthesis, and respiration of the colony-forming plankton algae, *Phaeocystis* sp.
 Limnol. Oceanogr. 1999, 44, (8), 1949-1958.
- 305 9. Richardson, L. L.; Stolzenbach, K. D., Phytoplankton cell size and the development
 306 of microenvironments. *FEMS Microbiol. Ecol.* **1995**, *16*, (3), 185-191.
- Richardson, L. L.; Aguilar, C.; Nealson, K. H., Manganese oxidation in pH and O₂
 microenvironments produced by phytoplankton. *Limnol. Oceanogr.* **1988**, *33*, (3),
 352-363.

11. Lofts, S.; Tipping, E., Assessing WHAM/Model VII against field measurements of

free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. *Environ. Chem.* **2011**, *8*, (5), 501-516.

- Stockdale, A.; Tipping, E.; Hamilton-Taylor, J.; Lofts, S., Trace metals in the open
 oceans: speciation modelling based on humic-type ligands. *Environ. Chem.* 2011, *8*, (3),
 304-319.
- 316 13. Stockdale, A.; Tipping, E.; Lofts, S., Dissolved trace metal speciation in estuarine and

317 coastal waters: Comparison of WHAM/Model VII predictions with analytical results.

318 Environ. Toxicol. Chem. **2015**, *34*, (1), 53-63.

319 14. Tipping, E.; Lofts, S.; Stockdale, A., Metal speciation from stream to open ocean: 320 modelling v. measurement. Environ. Chem. 2016, 13, (3), 464-477. 321 15. De Carlo, E. H.; Green, W. J., Rare earth elements in the water column of Lake 322 Vanda, McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta 2002, 66, (8), 323 1323-1333. 324 16. Kulaksız, S.; Bau, M., Contrasting behaviour of anthropogenic gadolinium and 325 natural rare earth elements in estuaries and the gadolinium input into the North Sea. 326 Earth. Planet. Sci. Lett. 2007, 260, (1), 361-371. 327 17. Sánchez-Marín, P.; Liu, F.; Chen, Z.; Fortin, C.; Campbell, P. G. C., Microalgal-driven 328 pH changes in the boundary layer lead to apparent increases in Pb internalization by a 329 unicellular alga in the presence of citrate. *Limnol. Oceanoar.* **2018**, *63*, (3), 1328-1339. 330 18. Liu, F.; Fortin, C.; Campbell, P. G. C., Chemical conditions in the boundary layer 331 surrounding phytoplankton cells modify cadmium bioavailability. Environ. Sci. Technol. 332 **2018**, *52*, (14), 7988-7995. 333 19. Tan, Q.-G.; Yang, G.; Wilkinson, K. J., Biotic ligand model explains the effects of competition but not complexation for Sm biouptake by Chlamydomonas reinhardtii. 334 335 Chemosphere 2017, 168, 426-434. 336 20. Schneider, R. J.; Roe, K. L.; Hansel, C. M.; Voelker, B. M., Species-level variability in 337 extracellular production rates of reactive oxygen species by diatoms. Front. Chem. 2016, 338 4, (5). 339 21. Diaz, J. M.; Hansel, C. M.; Voelker, B. M.; Mendes, C. M.; Andeer, P. F.; Zhang, T., 340 Widespread production of extracellular superoxide by heterotrophic bacteria. Science 341 2013, 340, (6137), 1223-1226. 342 22. Hall, S. B.; Khudaish, E. A.; Hart, A. L., Electrochemical oxidation of hydrogen 343 peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. 344 Electrochim. Acta 1998, 43, (5), 579-588. 345 23. Rose, A. L., The influence of reactive oxygen species on local redox conditions in 346 oxygenated natural waters. Front. Earth Sci. 2016, 4, (96). 347 24. Rose, A., The Influence of extracellular superoxide on iron redox chemistry and 348 bioavailability to aquatic microorganisms. *Front. Microbiol.* **2012**, *3*, (124). 349 25. Lavoie, M.; Duval, J. F. L.; Raven, J. A.; Maps, F.; Béjaoui, B.; Kieber, D. J.; Vincent, 350 W. F., Carbonate disequilibrium in the external boundary layer of freshwater 351 chrysophytes: Implications for contaminant uptake. Environ. Sci. Technol. 2018, 52, (16), 352 9403-9411. 353 26. Palenik, B. P.; Morel, F. M. M., Amino acid utilization by marine phytoplankton: a 354 novel mechanism. Limnol. Oceanogr. 1990, 35, 260-269. 355 27. Janse, I.; van Rijssel, M.; Gottschal, J. C.; Lancelot, C.; Gieskes, W. W. C., 356 Carbohydrates in the North Sea during spring blooms of Phaeocystis: a specific 357 fingerprint. Aquat. Microb. Ecol. 1996, 10, (1), 97-103. 358 28. Stocker, R., Marine microbes see a sea of gradients. Science 2012, 338, (6107), 359 628-633. 360 29. Azam, F.; Malfatti, F., Microbial structuring of marine ecosystems. Nat. Rev. 361 Microbiol. 2007, 5, (10), 782-791.

- 362 30. Lazier, J. R. N.; Mann, K. H., Turbulence and the diffusive layers around small
- 363 organisms. *Deep-Sea Res. Pt. I* **1989,** *36*, (11), 1721-1733.
- 364 31. Schoemann, V.; Wollast, R.; Chou, L.; Lancelot, C., Effects of photosynthesis on the
- accumulation of Mn and Fe by *Phaeocystis* colonies. *Limnol. Oceanogr.* 2001, *46*, (5),
 1065-1076.
- 367 32. Lavoie, M.; Campbell, P. G. C.; Fortin, C., Extending the biotic ligand model to
 368 account for positive and negative feedback interactions between cadmium and zinc in a
 369 freshwater alga. *Environ. Sci. Technol.* 2012, 46, 12129-12136.
- 370 33. Millero, F. J., The effect of ionic interactions on the oxidation of metals in natural
 371 waters. *Geochim. Cosmochim. Acta* **1985**, *49*, (2), 547-553.
- 372 34. Stumm, W.; Morgan, J. J., *Aquatic chemistry: chemical equilibria and rates in* 373 *natural waters*. John Wiley & Sons: 1996; Vol. 126.
- 374 35. von Langen, P. J.; Johnson, K. S.; Coale, K. H.; Elrod, V. A., Oxidation kinetics of 375 manganese (II) in seawater at nanomolar concentrations. *Geochim. Cosmochim. Acta*
- 376 **1997,** *61*, (23), 4945-4954.
- 377 36. Moffett, J. W.; Zika, R. G., Oxidation kinetics of Cu(I) in seawater: implications for its 378 existence in the marine environment. *Mar. Chem.* **1983**, *13*, (3), 239-251.
- 379 37. Yuan, X.; Pham, A. N.; Xing, G.; Rose, A. L.; Waite, T. D., Effects of pH, chloride, and
 bicarbonate on Cu(I) oxidation kinetics at circumneutral pH. *Environ. Sci. Technol.* 2012,
- 381 46, (3), 1527-1535.
- 382 38. Guo, J.; Annett, A. L.; Taylor, R. L.; Lapi, S.; Ruth, T. J.; Maldonado, M. T., Copper 383 uptake kinetics of coastal and oceanic diatoms. *J. Phycol.* **2010**, *46*, (6), 1218-1228.
- 384 39. Wolf-Gladrow, D.; Riebesell, U., Diffusion and reactions in the vicinity of plankton:
- A refined model for inorganic carbon transport. *Mar. Chem.* **1997**, *59*, (1), 17-34.
- 40. Buffle, J.; Zhang, Z.; Startchev, K., Metal flux and dynamic speciation at
- 387 (Bio)interfaces. part 1: Critical evaluation and compilation of physicochemical
- parameters for complexes with simple Ligands and Fulvic/Humic substances. *Environ. Sci. Technol.* 2007, 41, (22), 7609-7620.
- 41. Louis, Y.; Garnier, C.; Lenoble, V.; Mounier, S.; Cukrov, N.; Omanović, D.; Pižeta, I.,
- 391 Kinetic and equilibrium studies of copper-dissolved organic matter complexation in
- water column of the stratified Krka River estuary (Croatia). *Mar. Chem.* **2009**, *114*, (3),
- 393 110-119.
- 394