
S1 
 

Supplementary Information for 

Properties of Aqueous Trehalose Mixtures: Glass Transition and Hydrogen 

Bonding 

Gil I. Olgenblum, Liel Sapir, Daniel Harries 

S1. Methods  

Table S1. Simulation detailsa  

# Water molecules Trehalose molecules Molal Trehalose wt% 

1 0 500 - 100 

2 481 450 51.97 94.7 

3 830 415 27.77 90.5 

4 2140 450 11.68 80.0 

5 2565 270 5.84 66.7 

6 1902 100 2.92 50.0 

7 3386 122 2.00 40.6 

8 3392 110 1.80 38.1 

9 3400 98 1.60 35.4 

10 3409 86 1.40 32.4 

11 3414  80 1.30 30.8 

12 3515 76 1.20 29.1 

13 3632 72 1.10 27.4 

14 3660 66 1.00 25.5 

15 3700 60 0.90 23.6 

16 3816 55 0.80 21.5 

17 3960 50 0.70 19.3 

18 3976 43 0.60 17.0 

19 3996 36 0.50 14.6 

20 4160 30 0.40 12.1 

21 4255 23 0.30 9.3 

22 4430 16 0.20 6.4 

23 5550 10 0.10 3.3 

24 7100 0 0 0 

 
a Mixtures vary from pure water ( 0 %wt ) to anhydrous trehalose (100 %wt ) in order to examine 

and compare mixture properties at different states. After generation, each box was energetically 

minimized for ~ 20000 30000−  steps. Equilibration followed with short MD runs of 100ps  for 

diluted and 200ps  for concentrated mixtures with a time step of 1  to 2 fs . The concentrations of 

94.7 %wt was specifically chosen to test the model against available experimental osmotic 

pressure data that is given as relative hydration by Simperler et al1 (achieved by equilibration 

against saturated salt solution of MgCl2). Furthermore, 100 %wt  and 90.5 %wt  enable us to 

probe both trehalose anhydrous and dihydrate states, respectively. 
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Figure S1- Schematic simulation of cooling and heating protocols. (A) Cooling protocol: each step 

lasts 0.5ns , while the change in temperature is 5K (10 /K ns ) as shown in green. At specific 

temperatures i.e. above gT ,  below gT  and room temperature, as specified in Table S2, the final 

trajectory was extended for longer isothermic simulations of 20ns  as shown in orange for 

hydrogen bonding analysis. By repeating the cooling cycle and extension of specific trajectories 

for longer isothermic simulations 5  times, the calculated thermodynamical quantities (radial 

distribution functions, osmotic pressure and hydrogen bonding free energies) were averaged. (B) 

Heating protocol: the system was first cooled as described in (A) only with shorter steps of 10ps  

to reach 100K . Then, a heating protocol with 0.5ns  segments and 5K temperature jumps was 

performed to 600K .  

 

Table S2. Simulation temperatures for long production runs of 20ns a 

Temperature \ Trehalose %wt 100 94.7 90.5 80 66.7 50 30.8 0 

Below gT   271 221 181 141 91 91 91 131 

Above gT  489 439 399 359 307 307 307 366 

 

a Table S2 Summarizes of the temperature ranges at which longer simulations were conducted for 

low water content mixtures. The longer runs yield better statistics required for probing structural 

and thermodynamical properties. Runs of 20ns  at room temperature were used to calculate the 

presented radial distribution functions and, by extension, the Kirkwood-Buff integrals (see Figures 

1  and 3  in the main text). All the mixtures below 40.6 wt% at 298 K were simulated for 50 ns, of 

which the last 30 were used for analysis. Additionally, at 100 , 90.5 , 30.8  and 0 %wt  the entire 

temperature range was used to calculate the hydrogen bonding interaction and its temperature 

dependency. 
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S2. Structure factor and spatial distribution function 

The structure factor is calculated from MD simulations using the relation: 

 ( ) ( ) ( )0

0

4
1 sine eS Q r r Qr dr

Q


 



 = + −   

where ( )e r  is the electron density at a distance r , 0

e  is the bulk electron density and Q  is the 

magnitude of the scattering vector. 

 

Figure S2 – Structure factor ( )S Q  calculated from simulation and compared with those experimentally 

derived by Soper et al2. (A) ( )S Q  for concentrated liquid mixture of 43 %wt  corresponding to  

2.22 molal , and a simulated mixture of 40 %wt  corresponding to 2 molal . (B) ( )S Q  for both 

experimental and simulated mixtures in the diluted regime with the experimental 16 %wt  corresponding 

to 0.55 molal  and a simulated mixture 17 %wt  corresponding to 0.6 molal . Data sets are shifted for 

clarity. 

Panel A shows that the ( )S Q  peak positions and relative heights are in close agreement between the 

simulation and experiment for concentrated mixtures. In panel B,  the first peak in the experimental ( )S Q  

at 1~ 2.1Å−  is slightly lower than the second peak at 1~ 2.9Å− . While C36's first two peaks are of the same 

height, LME succeeds to reproduce the height difference. Additionally for LME, the third peak at 1~ 5.1Å−   

is slightly higher than the fourth and the fifth peaks, which is in better agreement with the experimental 

( )S Q , compared to C36 where the third peak is lower than the other two peaks.     
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Figure S3 – Same as Fig. 2B and 2F with the same trehalose isovalue of 30.7nm−  for both C36 (top) 

an LME (bottom) force fields. The sugar aggregative nature of C36 is observed clearly in the 

trehalose probability density surface that completely coats the reference sugar while it is hardly 

seen for LME. 

 

S3. Kirkwood-Buff Integrals 

 

 
 

Figure S4. Example for the convergence of KBIs in several systems, simulated with the LME force 

field, as a function distance. The value at the bulk was taken in each case as the relevant average 

value of KBI over the range described in table S3. To improve the KBI’s convergence, the ( )ijg r  

were averaged between 5  simulations each lasting 20ns , thus ensuring that   ( ) 1ij bulkg r →  for the 

correct bulk density. 
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Table S3. Bulk range of the KBI valuesa 

Trehalose wt% Bulk range (Å) 

21 20-25 

35 20-25 

80 23-26 

90 21-24 

100 26-28 
a The range of the bulk taken in the KBI calculation for the concentrations in figure S4. 

 

The experimental KBI were derived through the Kirkwood-Buff inversion relations,3,4 
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where Wx  and Tx  are the mole fractions of water and trehalose, respectively, and W  and T  are their 

molar volumes. For the osmotic pressure derivative we used previously published osmotic pressure 

measurements.5,6 The partial molar volumes were derived from the experimental densities7 (see Fig. S5). 
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Figure S5. Comparison of experimental density measurements by Elias et al7 with the values 

derive from the two examined force fields. 

 

 

S4. Heat capacity  

Table S4. Average temperature and heat capacity change for the glass transitiona 

 

C36 LME  

( ), pg CT K  ( )1 1
pC KJKg K− −  ( )regT K  ( ), pg CT K  ( )1 1

pC kJ kg K− −  ( )regT K  Trehalose %wt 

- 0.68 188 390.4 0.58 159 100 

384.9 0.76 186 350.2 0.74 203 94.7 

- 0.79 171 340.5 0.83 167 90.5 

298.8 0.99 160 296.9 1.00 145 80.0 

254.7 1.06 121 264.9 1.17 106 66.7 

212.8 1.51 43 214.8 1.73 71 30.8 

- - - 211 1.77 17.2 0 

 
a
 Comparison of the glass transition region of the two force fields. Three variables are compared: change 

in heat capacity along the transition, Δ pC , the spread of the glass transition region,Δ regT  and the glass 

transition temperature derived from heat capacity (section 3.3 in the main text). 0 %wt  is located in LME 

column although it is the same in both force-fields as the WW interaction are the same.    
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Figure S6. Same data as in Table S4, with added simulation and experimental derived data from 

Weng et al8  and Katkov et al 9 respectively, shown  for comparison. Both 0 %wt and 100 %wt are 

in good agreement with experimental (Red).  

 

 

 

 
Figure S7. Thermal expansion coefficient ( v ) of 30.8 %wt  from the cooling cycle. A kink appears 

at ~ 170K  to ~ 280K , which prevents the determination of gT  by this v  in diluted mixtures. 
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S5. Hydrogen Bonding  

For the calculation of Hbond strength we followed our recent proposed methodology,10 which is based on 

an information-theoretic approach.11 In short, we consider the probability distribution, ( ),P r  , of donor-

acceptor configurations with respect to two quantities: the donor-acceptor distance, r , and the 

hydrogen-donor-acceptor angle,  . The probability distribution can be transformed to a potential of mean 

force for Hbond formation:  
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where ( )rand ,P r   is the random distributions, which can be calculated (analytically or numerically) and 

depend on the type of donor-acceptor pair. Notice that in Eq. (S4) we assume the distribution functions 

reach bulk values (i.e.  r  is large enough). If the ( ),r   distributions are truncated at shorter distances, 

one can simply use the radial distribution function, ( )g r , and multiply ( )P r  by the average of 

( ) ( ) ( )randg r P r P r , where ( )randP r  is calculated in the full range.  Figure S9 shows a typical contour maps 

of ( ),P r  , ( ),HBPMF r  , and ( ) ( )P , ,HBr PMF r  . 

The Hbond strength can be defined through the free energy quantified by the integral:  
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where we define the normalization constants ( )
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

  =   . The integration boundaries are chosen to cover the relevant range for 

hydrogen bonding (table S5).  

In this study we use a modified definition for the free energy, G : 
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which describes the free energy change upon transition from the random distribution to the hydrogen 

bonded distribution. With this definition, the free energy can be well understood through the dissection 

to entropic and energetic contributions. Consider the probability distribution of a system: 

 ( )
nE

ng e
P n

Q

−

=  (S7) 

where ng  and nE  are the degeneracy and energy of state n , respectively, Q  is the partition function, 

and ( )
1

kT
−

= , where T   is the temperature and k  is the Boltzmann constant.  A similar expression can 

be written for any configuration, say the random distribution: ( ) ,rand1
rand rand ,rand

nE
nP n Q g e

−−= . Then, 

assuming ,randn ng g=  and that ,randnE  is constant for each n , it follows from Eq. (S6) that the energetic  
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and entropic contributions to G  are:  
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 ( )randS S S = −  (S9) 

where S  and randS  are the entropy of the equilibrium and random states, respectively. From, Eq. (S8) the 

energetic component can be understood as the energetic change associated with redistributing the 

ensemble from the random distribution to the equilibrium distribution, over the same (equilibrium) 

energy landscape.  

The motivation to use Eq. (S6) rather than Eq. (S5) in describing the free energy change for the 

configuration ensemble can be rationalized using a simple example. Consider a two-level system with 

energies 1 2,   and corresponding degeneracies 1 2,g g  coupled to a heat reservoir at temperature T . The 

exact (analytic) free energy difference calculated from the partition functions is:  
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whereas Eq. (S5) gives:  
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and Eq. (S6) yields:  
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The corresponding entropic and energetic components are shown in plot S7 for the specific case of 

1 21, 2g g= =  and 1 20,  = = .  It is clear that Eq. (S6) is identical to the exact result, apart for a constant 

shift in the energy scale, which is related to the state taken as a reference. Specifically, the reference of 

the energy in Eq. (S6) is taken as the value at infinite temperature, while the reference of the energy 

derived from the partition function is for T  approaching zero. 
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Figure S8. Comparing the different equations for the thermodynamic properties of a two-

level system. The energy (left) and entropy (right) are shown as a function of temperature. 

The approximation of Eq. (S6) is identical to the exact result derived from the partition 

function, apart for a constant shift in the reference energy value.  
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Figure S9. Hydrogen bond analysis contour maps of 30.8 %wt  (1.3 molal ) mixture of trehalose-

water at 298K  for five different types of bonds by rows: (A) water-water (WW) (B) water-sugar 

hydroxyl (WH) (C) water-sugar etheric oxygen (D) sugar hydroxyl-sugar hydroxyl (HH) (E) sugar 

hydroxyl- sugar etheric oxygen (HO). The plots are ordered from left to right in columns: (left) 

Probability density function (center) potential of mean force ( HBPMF ) for hydrogen bonding 

formation relative to the random distribution (right) weighted potential of mean force. 
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Table S5. Integration range for each type of Hbonda 

Hbond type Integration range (Å) 

WW 2.45 – 3.15  

WH 2.5 – 3.2  

WO 2.45 – 3.2  

HH 2.65 – 3.35  

HO 2.65 – 3.2  
a The integration range corresponds to the first hydration shell. The lower bound, minr , is taken 

as the minimum pair distance where ( ),  0 0HBPMF r  → = . The upper bound, maxr , was taken as 

the saddle point in ( )HB ,PMF r  . 

 

In addition to the integration range, we restricted minr  in the integration of Eq.(6) by different cutoffs on 

( )ming r  to exclude simulation artifacts. Plotted in Figure S10 are two examples for the Hbond free energy 

for different values of this cutoff. The maximal cutoff was 0.4  and the minimal was 0.001 . In panel A, the 

minimum in the free energy of pure water visibly shifts from ~ 270K  to ~ 197K  as the cutoff is decreased. 

The same trend can be seen for water-water interactions in diluted solution of 30.8 %wt  in panel B, with 

a minimum shift from ~ 250K  to ~ 206K . For further analysis, the free energy in each temperature was 

extrapolated from ( ) 0.04
cutoff

g r =  to ( ) 0
cutoff

g r →  using a polynomial fit (either linear, quadratic or 

cubic), panel C. The extrapolation result is seen in black circles in both panels. 

 
Figure S10. Free energy extrapolation to ( ) 0g r = .  (A) 0 %wt , water–water interaction (WW). (B) 

30.8 %wt  water–water interaction. The ( )g r  cutoff decreases when shifting from green to brown 

(empty symbols) as follows: 0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4 .  The 

extrapolated values are in black full symbols. (C) Extrapolation of specific temperatures in 0 %wt  

using a cubic polynomial fit, temperatures are indicated in the legend. 

All the free energies, PMFs and information entropies reported in this work are extrapolated in the same 

manner and were fitted using a Padé  approximant12 of the order  3 / 3 , 
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To compare the calculated hydrogen bonding free energy to other related thermodynamical properties, 

we also calculated the information entropy, defined as 

 rand
Info randln ln

n nn n

PP
S R P P

g g

 
 = − − 

 
 
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where ng  is the degeneracy of the n -th state, calculated from randP . 

 

 
 

Figure S11. (A) Information entropy vs temperature calculated based on eq. (S14). (B) Potential 

of mean force (PMF) for all interaction pairs, eq. (S4). Both (A) & (B) are for concentrations of 90.5 

wt%. A Padé approximant was fitted to both InfoS  and PMFG . The shaded bar represents 

the range of , pg CT , see main text. 

 

The Hbond entropy is simply calculated from the derivative of the Hbond free energy: 

 HB
HB

G
S

T


 = −


  (S15) 
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Figure S12. The entropy calculated from the Hbond interaction, as function of temperature, for 

90.5 wt% trehalose. As the temperature increases the entropy decreses untill it is very close to 

zero, or becomes negative. The change in sign of HBS is highly correlated with gT  which is 

represented with a shaded bar. 
 

Table S6. Hbond thermodynamic potentials at 298Ka 

WW WH WO HH HO 
Hbond type  

Trehalose wt% 

Thermodynamic 

Potential 

-4.12 - - - - 0 

( )1Δ HBG KJ mol−  
-3.96 -4.29 -1.92 -2.19 -1.1 30.8 

-4.17 -4.26 -1.47 -3.53 -2.02 90.5 

- - - -4.16 -2.25 100 

-0.34 - - - - 0 

( )1TΔSHB KJ mol−  
-0.26 0.68 2.7 1.65 0.86 30.8 

0.01 2.49 1.63 3.19 1.89 90.5 

- - - 2.6 1.55 100 

-4.46 - - - - 0 

( )1ΔHHB KJ mol−  
-4.21 -3.60 0.77 -0.54 -0.23 30.8 

-4.18 -1.78 0.17 -0.34 -0.13 90.5 

- - - -1.52 -0.70 100 
a Comparison of the different thermodynamic quantities calculated from the fitted free energy, 

for different concentrations at 298K . In liquid solution ( 30.8 %wt ), the addition of more 

trehalose weakens the Hbond interaction from 4.12−  in pure water to 13.96KJ mol−− . This 

weakening is mainly enthalpy driven as ΔHHB  increases from 14.46KJ mol−−  to 14.21KJ mol−−  

with sugar addition. In the glassy matrix, WW interaction are strengthened, even compared to 

pure water ( 14.17 KJ mol−− ). For WH enthalpy-entropy compensation keeps the Hbond free 

energy in liquid and glass quite similar, while WO interaction is weaker in the glass. Both HH and 

HO strengthen with trehalose content, in liquid mixture and glass, as seen in Figure 6 of the main 

text. 
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