

advances.sciencemag.org/cgi/content/full/6/36/eabb0333/DC1

Supplementary Materials for

Histone exchange is associated with activator function at transcribed promoters and with repression at histone loci

Sari Kassem, Paolo Ferrari, Amanda L. Hughes, Julien Soudet, Oliver J. Rando, Michel Strubin*

*Corresponding author. Email: michel.strubin@unige.ch

Published 2 September 2020, *Sci. Adv.* **6**, eabb0333 (2020) DOI: 10.1126/sciadv.abb0333

This PDF file includes:

Figs. S1 to S10 Tables S1 to S4 References

Fig. S1. Histone exchange and nucleosome occupancy in the absence of TBP. Related to Fig. 1.

(A) Comparison of the $H3^{HA}$ enrichment over promoters (-500 to TSS) and gene bodies (TSS to +1000 bp) shows good reproducibility between two independent biological ChIP-Seq replicates. R values were calculated using the stat_cor function of the ggpubr package (57).

(**B**) Genome browser view of a region in chromosome II (365,000-425,000) showing TBP-dependent H3^{HA} incorporation between two genes (*ECM33* and *RPG1*; see arrow) oriented in a tail-to-tail fashion. Shown on top is a T0 time point control (before) when H3^{HA} is expressed at low levels prior to galactose induction. Shown below is H3 occupancy at T0 and T30 under control or TBP-depletion (TBP-AA) conditions as indicated. Regions of high histone exchange often show increased nucleosome occupancy upon TBP depletion (lower panel with white bar set to 1.0).

(C) Replicate of Fig. 1C.

(**D**) The *FIG2* gene is one of the very few RNA pol II genes showing high histone turnover over the gene body. Another example is *YHR020W*. Note that depletion of TBP results in a marked increase in nucleosome occupancy. Data are presented as in (C).

(E) High TBP-dependent histone turnover over a snoRNA gene cluster. Note that an increase in H3 occupancy following TBP depletion occurs in the absence of H3^{HA} incorporation, thus pointing to two independent events. The increase in histone occupancy must be rapid, occurring prior to the onset of H3^{HA} expression.

Fig. S2. Histone exchange and modifications at GAL genes. Related to Fig. 2.

(A) Galactose activation of the *GAL* genes is associated with increased H3K9/14ac at the promoter independently of TBP. Shown are the ChIP signals for H3K9/14ac normalized to H3 occupancy just prior to (T0) and at 60 min (T60) after galactose induction under control or TBP-depletion conditions. Right panel: without *ADH1*.

(B) Histone exchange at the active *GAL* promoters occurs independently of H3K4me and H3K9/14ac. Upper panels: incorporation of HA-tagged histone H3 K4R and K9/14R modification mutants in a wild-type chromatin background. Lower panel: incorporation of wild-type H3 in a chromatin containing the H3 modification mutants. Shown are the amounts of tagged histones detected just prior to (gray bars) and at 30 min (orange bars) and 60 min (red bars) after galactose induction of H3^{HA}. Data for the control *ADH1* and *STE3* gene promoters are from (*41*).

(A) Low histone exchange at RP gene promoters in the presence or absence of TBP. Metagene analysis of the average H3^{HA} incorporation and H3 occupancy under control (green) or TBP-depletion (red) conditions; left panels show a selected set of non-RP genes with high turnover at their promoters, right panels show RP genes (gene lists can be found in Table S4). The results are

presented as in Fig. 1C. The scale for H3 occupancy is on the right axis. Note that H3 levels are similar at both sets of promoters, indicating that the difference in HA^{H3} incorporation between these gene sets is not simply a result of H3 occupancy differences. Also see Fig. 1C.

(B) Same experiment as in Fig. 5C but including three Rap1-regulated non-RP genes. The genes were selected based on ChIP-Seq (58) and RNA-Seq (59) studies. The OPI3 mRNA signal, and the KSH1 and PIM1 mRNA signals were multiplied, respectively, by 8 and 100 to facilitate comparison.

(C) Time course analysis of auxin-mediated degradation of Rap1 fused to AID. Rap1-AID was detected using anti-Rap1 antibodies.

(**D**) Control experiment for Fig. 5E showing that anchor-away of Ace1 (AA) in the parental strain abrogates copper-mediated activation of *CUP1* and that normal activation is restored upon ectopic expression of Ace1 (+Ace1).

Fig. S4. Histone exchange in the absence of RSC. Related to Fig. 6.

Upper panels: Yeast cells expressing the essential RSC complex subunit Sth1 fused to mini-AID (mAID) were arrested in G1 by alpha factor. Auxin (IAA) was added or not 30 min prior to galactose activation of H3^{HA} to induce degradation of Sth1-mAID. H3^{HA} incorporation was measured at the indicated gene promoters and 3' ends as before. Shown are the mean and SD of triplicate cultures. On the left is the sample color code and a Western blot analysis for H3^{HA} expression. See fig. S5 for experimental details. *RPL28* (Fig. 1A) and *ECM33* (fig. S1B) are two genes showing TBP-dependent histone exchange at their 3' ends.

Middle and lower panels: TBP occupancy and mRNA levels for the indicated genes were monitored by RT-qPCR and quantitative ChIP under the same experimental conditions as above. Expression of *RTT10* is dependent on RSC (*35*) and serves as a control for auxin-induced degradation of Sth1. Note that HIR-mediated H3^{HA} incorporation at the histone *HTA1-HTB1* locus is unaffected by inactivation of RSC.

Fig. S5. Experimental schemes.

Schematic diagram illustrating the experiments presented in the indicated figures. Measurements were made at the time points indicated in red.

Fig. S6. Independent biological replicate of Fig. 2.

Same experiments as in Fig. 2 except that (A) shows a genome browser view of H3^{HA} incorporation at the *GAL* gene cluster. The data are presented as in Fig. 1B but without normalization to H3 occupancy. Shown in (B) is the sample color code and a Western blot analysis for H3^{HA} expression in the Gal4 anchor-away experiment presented in (C). Ctr: cross-reactive band that serves as loading control.

Fig. S7. Independent biological replicate of Fig. 3.

Fig. S8. Independent biological replicate of Fig. 4.

Fig. S9. Independent biological replicate of Fig. 5.

Fig. S10. Independent biological replicate of Fig. 6.

Supplementary Table S1

Yeast strains

Strain	Relevant genotype	Figure	Source
HHY221	MATa, tor1-1, fpr1::loxP-LEU2-loxP, RPL13A-2×FKBP12::loxP, ade2-1, trp1-1, his3-11, ura3		(17)
HH4	HHY221; <i>bar1::UR</i> A3		(10)
SKY50	HH4; GAL4-FRB-HISMX3, pRS314-GAL1pro-H3.HA	2C	This study
SKY15	HH4; ACE1-FRB-HISMX3		This study
SKY23	HH4; ACE1-FRB-HISMX3, pRS314-GAL1pro-H3.HA	4A, 4C	This study
HHY154	MATα, ade2-1, ura3-1, tor1-1, fpr1::NAT, TBP1-FRB::KAN, RPL13A- 2×FKBP12::TRP1		(17)
YG19	HHY154; <i>MAT</i> a, <i>bar1::UR</i> A3		(10)
SKY12	YG19; pRSADE-GAL1pro-H3.HA	1A-1C, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, S1, S2A, S2B, S3A	This study
YG31	YG19; hpc2::LEU2		This study
SKY54	YG31; pRSADE-MET3pro-H3.HA	6A	This study
W303-1A	MAT a , leu2-3,112, his3-11,15 ura3-1, ade2-1, trp1-1, can1-100		(25)
Wmsn2- msn4	W303-1A; msn2-Δ3::HIS3, msn4–1::TRP1		(25)
SKY65	W303-1A; bar1::KANMX3, pRSADE-GAL1pro-H3.HA	3A, 3C	This study
SKY66	Wmsn2-msn4; <i>bar1::KANMX3, pRSADE-GAL1pro-H3.HA</i>	3A, 3C	This study

RH932.5A	MATa, trp1, bar1-1		Howard Riezman
SKY84	RH932.5A; pBTM116-HIR2 + pAJ1+ pRSADE-GAL1pro-H3.HA	6B	This study
SKY86	RH932.5A; pBTM116-HIR2 + pJK1621+ pRSADE-GAL1pro-H3.HA	6B	This study
SKY88	RH932.5A; pBTM116 + pAJ1+ pRSADE-GAL1pro-H3.HA	6B	This study
SKY89	RH932.5A; <i>pBTM116</i> + <i>pJK1621</i> + <i>pRSADE-GAL1pro-H3.HA</i>	6B	This study
SKY56	RH932.5A; <i>pRS314-GAL1pro-H3.HA</i> + p793	4D, 4E	This study
SKY57	RH932.5A; pRS314-GAL1pro-H3.HA + p1883	4D, 4E	This study
SKY58	RH932.5A; pRS314-GAL1pro-H3.HA + p1885	4D, 4E	This study
YJB25	MATa, HIS3, ADE2, pRS306Padh1.OsTIR1, pRAP1-AID-LEU2		(58)
SKY44	YJB25; bar1::KANMX3, pRS314-GAL1pro-H3.HA	5A, 5C, S3B	This study
SKY113	SKY15; ura3 <i>::KANMX3</i>		This study
SKY114	SKY113; pRS314-GAL1pro-H3.HA + p793	5D, 5E, S3C	This study
SKY115	SKY113; pRS314-GAL1pro-H3.HA + p1883	5D, 5E	This study
SKY116	SKY113; pRS314-GAL1pro-H3.HA + p1883-ACE1(AD)	5D, 5E, S3C	This study
SKY117	SKY113; pRS314-GAL1pro-H3.HA + p1883-RAP1(AD)	5D, 5E	This study
SKY164	MAT a , HIS3, ADE2, pRS306Padh1.OsTIR1, STH1-miniAID- KANMX3, bar1::HYGB		gift from David Shore
SKY165	SKY164; pRSADE-GAL1pro-H3.HA	S4	This study

Supplementary Table S2

Plasmids

Plasmid name	Description	Marker	Source
	pRS314-GAL1pro-H3.HA	TRP1	(10)
	pRSADE-GAL1pro-H3.HA	ADE2	(10)
	pRSADE-MET3pro-H3.HA	ADE2	This study
p793 (GFP-pYeF2)	pYeF2-GAL1pro-GFP	URA3	(28)
p1883	pYeF2-GAL1pro-Ace1(DBD:WT).GFP	URA3	(28)
p1885	pYeF2-GAL1pro-Ace1(DBD:G37Q).GFP	URA3	(28)
p1883-ACE1(AD)	pYeF2-GAL1pro-Ace1(DBD:WT).Ace1(AD).GFP	URA3	This study
p1883-RAP1(AD)	pYeF2-GAL1pro-Ace1(DBD:WT).Rap1(AD).GFP	URA3	This study
pBTM116	pBTM116-ADH1pro-LexA	TRP1	(36)
pBTM116-HIR2	pBTM116-ADH1pro-LexA.HIR2	TRP1	(36)
pAJ1	pAJ1-CYC1pro-LACZ reporter without LexA-binding sites	URA3	(36, 60)
pJK1621	pAJ1-CYC1pro-LACZ reporter carrying four LexA-binding sites upstream of the CYC1 UAS elements	URA3	(36, 60)

Supplemental Table S3

Cloning PCR amplification primers

Name	Description	Sequence	Comments
MS2293	Clal RAP1 AD Fw	CC <u>ATCGAT</u> gCAATTATAGTTCTCAAAGAAATGTTCAGCC	Cla1 site underlined; used to generate p1883- RAP1(AD). The bases in lower case have been added to keep the reading frame open
MS2294	Clal RAP1 AD Rev	CC <u>ATCGAT</u> TTGGTGGAAAGCTTATGGTATCAGG	Cla1 site underlined; same
MS2295	Clal ACE1 AD Fw	CC <u>ATCGAT</u> gcCTGGACGTTCTTTTGGGCC	Cla1 site underlined; used to generate p1883- ACE1(AD). The bases in lower case have been added to keep the reading frame open
MS2296	Clal ACE1 AD Rev	CC <u>ATCGAT</u> tTTGTGAATGTGAGTTATGCGAAG	Cla1 site underlined; same
MS1730	Kpnl MET3pro Fw	CGC <u>GGTACC</u> AATGAAAACACAGAAGTA	Kpn1 site underlined; used to generate pRSADE- MET3pro-H3.HA
MS1734	MscI MET3pro Rev	GCG <u>TGGCCA</u> TACTTTATTCTTGTTATTA	Msc1 site underlined; same

ChIP qPCR primers

Name	Description	Sequence	Comments
MS819	ACT1 PRO Fw	GCGCTAGAACATACCAGAATC	
MS820	ACT1 PRO Rev	TCTTCCTTCCCCTTTCTACTC	
MS291	ADH1 PRO Fw	CACGCACACTACTCTCTAATGAG	
MS290	ADH1 PRO Rev	CTGGGATAGACATTGTATATGAG	
MS2056	CTT1 PRO Fw	ATGAGTACGTCGCCGATC	
MS2057	CTT1 PRO Rev	GTCCAGGCTACGTCGAAT	
MS1922	CUP1 PRO Fw	ACTTCACCACCCTTTATTTC	

MS1923	CUP1 PRO Rev	CTGACAATCCATATTGCGTT		
MS1141	CYC1 PRO Fw	GATGGCCAGGCAACTTTA		
MS1142	CYC1 PRO Rev	ATGCTGCAAAGGTCCTAA		
MS2054	CYC1-LACZ PRO Fw	TGTGCGACGACACATGATC	Hybridizes to the CYC1 core promoter	
MS2055	CYC1-LACZ PRO Rev	GTGAGACGGGCAACAGCCAA	Hybridizes at the junction between CYC1 and the LacZ ORF	
MS2698	EMC33 PRO Fw	CGTTCATTCGCTTCTACAC		
MS2699	EMC33 PRO Rev	GCAGTAGCAGTCAAAGCG		
MS2694	EMC33 3'-end Fw	GAACGGTGCCACATCTAC		
MS2695	EMC33 3'-end Rev	GAGCAGCACCCTTAGACT		
MS699	GAL1 PRO Fw	GCTGCATAACCACTTTAAC		
MS700	GAL1 PRO Rev	CTTTGCGCTAGAATTGAAC		
MS705	GAL7 PRO Fw	CTTGGACCCGTAAGTTTCAC		
MS706	GAL7 PRO Rev	TGCTGGTTACGAAGCAAGAC		
MS1041	GAL11 PRO Fw	GCTGGTTCCACAAAGAAG		
MS1042	GAL11 PRO Rev	ACGGCACTATACGAAACG		
MS1599	HHF1-HHT1 URR Fw	ACCGTATTCGCGGGCATTTGC	To amplify the regulatory region between HHF1 and HHT1	
MS1600	HHF1-HHT1 URR Rev	ATAATGTATGGGACAATGCG	Same	
MS1601	HHF2-HHT2 URR Fw	ACATTGGGCGATAATGAACGC	To amplify the regulatory region between HHF2 and HHT2	
MS1602	HHF2-HHT2 URR Rev	TCTGGTCTGGTCTGCATTTCG	Same	
MS1595	HTA1-HTB1 URR Fw	TCTTGATTTTAAATCCATCG	To amplify the regulatory region between HTA1 and HTB1	
MS1596	HTA1-HTB1 URR Rev	ATAGCTTCGCACAGTGAGGC	Same	
MS1905	HTA2-HTB2 URR Fw	CACCGCTTTATTAGGCGAAG	To amplify the regulatory region between HTA2 and HTB2	
MS1906	HTA2-HTB2 URR Rev	TTATGGCCCCCAGGTTAATG	Same	
MS2596	HSP12 PRO Fw	TGCGTTCTACTTCCTCAATTGC		
MS2597	HSP12 PRO Rev	GCGTCAGACATTGTTGTATTTAGTTTTT		
MS1344	HXK1 PRO Fw	TGAGTATTGCAAGCCACA		
MS1345	HXK1 PRO Rev	CTTCTGTTTCCTCCTTTTC		

MS2682	KSH1 PRO Fw	GTCGGCAGATTTCTCACC		
MS2683	KSH1 PRO Rev	CAGGTGGGTTTATGCAGTG		
MS2678	OPI3 PRO Fw	TGATGACCAGGGTAGGTG		
MS2679	OPI3 PRO Rev	CAGTGGTCATTGCAGTGG		
MS2700	PIM1 PRO Fw	ATTGCAGCAACGACAAGC		
MS2701	PIM1 PRO Rev	AGACCCTTAGCACAGTGG		
MS835	PYK1 PRO Fw	CCCCTTTCAAAGTTATTCTCTACTC		
MS836	PYK1 PRO Rev	GAACCAGCAACAACGTTTAATG		
MS2208	RPL28 PRO Fw	CAGGGACCCACACATTAC		
MS2209	RPL28 PRO Rev	GGAGAAAGCAAACGCCAT		
MS2210	RPL28 3'-end Fw	TGGACATTGATCCCAGAAG	Used to amplify the 3' end of the RPL28 open reading frame	
MS2211	RPL28 3'-end Rev	CTTCAGCCAACTTGGAGA	Same	
MS2211 MS2236	RPL28 3'-end Rev RPL30 PRO Fw	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC	Same	
MS2211 MS2236 MS2237	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA	Same	
MS2211 MS2236 MS2237 MS2228	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT	Same	
MS2211 MS2236 MS2237 MS2228 MS2229	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw RPS13 PRO Rev	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT GTACAGAAGTGGAAATCTCATTC	Same	
MS2211 MS2236 MS2237 MS2228 MS2229 MS1924	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw RPS13 PRO Rev SOD1 PRO Fw	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT GTACAGAAGTGGAAATCTCATTC GCCGCTTACTGGAAGTAC	Same	
MS2211 MS2236 MS2237 MS2228 MS2229 MS1924 MS1925	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw RPS13 PRO Rev SOD1 PRO Fw SOD1 PRO Rev	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT GTACAGAAGTGGAAATCTCATTC GCCGCTTACTGGAAGTAC ACAGCTAAACATTTGCCC	Same	
MS2211 MS2236 MS2237 MS2228 MS2229 MS1924 MS1925 MS588	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw RPS13 PRO Rev SOD1 PRO Fw SOD1 PRO Rev STE3 PRO Fw	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT GTACAGAAGTGGAAATCTCATTC GCCGCTTACTGGAAGTAC ACAGCTAAACATTTGCCC CAAAGCCCTATTATTGCTGAC	Same	
MS2211 MS2236 MS2237 MS2228 MS2229 MS1924 MS1925 MS588 MS589	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw RPS13 PRO Rev SOD1 PRO Rev SOD1 PRO Rev STE3 PRO Fw STE3 PRO Rev	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT GTACAGAAGTGGAAATCTCATTC GCCGCTTACTGGAAGTAC ACAGCTAAACATTTGCCC CAAAGCCCTATTATTGCTGAC TCTCCACAATTTGGGCAGAAG	Same	
MS2211 MS2236 MS2237 MS2228 MS2229 MS1924 MS1925 MS588 MS589 MS2646	RPL28 3'-end Rev RPL30 PRO Fw RPL30 PRO Rev RPS13 PRO Fw RPS13 PRO Rev SOD1 PRO Rev SOD1 PRO Rev STE3 PRO Fw STE3 PRO Rev STE3 PRO Rev	CTTCAGCCAACTTGGAGA TTCTGGATAGGACGCCAAC GATCCTTACTGCGGTGCTA ACCACCCATAAACCATAAAGT GTACAGAAGTGGAAATCTCATTC GCCGCTTACTGGAAGTAC ACAGCTAAACATTTGCCC CAAAGCCCTATTATTGCTGAC TCTCCACAATTTGGGCAGAAG TTCACGACGGTCAACTGC	Same	

Expression analysis qPCR primers

Name	Description	Sequence	Comments
MS825	ACT1 ORF Fw	GTCCAAGGCGACGTAACATAG	
MS826	ACT1 ORF Rev	GCCGGTAGAGATTTGACTGAC	

MS315	ADH1 ORF Fw	TAGGTTCTTTGGCTGTTCAATACG	
MS316	ADH1 ORF Rev	CGGAAACGGAAACGTTGATGACACCG	
MS2151	CTT1 ORF Fw	TGCCACGCTTGTAAGATC	
MS2152	CTT1 ORF Rev	CAAGGAACTCCCAAGCATT	
MS1898	CUP1 ORF Fw	GAAGGTCATGAGTGCCAATG	
MS1899	CUP1 ORF Rev	CATTTGTCGTCGCTGTTACAC	
MS2076	CYC1 ORF Fw	CTCTGGTCAAGCTGAAGG	
MS2077	CYC1 ORF Rev	CACCAAAGGCCATCTTGG	
MS701	GAL1 ORF Fw	GGGCCCAAATGGCAACATAG	
MS702	GAL1 ORF Rev	GCCCAATGCTGGTTTAGAGAC	
MS737	GAL7 ORF Fw	CTCTTTGAGGCTCACCTAAC	
MS738	GAL7 ORF Rev	GCTCCTTTGAATGCGACTG	
MS1043	GAL11 ORF Fw	GAAAGTGGCACCTATTCC	
MS1044	GAL11 ORF Rev	CTTCGCAGCTTCCATATC	
MS2002	HSP12 ORF Fw	AGCTTTGAAGCCAGACTCTCA	
MS406	HSP12 ORF Rev	CAGAGTCGTGGACACCTTGGA	
MS903	HXK1 ORF Fw	TGTAGCAATGGGACGACATC	
MS904	HXK1 ORF Rev	AACACCAAGGACACCTTACC	
MS2666	KSH1 ORF Fw	TTCGTTCTCTTCTGCAAGTG	
MS2667	KSH1 ORF Rev	GACTGGCCCTTTCACCAA	
MS2600	OPI3 ORF Fw	TGGGTGTGGCTCTCTTTG	
MS2601	OPI3 ORF Rev	GACAAAGTGGAACCCTGG	
MS2702	PIM1 ORF Fw	AGGCGTCTATCCACTTGC	
MS2703	PIM1 ORF Rev	CTCAACCCACCGATACGT	
MS839	PYK1 ORF Fw	CCAAGGGTCCAGAAATCAG	
MS840	PYK1 ORF Rev	CTTGTCATCGGTGGTGAAG	
MS2238	RPL30 ORF Fw	TTGCCGCTAACACTCCAG	
MS2239	RPL30 ORF Rev	CAGAGTCACCAGCTTCCA	
MS2230	RPS13 ORF Fw	GGTTTGGCTCCAGAAATCC	
MS2231	RPS13 ORF Rev	GGTGGTAAGACAGCAACAG	

MS2692	RTT10 ORF Fw	CGCGCTTGGGAAATTACC	
MS2693	RTT10 ORF Rev	CCAACACCTCCGATCAGT	
MS1902	SOD1 ORF Fw	ACCTCCGTTGTAGGCAGAAG	
MS1903	SOD1 ORF Rev	CGGCATTACCAGTCTTCAAA	
MS591	STE3 ORF Fw	CGTCAAGGACCTTGTGATTAGC	
MS590	STE3 ORF Rev	GCGCCCACAAATGACCATATAAGC	
MS1237	18S RNA Fw	CCTGAGAAACGGCTACCACATC	
MS1238	18S RNA Rev	ATTGTCACTACCTCCCTGAATTAGGA	

Supplemental Table S4

List of non-RP and RP genes used for fig. S3A

	non-RP genes	RP genes		non-RP genes	RP genes
1	YAL040C	YBL087C	14	YKL189W	YKL180W
2	YBL029W	YBR181C	15	YLR023C	YKR057W
3	YBL042C	YBR189W	16	YLR354C	YKR094C
4	YBR114W	YDR012W	17	YML008C	YLR029C
5	YDR085C	YDR064W	18	YMR017W	YLR287C-A
6	YEL036C	YDR500C	19	YMR065W	YLR441C
7	YER045C	YER056C-A	20	YMR205C	YML026C
8	YER056C	YER102W	21	YOR274W	YMR194W
9	YER132C	YFL034C-A	22	YOR303W	YMR230W
10	YHR007C	YGL147C	23	YPL048W	YOL120C
11	YHR162W	YGR085C	24	YPL137C	YOR167C
12	YIL099W	YHL033C	25		YPL198W
13	YJR104C	YJR094W-A			

REFERENCES AND NOTES

- 1. S. Venkatesh, J. L. Workman, Histone exchange, chromatin structure and the regulation of transcription. *Nat. Rev. Mol. Cell Biol.* **16**, 178–189 (2015).
- 2. C. Das, J. K. Tyler, Histone exchange and histone modifications during transcription and aging. *Biochim. Biophys. Acta* **1819**, 332–342 (2013).
- 3. P. B. Talbert, S. Henikoff, Histone variants on the move: Substrates for chromatin dynamics. *Nat. Rev. Mol. Cell Biol.* **18**, 115–126 (2017).
- A. M. Deaton, M. Gómez-Rodríguez, J. Mieczkowski, M. Y. Tolstorukov, S. Kundu, R. I. Sadreyev, L. E. Jansen, R. E. Kingston, Enhancer regions show high histone H3.3 turnover that changes during differentiation. *eLife* 5, e15316 (2016).
- D. C. Kraushaar, W. Jin, A. Maunakea, B. Abraham, M. Ha, K. Zhao, Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. *Genome Biol.* 14, R121 (2013).
- 6. A. Jamai, R. M. Imoberdorf, M. Strubin, Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. *Mol. Cell* **25**, 345–355 (2007).
- 7. A. Weiner, T.-H. S. Hsieh, A. Appleboim, H. V. Chen, A. Rahat, I. Amit, O. J. Rando, N. Friedman, High-resolution chromatin dynamics during a yeast stress response. *Mol. Cell* **58**, 371–386 (2015).
- 8. W. K. M. Lai, B. F. Pugh, Understanding nucleosome dynamics and their links to gene expression and DNA replication. *Nat. Rev. Mol. Cell Biol.* **18**, 548–562 (2017).
- 9. C. M. Hammond, C. B. Strømme, H. Huang, D. J. Patel, A. Groth, Histone chaperone networks shaping chromatin function. *Nat. Rev. Mol. Cell Biol.* **18**, 141–158 (2017).
- 10. Y. Grimaldi, P. Ferrari, M. Strubin, Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo. *Genome Res.* **24**, 117–124 (2014).
- F. J. van Werven, H. A. A. M. van Teeffelen, F. C. P. Holstege, H. T. M. Timmers, Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. *Nat. Struct. Mol. Biol.* 16, 1043–1048 (2009).
- 12. S. J. Zanton, B. F. Pugh, Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. *Genes Dev.* **20**, 2250–2265 (2006).
- S. Kubik, M. J. Bruzzone, P. Jacquet, J.-L. Falcone, J. Rougemont, D. Shore, Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. *Mol. Cell* 60, 422– 434 (2015).

- 14. H. S. Rhee, B. F. Pugh, Genome-wide structure and organization of eukaryotic pre-initiation complexes. *Nature* **483**, 295–301 (2012).
- E. A. Sekinger, Z. Moqtaderi, K. Struhl, Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. *Mol. Cell* 18, 735– 748 (2005).
- S. L. Klemm, Z. Shipony, W. J. Greenleaf, Chromatin accessibility and the regulatory epigenome. *Nat. Rev. Genet.* 20, 207–220 (2019).
- 17. H. Haruki, J. Nishikawa, U. K. Laemmli, The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes. *Mol. Cell.* **31**, 925–932 (2008).
- 18. A. Vannini, P. Cramer, Conservation between the RNA polymerase I, II, and III transcription initiation machineries. *Mol. Cell* **45**, 439–446 (2012).
- 19. H. A. Zaidi, D. T. Auble, S. Bekiranov, RNA synthesis is associated with multiple TBP-chromatin binding events. *Sci. Rep.* **7**, 39631 (2017).
- 20. M. F. Dion, T. Kaplan, M. Kim, S. Buratowski, N. Friedman, O. J. Rando, Dynamics of replicationindependent histone turnover in budding yeast. *Science* **315**, 1405–1408 (2007).
- 21. A. Rufiange, P.-É. Jacques, W. Bhat, F. Robert, A. Nourani, Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 Acetylation and Asf1. *Mol. Cell* **27**, 393–405 (2007).
- 22. I. Tirosh, N. Barkai, Two strategies for gene regulation by promoter nucleosomes. *Genome Res.* **18**, 1084–1091 (2008).
- 23. C. L. Liu, T. Kaplan, M. Kim, S. Buratowski, S. L. Schreiber, N. Friedman, O. J. Rando, Singlenucleosome mapping of histone modifications in *S. cerevisiae*. *PLOS Biol.* **3**, e328 (2005).
- 24. F. S. Howe, H. Fischl, S. C. Murray, J. Mellor, Is H3K4me3 instructive for transcription activation? *Bioessays* **39**, e201600095 (2017).
- 25. E. Boy-Marcotte, G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M. Jacquet, J. Labarre, The heat shock response in yeast: Differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. *Mol. Microbiol.* **33**, 274–283 (1999).
- 26. P. Fürst, S. Hu, R. Hackett, D. Hamer, Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. *Cell* **55**, 705–717 (1988).
- E. B. Gralla, D. J. Thiele, P. Silar, J. S. Valentine, ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. *Proc. Natl. Acad. Sci. U.S.A.* 88, 8558–8562 (1991).

- 28. G. Keller, A. Bird, D. R. Winge, Independent metalloregulation of Ace1 and Mac1 in *Saccharomyces cerevisiae. Eukaryot. Cell* **4**, 1863–1871 (2005).
- 29. K. Nalley, S. A. Johnston, T. Kodadek, Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. *Nature* **442**, 1054–1057 (2006).
- 30. J. D. Lieb, X. Liu, D. Botstein, P. O. Brown, Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. *Nat. Genet.* **28**, 327–334 (2001).
- A. Yarragudi, L. W. Parfrey, R. H. Morse, Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. *Nucleic Acids Res.* 35, 193– 202 (2007).
- 32. A. D. Amin, N. Vishnoi, P. Prochasson, A global requirement for the HIR complex in the assembly of chromatin. *Biochim. Biophys. Acta* **1819**, 264–276 (2012).
- 33. C. F. Kurat, J. Recht, E. Radovani, T. Durbic, B. Andrews, J. Fillingham, Regulation of histone gene transcription in yeast. *Cell. Mol. Life Sci.* **71**, 599–613 (2014).
- 34. P. R. Eriksson, D. Ganguli, V. Nagarajavel, D. J. Clark, Regulation of histone gene expression in budding yeast. *Genetics* **191**, 7–20 (2012).
- S. Kubik, E. O'Duibhir, W. J. de Jonge, S. Mattarocci, B. Albert, J.-L. Falcone, M. J. Bruzzone, F. C. P. Holstege, D. Shore, Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription. *Mol. Cell* **71**, 89–102.e5 (2018).
- M. S. Spector, A. Raff, H. DeSilva, K. Lee, M. A. Osley, Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. *Mol. Cell. Biol.* 17, 545–552 (1997).
- 37. M. W. Adkins, J. K. Tyler, Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. *Mol. Cell* **21**, 405–416 (2006).
- 38. K. Struhl, Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. *Cell* **98**, 1–4 (1999).
- 39. G. E. Zentner, S. Henikoff, Regulation of nucleosome dynamics by histone modifications. *Nat. Struct. Mol. Biol.* **20**, 259–266 (2013).
- 40. C.-M. Chow, A. Georgiou, H. Szutorisz, A. Maia e Silva, A. Pombo, I. Barahona, E. Dargelos, C. Canzonetta, N. Dillon, Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. *EMBO Rep.* 6, 354–360 (2005).
- 41. P. Ferrari, M. Strubin, Uncoupling histone turnover from transcription-associated histone H3 modifications. *Nucleic Acids Res.* **43**, 3972–3985 (2015).

- 42. M. A. Osley, J. Gould, S. Kim, M. Kane, L. Hereford, Identification of sequences in a yeast histone promoter involved in periodic transcription. *Cell* **45**, 537–544 (1986).
- 43. E. M. Green, A. J. Antczak, A. O. Bailey, A. A. Franco, K. J. Wu, J. R. Yates, P. D. Kaufman, Replication-independent histone deposition by the HIR complex and Asf1. *Curr. Biol.* **15**, 2044 (2005).
- 44. P. Prochasson, L. Florens, S. K. Swanson, M. P. Washburn, J. L. Workman, The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. *Genes Dev.* **19**, 2534–2539 (2005).
- 45. J. Fillingham, P. Kainth, J.-P. Lambert, H. van Bakel, K. Tsui, L. Peña-Castillo, C. Nislow, D. Figeys, T. R. Hughes, J. Greenblatt, B. J. Andrews, Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. *Mol. Cell* 35, 340–351 (2009).
- 46. K. A. Garbett, M. K. Tripathi, B. Cencki, J. H. Layer, P. A. Weil, Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. *Mol. Cell. Biol.* **27**, 297–311 (2007).
- 47. M. Mencía, Z. Moqtaderi, J. V. Geisberg, L. Kuras, K. Struhl, Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. *Mol. Cell* **9**, 823–833 (2002).
- 48. H. Zhang, L. Gao, J. Anandhakumar, D. S. Gross, Uncoupling transcription from covalent histone modification. *PLOS Genet.* **10**, e1004202 (2014).
- P. B. Becker, J. L. Workman, Nucleosome remodeling and epigenetics. *Cold Spring Harb. Perspect. Biol.* 5, a017905 (2013).
- Z. Hu, K. Chen, Z. Xia, M. Chavez, S. Pal, J.-H. Seol, C.-C. Chen, W. Li, J. K. Tyler, Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. *Genes Dev.* 28, 396–408 (2014).
- 51. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359 (2012).
- 52. S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre, H. Singh, C. K. Glass, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol. Cell* 38, 576–589 (2010).
- 53. A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841–842 (2010).
- 54. A. M. Tsankov, D. A. Thompson, A. Socha, A. Regev, O. J. Rando, The role of nucleosome positioning in the evolution of gene regulation. *PLOS Biol.* **8**, e1000414 (2010).

- 55. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
- 56. A. D. Basehoar, S. J. Zanton, B. F. Pugh, Identification and distinct regulation of yeast TATA boxcontaining genes. *Cell* **116**, 699–709 (2004).
- 57. A. Kassambara, ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.2.5 (2020).
- 58. B. Knight, S. Kubik, B. Ghosh, M. J. Bruzzone, M. Geertz, V. Martin, N. Dénervaud, P. Jacquet, B. Ozkan, J. Rougemont, S. J. Maerkl, F. Naef, D. Shore, Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. *Genes Dev.* 28, 1695–1709 (2014).
- 59. T. Candelli, D. Challal, J.-B. Briand, J. Boulay, O. Porrua, J. Colin, D. Libri, High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. *EMBO J.* **37**, e97490 (2018).
- 60. C. A. Keleher, M. J. Redd, J. Schultz, M. Carlson, A. D. Johnson, Ssn6-Tup1 is a general repressor of transcription in yeast. *Cell* **68**, 709–719 (1992).