SUPPLEMENTAL INFORMATION

The short isoform of extended synaptotagmin-2 controls Ca²⁺ dynamics in T cells via interaction with STIM1

Jin Seok Woo¹, Zuoming Sun², Sonal Srikanth¹, and Yousang Gwack¹

¹Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

²Department of Molecular Imaging & Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.

Supplementary Figure

Supplementary Figure 1. Expression of E-Syt2 isoforms in HeLa and Jurkat T cells

(A) Lysates from HeLa, Jurkat, and HEK293T cells overexpressing E-Syt2L or E-Syt2S were subjected to immunoblot analysis for detection of E-Syt2. The molecular weight of the endogenous E-Syt2 isoforms expressed in Jurkat T cells matches those of exogenously expressed E-Syt2L and E-Syt2S proteins without any tag.

(**B**) Schematic showing domain structure of E-Syt2a and E-Syt2b (E-Syt2L). Gray boxes indicate transmembrane (TM) segments that span the ER membrane. Cytoplasmic region contains synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain and three C2 domains (A, B and C) which are involved in targeting proteins to cell membranes. Bar graph shows mRNA levels of *ESYT2a* an *ESYT2b* in HeLa and Jurkat cells. E-Syt2b is synonymous with E-Syt2L. **p* < 0.05, N.D. – not detected.

(**C**) Measurement of SOCE in control and DKO Jurkat T cells after TCR cross-linking with anti-CD3 antibody and treatment with 0.5 μ M ionomycin in the presence of external solution containing 2 mM Ca²⁺. Traces show averaged SOCE responses from 30 to 50 cells, and the bar graph shows averaged response ± S.E.M. from three independent experiments. **p* < 0.05, ***p* < 0.005.

Supplementary Figure 2. Deficiency of E-Syts impairs the NFAT pathway without influencing other proximal TCR signaling pathways

(A) Control and DKO Jurkat T cells were stimulated with soluble anti-CD3 antibody (10 μ g/ml) and cross-linking antibody (20 μ g/ml) for indicated times, and lysates were analyzed by immunoblotting for

detection of phosphorylated or total ZAP70, ERK, p38, and JNK proteins. β-actin was used as a loading control. Data are representative of at least three independent experiments.

(**B**) Representative confocal images of control and DKO Jurkat T cells expressing GFP-PLC δ -PH and ORAI1-mCherry (a marker for the plasma membrane). Middle panel shows representative line scans (lines depicted in Merge panels) showing overlap between PLC δ -PH and ORAI1 signals. Bar graph on the right shows averaged ratio (± S.E.M.) of PLC δ -PH signal intensity on the PM versus the entire cell. N.S. – not significant.

Supplementary Figure 3. Interaction between E-Syt2S and STIM1

(A) Interaction of E-Syts with ORAI1. FLAG-immunoprecipitates from lysates of HEK293T cells expressing FLAG-tagged E-Syt1, E-Syt2L, or E-Syt2S together with His-tagged ORAI1 were blotted for detection of the indicated proteins. Cells were treated with thapsigargin before lysis (1 μ M TG for 10 mins).

(**B**) Identification of domains involved in binding of STIM1 with E-Syt2S. Recombinant GST-fused fragments of STIM1 were incubated with lysates of HEK293T cells expressing FLAG-tagged E-Syt1 and E-Syt2S and immunoblotted with anti-FLAG antibody (top). Purified GST-fused fragments of E-Syt2S were incubated with lysates of HEK293T cells expressing His-tagged STIM1 and immunoblotted with anti-His antibody (bottom).

(**C**) Interaction of the N-terminus of E-Syt2L or E-Syt2S with E-Syt2 fragments. GST-fused fragments of E-Syt2 were incubated with lysates of HEK293T cells expressing GFP-tagged N-terminus of E-Syt2L (E2LN) or E-Syt2S (E2SN) and immunoblotted with anti-GFP antibody.

Supplementary Table

List of primers, shRNAs, and sgRNAs used in this study

Gene name	Forward Primer	Reverse Primer	Comments
hE-Syt1_shRNA (mature antisense)	GAGACTTATGAGGTGATGGT A		In pLKO.1 vector
hE-Syt2_shRNA (mature antisense)	GCTCGCAGAGAAACAAGCTT A		In pLKO.1 vector
hE- Syt1_pLentiguide_sgRNA	CACCGCCCTAGCCATTGCGC ATCAT	AACATGATGCGCAATGGCTA GGGC	sgRNA targeting human E-Syt1
hE- Syt2_pLentiguide_sgRNA	CACCGGCTGCTGCCCGTGTA CGCGC	AACGCGCGTACACGGGCAG CAGCC	sgRNA targeting human E-Syt2
pMSCV-CITE-eGFP-PGK- Puro _hE-Syt1	GCGCGGCCGCATGGAGCGA TCTCCAGGA	GCGCGGCCGCGGAGCTGCC CTTGTCCTT	Sub-cloned in pMSCV- CITE-eGFP-PGK-Puro using Notl site
pMSCV-CITE-eGFP-PGK- Puro _hE-Syt2L	CCCTCGAGATGACGCCACCG TCCCGG	CGGAATTCTGTCATCGCCTG AGGCCT	Sub-cloned in pMSCV- CITE-eGFP-PGK-Puro using Xhol and EcoRI sites
pMSCV-CITE-eGFP-PGK- Puro _hE-Syt2S	CGCTCGAGATGAGCGGCGC CCGGGGC	CGGAATTCTGTCATCGCCTG AGGCCT	Sub-cloned in pMSCV- CITE-eGFP-PGK-Puro using Xhol and EcoRI sites
pEGFPN1_hE-Syt2L	CCGCTCGAGATGACGCCACC GTCCCGG	CGGAATTCGTGTCATCGCCT GAGGCCT	Sub-cloned in pEGFPN1 using Xhol and EcoRI sites
pEGFPN1_hE-Syt2LN	GCCTCGAGATGACGCCACC GTCCCGG	GCGAATTCGCTCCACGCTCA GCACGCC	Sub-cloned in pEGFPN1 using Xhol and EcoRI sites
pEGFPN1_hE-Syt2SN	GCCTCGAGATGAGCGGCGC CCGGGGC	GCGAATTCGCTCCACGCTCA GCACGCC	Sub-cloned in pEGFPN1 using Xhol and EcoRI sites
pMSCV-CITE-eGFP-PGK- Puro _hE-Syt2L_M49L	GCGCGGCACTGCGGGGCGC TGAGCGGCGCCCGGGGCG	CGCCCCGGGCGCCGCTCAG CGCCCCGCAGTGCCGCGC	Site directed mutagenesis
pGEXT4-1_hE-Syt2_LN	GCGAATTCATGACGCCACCG TCCCGG	GCCTCGAGCTATCTTTCAGT GTCTGGAAA	Sub-cloned in pGEX4T-1 using EcoRI and XhoI sites
pGEXT4-1_hE-Syt2_SN	GCGAATTCATGAGCGGCGCC CGGGGC	GCCTCGAGCTATCTTTCAGT GTCTGGAAA	Sub-cloned in pGEX4T-1 using EcoRI and XhoI sites
pGEXT4-1_hE-Syt2_SMP	GCGAATTCGCAGAATGGCTA AATAAG	GCCTCGAGCTAGACAAGTGG AACGGTGAT	Sub-cloned in pGEX4T-1 using EcoRI and XhoI

			sites
pGEXT4-1_hE- Syt2_C2A/B	GCGAATTCGGTGTTCTAAGG ATACAT	GCCTCGAGCTATGGACCCGA GTTACTGAG	Sub-cloned in pGEX4T-1 using EcoRI and XhoI sites
pGEXT4-1_hE- Syt2_Linker	GCGAATTCAACAGCACCATC AAGATG	GCCTCGAGCTAAGACTGTCC CAGGGTCGT	Sub-cloned in pGEX4T-1 using EcoRI and Xhol sites
pGEXT4-1_hE-Syt2_C2C	GCGAATTCCCACTGGGGCAG ATCCAG	GCCTCGAGCTACGTGAGGTC ATACCACTG	Sub-cloned in pGEX4T-1 using EcoRI and XhoI sites
hE-Syt2a	CGAGGCCACAGGCAAAG	ACGCGCTCCTCGTCTTC	qPCR primer
hE-Syt2b	CTGCTGCTGCCCGTGTA	ACGCGCTCCTCGTCTTC	qPCR primer
hE-Syt1	CTGGCGGTGCTGACTTCATT	CTCGAAGGCTCCGTTCTTTC T	qPCR primer
hE-Syt2	CAAACTATCTGGTGCTTCCC AA	GGAAACCGCAACTGAGCTAT T	qPCR primer
hGAPDH	ATCGTGGAAGGACTCATGAC CACA	AGAGGCAGGGATGATGTTCT GGA	qPCR primer

Supplementary Figure 4. Full-length blots of cropped blots from Figure 1B in the main figure.

Supplementary Figure 5. Full-length blots of cropped blots from Figure 1C in the main figure.

Supplementary Figure 6. Full-length blots of cropped blots from Figure 1E in the main figure.

Supplementary Figure 6 (continued). Full-length blots of cropped blots from Figure 1E in the main figure.

Supplementary Figure 7. Full-length blots of cropped blots from Figure 2A in the main figure.

Supplementary Figure 8. Full-length blots of cropped blots from Figure 4C in the main figure.

Supplementary Figure 9. Full-length blots of cropped blots from Figure 4D in the main figure.

Supplementary Figure 10. Full-length blots of cropped blots from Figure 5A in the main figure.

Supplementary Figure 11. Full-length blots of cropped blots from Figure 5B in the main figure.

Supplementary Figure 12. Full-length blots of cropped blots from Supplementary Figure 1A.

Supplementary Figure 13. Full-length blots of cropped blots from Supplementary Figure 2A.

Supplementary Figure 13 (continued). Full-length blots of cropped blots from Supplementary Figure 2A.

Supplementary Figure 14. Full-length blots of cropped blots from Supplementary Figure 3A.

Supplementary Figure 15. Full-length blots of cropped blots from Supplementary Figure 3B.

Supplementary Figure 16. Full-length blots of cropped blots from Supplementary Figure 3C.