
REVIEWER COMMENTS 

Reviewer #3 (Remarks to the Author): 

We thank the authors for their detailed responses to our initial comments--the authors have 

clarified most of the concerns by adding more comparisons between known software tools 

(including Canopy, Battenberg and ReMixT), as well as using somatic SNVs and indels to support 

their findings. Many of the provided explanations are much clearer. In particular, the author 

responses helped highlight what HATCHET and MASCOTE do differently compared to other methods, 

so the novelty of the methods is more apparent. Table R1 is a great addition to clarify not only how 

HATCHet differs from existing methods but also how to conceptually call SCNAs from bulk WGS data 

(particularly for readers relatively new to the field). 

The authors do concede that cloneHD has implemented joint-sample calling to detect CNAs, but they 

stress that HATCHet is one of the few methods that carries out joint-sample calling and to better 

effect than cloneHD (with advantages over other methods). Based on the revision and response, it 

appears that the chief innovations of HATCHet are (1) to determine which segments of the genome 

share the same copy number state on the basis of a clustering algorithm applied to only BAF and 

RDR (regardless of WGD) and (2) to determine whether WGD occurred until after estimating allele-

specific fractional copy numbers and clonal fractions in order to better handle the uncertainty of 

calling CNAs in samples with possible WGDs -- which does represent a useful insight. Otherwise, the 

revised manuscript is much clearer, particularly the methods section which describes HATCHet’s 

mathematical logic and design choices more plainly. The manuscript as presented may be suitable 

for publication, but we have the following comments for the authors to consider. 

Major comments 

1. Figure 6 describes using HATCHet to explain somatic SNV allele frequencies after CNAs and WGD 

events. However, there could be a number of somatic SNVs that occurred after the CNAs. While the 

authors treated mutations as “explained” if only when their VAFs were within 95% CI of predicted 

VAFs from mutations occur before the CNAs, a large proportion of somatic SNVs could arise later 

than the CNAs and would have much lower VAFs highly deviated from their expectations. As a result, 

these SNVs could not serve as a good dataset to compare the performance of different methods. Is it 

possible to use read-level phasing information of allele-specific CNAs and the linked somatic variants 

to do a better evaluation? An analysis of heterozygous polymorphisms within regions affected by 

CNAs would provide a more convincing benchmark -- the true minor-allele fraction of hSNPs within 

genomic duplication should be inversely proportional to the estimated CN of the region. 

Additionally, any somatic SNVs phased to a nearby hSNP should show similar results as the hSNP in 

the proposed simulation. 

Minor comments 

1. In Figure 3E, why did HATCHet call the small “cloud” to the left of (1,1) as “clonal”? It looks very 

subclonal (and I’m guessing it corresponds to the dip near chr11). The cloud could represent a 

sequencing artefact, given how the (2,1) region nearby also appears to dip. Additionally, it seems 

strange that Battenberg would deem the (2,1) cluster of bins as a subclonal region when it had no 

such problem in the B/C. Is Battenberg being thrown off by coverage biases? 
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2. For figures 4 and 5, it would help to show which of the clusters (in panels B onward) were called in 

the published analysis and what were the estimated copy number states for the clusters that 

HATCHet did deem as subclonal or arising from a WGD. As presented, figures 4 and 5 are not clear 

enough to visually show what unique information about SCNAs would HATCHet provide, so some 

additional annotation would be helpful 

Reviewer #4 (Remarks to the Author): 

HATCHet, a method for studying tumor clonal architecture from multi-sample bulk sequencing data 

and using copy number aberrations as identifiers of individual tumor clones, is introduced. Similarly 

to many existing methods, in particular those designed for SNVs, HATCHet uses all samples 

simultaneously and assuming that each bulk tumor sample is a mixture of distinct clones (I will refer 

to each population of cells with unique copy number profile as clone). The set of clones typically 

consists of a few clones (in the simulated data up to 3 tumor clones), with one of them representing 

population of healthy cells, whereas the others are tumor clones characterized (defined) with 

unknown copy number profiles. Clones are assumed to be shared among bulk samples, with varying 

proportions, which is a standard assumption well motivated by tree of tumor evolution that is 

common to all samples. It is allowed that some clones are absent from a given sample, but if a clone 

is present then at least u_min fraction of cells in the sample are required to belong to this clone, 

where u_min is a parameter. In addition to inferring copy number profiles of clones, method also 

infers the number of clones and their prevalence in tumor samples. Two distinct cases are 

considered when inferring the unknowns: 

1. case where it is assumed that no whole genome duplication (WGD) occurred 

2. case where it is assumed that WGD occurred 

Using selection criterion it is decided which of the two is more likely and the number of clones is 

selected as well. HATCHet is not limited to working with the total copy number, but distinguishes 

between minor and major alleles by the use of standard B-allele frequencies computed at the sites 

of heterozygous SNPs. 

Looking into the method, genome is first segmented into small bins and read-depth ratio (RDR) and 

B-allele frequency (BAF) values are computed for each bin in each sample. These values are then 

combined in a specific order in vector of dimension 2k, where k is the number of bulk samples (each 

sample gives one RDR and one BAF value) and clustered through BPNY (reference provided in the 

Supp Material). During this clustering, bins are clustered into m clusters, with number of clusters 

inferred by the clustering algorithm. Each cluster consists of a set of genomic bins sharing similar 

BAF and RDR values across all samples. Note that the inferred clusters do not necessarily contain 

only block of adjacent bins but, for example, bins from different chromosomes can be clustered 

together as soon as their BAF and RDR values are similar across all samples. The algorithm then 

mostly works with the obtained clusters instead of bins. Assuming correct clustering, RDR and BAF 

estimates of clusters are expected to be more stable than these of individual bins. In addition, 

clustering also leads to significant dimensionality reduction as the number of clusters is usually small 



in comparison to the number of bins. 

After that, fractional copy numbers are estimated. This step requires sequencing data of matching 

normal (healthy) tissue and assumes that a good fraction of the genome is diploid and not affected 

by copy number aberrations if no WGD is present (similar assumption is made in case where WGD is 

present). The fractional copy number values are then used as the input to another important part of 

the algorithm where allele-specific copy numbers of all segments are inferred together with clonal 

frequencies. This inference is done using, from the algorithmic point of view, minor modifications of 

previously published ideas and solutions based on coordinate-descent algorithm for some of the 

problems presented in "Phylogenetic Copy-Number Factorization of Multiple Tumor Samples" (by 

the same authors, published in Journal of Computational Biology). Note that this was later also used 

in "Deconvolution and phylogeny inference of structural variations in tumor genomic samples" 

(Eaton et al., Bioinformatics, 2018). In addition to the coordinate-descent algorithm, the 

optimization problem, which is not solvable by most (if not all) of the available solvers in the 

introduced form, is transformed to an instance of classic ILP using standard linearization techniques. 

Assume, for simplicity of notation, that in this paragraph of the review u = u_ip and x = x_ip. For 

u_min > 0 (which is a case, otherwise having u_min is meaningless), combination of constraints (46) 

and (47) given in the Supplementary Material would force that all x's are set to 1. Namely, constraint 

(46) can be rewritten as 

u >= u_min + (1-x) 

so setting variable x to 0 would imply that u >= 1 + u_min > 1, which is impossible due to the defined 

range of variables u (as well as due to the constraint (45)). Alternatively, x=0 would enforce that u=0 

through (47) and then (46) will not be fulfilled. Therefore x would never be set to 0 enforcing that 

each clone is present in each sample that is obviously unrealistic requirement. 

The correct system is: 

u + 1 - x >= u_min 

u <= x 

Alternatively, one can impose the following constraints: 

u >= u_min * x 

u <= x 

I hope that this is just one of numerous typos in the manuscript (see below). It is definitely very bad 

place to have typos as this would most likely waste hours of time of the potential user interested in 

re-implementing this part of the tool (such re-implementation might be needed if, for example, user 

does not have Gurobi license and wants to re-implement this in other optimization software, like 

CPLEX or some freely available ILP solver). If this is not a typo, the authors might need to re-run the 

experiments performed. 

While considering the possibility of existence of whole genome duplications (WGDs), three main 

assumptions about WGDs are made: (i) WGDs occur at most once (ii) if WGD occurs, then it affects 

all tumor clones (iii) if WGD is present, there also exist some other clonal copy number aberrations. 

While each of the assumptions is not necessarily always true in practice, I find the first two of them 



quite fair. For example, there is indeed evidence in the literature that WGDs are early events in 

carcinogenesis. The third assumption is questionable as single WGD combined with SNVs, indels, 

fusions and/or translocations can suffice for cancer formation. Although future studies, primarily 

those involving single-cell data, will provide better insight on this, I am of the opinion that it is more 

likely that this assumption is true than not in most cases, but I recommend adding very brief 

discussion on the potential limitation of the method due to this assumption. 

Why the inference of similar fractions of the genome affected by CNAs implies that subclonal CNAs 

inferred by Battenberg are clonal (see sentence "Second, both methods inferred similar fractions of 

the genome affected by CNAs on these 20 samples (Fig. S34A), suggesting that the subclonal CNAs 

inferred by Battenberg 

are clonal instead")? 

The next sentence, "Finally, we found that ReMixT’s inference of subclonal CNAs from the same 

dataset was more similar to HATCHet than Battenberg". What is the main message that one should 

take from this sentence? 

Why is comparison of results of HATCHet and Control-FREEC on pancreatic cancer dataset relevant? 

Can available alternative methods give the same insight as HATCHet into clonal composition of these 

tumors? 

Looking into Figure S1, how does blue subclone differ from the healthy cells? I see blue profiles 

twice, each time it is (1,1). Furthermore, why some of the clusters have black and blue profiles 

associated with them, whereas the others have only black? Overall, I do not find explanaion 

(caption) of this figure clear enough. 

The end of Section 2.4: Why is having one of WGD and subclonal CNAs, but not both of these, a good 

indication of the quality of solution? Can't WGD introduce higher genomic instability leading to the 

subsequent subclonal CNAs? 

Overall, while the results on real sequencing data to some extent demonstrate that considering 

multiple samples simultaneously might provide some advantage to clonal architecture 

reconstruction method, many of the results are anecdotal, debatable and it is not very convincing 

why solutions reported by HATCHet are a good explanation of the observed read counts. Instead of 

comparing HATCHet's results with the results of available alternatives on datasets for which even no 

proxy of ground truth is available, have the authors considered analyzing copy number profiles of 

tumors for which copy number profiling at single-cell level was performed? A lot of work on this was 

done for example by Nicholas Navin, one of the pioneers of single-cell sequencing, and his group at 

MD Anderson Cancer Center. There are also many studies from the other groups and growing 

number of datasets with available single-cell and matching bulk sequencing data. 



I also have many other comments and suggestions related to the manuscript and the repository and 

they are listed below. 

Isn't the variable forming the left hand side of Supp Equation (99) already explicitly defined in the 

few lines above as a variant allele frequency of SNV e in sample p? I think that the current 

presentation is very confusing. On one side of Supp Equation (99) we have a very clearly defined VAF 

value, which is given as a function of variant and total read counts that are directly observed. Then, 

this value is expressed as a function of variables f, c and u through Supp Equations (99) and (100), 

where u's are unknowns and f and c are defined at the level of cluster of segments (and their values 

depend on set of reads spanning many different genomic coordinates). 

In Supp Equation (101), why f_{s,p} is used in denominator? In other words, why elements of matrix 

F are used instead of elements of the product (A+B)U of inferred matrices? 

On page 16, in sentence "We also 

define the corresponding distance for F^B, B, and b.", what is b? Should this be U? 

How do the authors justify use of minimum subclonal prevalence as high as 15% for several patients 

analyzed in real data section? How should a user set this important parameter? 

In Supp Equation (1) denominator seems to be incorrect. Similarly, I think that the left hand side in 

Supp Equation (7) has a typo (b -> s). 

What is the purpose of adding Supp Equation (11)? 

In Supp Equation (17), undefined variables are used in the nominator (\hat{u_{i,p}}, in LaTex 

notation). 

In Figure S11, part A, right part (Copy-number profiles), for segment s_5, why is it composed of 70% 

of total copy number 3 and 50% of total copy number 4 when 70% of (2, 1) and 20% of (3, 1) are 

shown in the left. 

In the introduction in Supp Section B.2., there is an incomplete part of the sentence: "i.e. a cluster s 

is tumor-clonal if (a_{s,2}, b_{s,2}), (a_{s,3}, b_{s,3}), ..., (a_{s,n}, b_{s,n})." 

In the sentence introducing Supp Equation (24), gamma_p, which does not appear in the system, is 

mentioned. 

Please remind a reader of Supp Equation (8) and dependency of f_{s,p}, gamma_p and r_{s,p}. All in 

all, I recommend expanding f_{s,p} based on Equation (8) and discussing what are known (observed) 

and unknown variables. When it comes to solving the system, it is obviously very trivial and 



straightforward task and full details of solving it can be omitted (as is already the case). 

Furthermore, the authors talk about unknown mu_p (before Supp Equation (24)) and then after 

Supp Equation (24) they provide formula for tau_p, yet another mistake. 

In the sentence starting on 5-th line on supp page 36, sentence should end with bin t, not bin b ? 

At the very top of supp page 42, |a_s,i - a_s,j| <= 1 appears twice. The second one should be |b_s,i - 

b_s,j| <= 1. 

On supp page 36, for the sentence "Since we know that the BAF for the diploid/tetraploid cluster s is 

approximately 0.5, we proportionally correct the BAF of every cluster with mirrored BAF ...", please 

provide very exact formula as well. 

On supp page 42, in the definition of Problem 3, specify \theta. I am aware that it has been discussed 

before this definition, but to make the definition mathematically sound it needs to be mentioned 

inside it that theta is a given constant. Do the same at the other places where needed, like at the 

end of the first paragraph on supp page 43. 

I could not find instructions for installing this tool on Windows OS. Is this going to be provided in the 

future? If not, HATCHet would not be the only tool tool missing such specifications and I would be 

fine then with testing this on Linux, but please just clarify it. 

Interestingly, the following is stated in the repository "Gurobi is a commercial ILP solver with two 

licensing options: (1) a single-host license where the license is tied to a single computer and (2) a 

network license for use in a compute cluster (using a license server in the cluster). Both options are 

freely and easily available for users in academia \url{here}." 

This is the first time that I hear from someone that setting up free compute cluster license for Gurobi 

is so easy and straightforward. In the past years several of our collaborators tried to set Gurobi on 

their clusters with varying success, some of them giving up and for the others it took a long time and 

was everything but not easy (assuming no money paid). Maybe something has changed in the past 

few months or their institutions had some specific requirements. Anyway, I recommend toning this 

sentence down. On the other hand, from my personal experience setting up free Gurobi license on a 

private computer (e.g. Windows laptop) is quite easy for students and others eligible to apply for it. 

Are related previous tools from this group, THetA and THetA2, now obsolete? If they are, can you 

please make sure that this is very clearly indicated in their repositories and that appropriate link to 

this new tool is provided. Adding this information to the introduction in README in HATCHet's 

repository would also be beneficial. In this crowded field it is very important that the user 

community can easily identify the best performing tool of this group and be spared of wasting time 

on running out of date tools. What about the tool accompanying the publication "Phylogenetic 

Copy-Number Factorization of Multiple Tumor Samples" mentioned above? If it is not obsolete, how 

does it compare to HATCHet and are there clear recommendations how to decide which one of them 

to use? 

(Minor) In the caption of Figure 3: "HATCHet and Battenberg infers", should be "infer". 



(Minor) In the caption of Figure S37, "... and a average error lower than Battenberg ..." should be "... 

and an average error lower than Battenberg ...". 

(Minor) In the caption of Figure S11, correct the following sentence: "Methods based on a clone-

specific model group CNAs into close and model the specific proportion of every clone." 

(Minor) Supplementary Material, section A.1.: why is the total number of reads indexed by sample 

(it is denoted by R_p), whereas the total number of cells is not (it is denoted by E)? This is not 

necessarily wrong, but it seems as inconsistent and introduces unnecessary confusion. Also, adding 

the expected approximate value of L_1, which is around 6 billion bases for the human genome, 

would help reader in better understanding of L_1, ..., L_n (this is mentioned later "... with respect 

to the genome length L1 of the normal cells, that is twice the reference length, i.e. L1 = 2L.", but I 

recommend mentioning it as soon as L_i's are introduced). 

(Minor) Supplementary Methods, page 31, please revisit the sentence: "More specifically, we first 

define the read-depth ration (RDR) and we model the fractional copy numbers to show that their are 

directly proportional." 

(Minor) There is no need to repeat definitions of several variables after Supp Equation (19). 

(Minor) In "... as previously reported in the prostate publication", "prostate publication" sounds 

inappropriate. 

(Minor) Supp page 43 "We design a ILP" -> "We design an ILP". Same on supp page 44. 

(Minor) Is one of "the" and "our" redundant in "A detailed 

description of our the model selection procedure is in Supplementary Note B.4." ? 
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We  thank  the  reviewers  for  their  detailed  and  thoughtful  comments.  In  response  to  their  comments,                
we  have  added  several  new  analyses  with  detailed  descriptions.  We  have  also  corrected  a  few  minor                 
errors  and  typos  in  the  manuscript.  We  highlight  substantial  changes  to  the  manuscript  in blue  text .                 
Below  we  provide  a  point-by-point  response  ( blue  text )  to  each  of  the  reviewer  comments  (black                
text).  All  references  to  sections  and  �igures  refer  to  the  revised  version  of  the  manuscript,  including                 
the   revision   of   the   main   text   and   the   revision   of   the   Supplementary   Note.  

Reviewer			3		

“We  thank  the  authors  for  their  detailed  responses  to  our  initial  comments--the  authors  have               
clari�ied  most  of  the  concerns  by  adding  more  comparisons  between  known  software  tools              
(including  Canopy,  Battenberg  and  ReMixT),  as  well  as  using  somatic  SNVs  and  indels  to  support                
their  �indings.  Many  of  the  provided  explanations  are  much  clearer.  In  particular,  the  author               
responses  helped  highlight  what  HATCHET  and  MASCOTE  do  differently  compared  to  other             
methods,  so  the  novelty  of  the  methods  is  more  apparent.  Table  R1  is  a  great  addition  to  clarify  not                    
only  how  HATCHet  differs  from  existing  methods  but  also  how  to  conceptually  call  SCNAs  from  bulk                 
WGS   data   (particularly   for   readers   relatively   new   to   the   �ield).  

The  authors  do  concede  that  cloneHD  has  implemented  joint-sample  calling  to  detect  CNAs,              
but  they  stress  that  HATCHet  is  one  of  the  few  methods  that  carries  out  joint-sample  calling  and  to                   
better  effect  than  cloneHD  (with  advantages  over  other  methods).  Based  on  the  revision  and               
response,  it  appears  that  the  chief  innovations  of  HATCHet  are  (1)  to  determine  which  segments  of                 
the  genome  share  the  same  copy  number  state  on  the  basis  of  a  clustering  algorithm  applied  to  only                   
BAF  and  RDR  (regardless  of  WGD)  and  (2)  to  determine  whether  WGD  occurred  until  after                
estimating  allele-speci�ic  fractional  copy  numbers  and  clonal  fractions  in  order  to  better  handle  the               
uncertainty  of  calling  CNAs  in  samples  with  possible  WGDs  --  which  does  represent  a  useful  insight.                 
Otherwise,  the  revised  manuscript  is  much  clearer,  particularly  the  methods  section  which             
describes  HATCHet’s  mathematical  logic  and  design  choices  more  plainly.  The  manuscript  as             
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presented  may  be  suitable  for  publication,  but  we  have  the  following  comments  for  the  authors  to                 
consider.”  

We   thank   the   reviewer   for   the   positive   evaluation   of   our   manuscript.  

“Major   comments  
1.  Figure  6  describes  using  HATCHet  to  explain  somatic  SNV  allele  frequencies  after  CNAs  and  WGD                 
events.  However,  there  could  be  a  number  of  somatic  SNVs  that  occurred  after  the  CNAs.  While  the                  
authors  treated  mutations  as  “explained”  if  only  when  their  VAFs  were  within  95%  CI  of  predicted                 
VAFs  from  mutations  occur  before  the  CNAs,  a  large  proportion  of  somatic  SNVs  could  arise  later                 
than  the  CNAs  and  would  have  much  lower  VAFs  highly  deviated  from  their  expectations.  As  a                 
result,  these  SNVs  could  not  serve  as  a  good  dataset  to  compare  the  performance  of  different                 
methods.  Is  it  possible  to  use  read-level  phasing  information  of  allele-speci�ic  CNAs  and  the  linked                
somatic  variants  to  do  a  better  evaluation?  An  analysis  of  heterozygous  polymorphisms  within              
regions  affected  by  CNAs  would  provide  a  more  convincing  benchmark  --  the  true  minor-allele               
fraction  of  hSNPs  within  genomic  duplication  should  be  inversely  proportional  to  the  estimated  CN               
of  the  region.  Additionally,  any  somatic  SNVs  phased  to  a  nearby  hSNP  should  show  similar  results                 
as   the   hSNP   in   the   proposed   simulation.”  

We  agree  with  the  reviewer  that  some  of  the  somatic  SNVs  occurring  after  the  CNAs  at  the  same                   
locus  may  have  VAFs  that  are  lower  than  expected  and  thus  cannot  be  explained  by  CNAs.  To                  
provide  a  more  fair  comparison  of  the  methods,  we  performed  an  additional  analysis  including  two                
points  that  speci�ically  address  the  mentioned  issue.  First,  we  excluded  mutations  that  cannot  be               
explained  by  the  copy  numbers  and  proportions  inferred  by any	  of  the  methods.  Thus,  we  assume                 
that  if  there  is  a  combination  of  copy  numbers  and  proportions  (from  either  HATCHet,  Battenberg,                
or  Control-FREEC)  that  explain  a  mutation,  then  the  mutation  can  be  explained  by  CNAs.  Second,  we                 
excluded  low-frequency  mutations  (VAF 0.2)  which  are  the  most-likely  mutations  affected  by  the    <          
mentioned   issue.   We   added   the   corresponding   description   in   Section   2.6:  

“ When	 	counting	 	the	 	number	 	of	 	explained	 	mutations,	 	we	 	excluded	 	mutations	 	that	 	have	 	low		 	 	 	 	 	 	 	 	 	 	 	 	
frequency	 	(VAF<0.2)	 	as	 	well	 	as	 	mutations	 	that	 	are	 	not	 	explained	 	by	 	the	 	copy	 	numbers	 	and		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
proportions	 	inferred	 	by	 	any	 	of	 	the	 	methods.	 	These	 	excluded	 	mutations	 	are	 	more	 	likely	 	to	 	have		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
occured			after			CNAs			and			to			be			present			in			smaller			subpopulations			of			cells.	”  

While  the  number  of  unexplained  mutations  has  been  substantially  reduced  (the  reduction  across              
patients  is  of  39-60%  in  the  prostate  dataset  and  23-47%  in  the  pancreas  dataset)  from  the                 
previous  version  of  Fig.  6  (as  expected  by  the  reviewer),  we  observed  that  HATCHet  still  explains  a                  
substantially  higher  number  of  mutations  than  Battenberg  and  Control-FREEC  on  both  the  prostate              
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and  pancreas  cancer  datasets.  We  report  the  new  results  in  the  revised  Fig.  6B-C  (reproduced  in  Fig.                  
R1B-C   below).  

	
Fig.	 	R1:	 	HATCHet	 	infers	 	copy-number	 	states	 	and	 	proportions	 	that	 	better	 	explain	 	variant	 	allele		 	 	 	 	 	 	 	 	 	 	 	 	
frequencies		(VAFs)		of	 	somatic		single-nucleotide		mutations.	 (A)  A  genomic  segment  (cyan  rectangle)  harbors 	 	 	 	 	         
a  somatic  single-nucleotide  mutation.  Reads  with  alternate  allele  (red  squares)  and  reference  allele  (grey  squares)                
are  used  to  estimate  the  VAF.  (Top  right)  From  sequencing  reads  (gray  rectangles)  covering  the  mutation,  a          T          
95%  con�idence  interval  (CI,  i.e.  red  area  of  posterior  probability)  on  the  VAF  is  obtained  from  a  binomial  model.                    
(Bottom)  Separately,  copy-number  states  and  proportions  are  inferred  for  this  genomic  segment.  Given  the               
numbers  of  mutated  copies  of  the  mutation  in  each  of  the  two  copy-number  states,  the  VAF  of  the  mutation  ,c̃1 c̃2                    
is  computed  as  the  fraction  of  the  mutated  copies  weighted  by  the  proportions  of  the  corresponding  copy-number                  
states.  Assuming  that  an  allele-speci�ic  position  is  mutated  at  most  once  during  tumor  progression  (i.e.                
no-homoplasy),  all  possible  values  of  VAF  are  computed  according  to  the  possible  values  of .  A  mutation  is               ,c̃1 c̃2     
explained  if  at  least  one  value  of  VAF  is  within  CI.  (B)  On  the  prostate  dataset,  HATCHet’s  copy  numbers  (red)                     
yield  fewer  unexplained  mutations  than  Battenberg  (blue)  in  all  patients  but  A29,  where  the  difference  is  small.                  
(C)  On  the  pancreas  dataset,  HATCHet’s  copy  numbers  yield  fewer  unexplained  mutations  in  all  patients  than                 
Control-FREEC.  

The  reviewer's  suggestion  to  phase  SNVs  and  germline  heterozygous  SNPs  is  a  good  one.               
Unfortunately,  we  found  that  extremely  small  fractions  of  the  high-con�idence  mutations  used  in  the               
SNV  analysis  are  close  enough  to  germline  SNPs  for  phasing:  <0.2%  in  the  prostate  cancer  patients                 
and  <0.17%  in  the  pancreas  cancer  patients.  Phasing  of  this  small  number  of  SNVs  would  not                 
substantially  change  the  fraction  of  explained  mutations  for  each  method.  We  noted  these              
considerations   in   a   new   paragraph   of   Discussion:  
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“ In		this		work		we		showed		that		the		copy		numbers		and		clone		proportions		inferred		by		HATCHet		across		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
multiple	 	samples	 	allow	 	a	 	better		explanation		of		somatic		SNVs		and		indels		in		both		the		prostate		and		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
pancreas		cancer		patients.		In		particular,		HATCHet		yielded		more		reasonable		estimates		of		CCFs		of		the		 	 	 	 	 	 	 	 	 	 	 	 	 	
SNVs	 	in	 	the	 	prostate	 	cancer	 	patients	 	with	 	a	 	critical	 	impact	 	on	 	the	 	analysis	 	of	 	tumor	 	evolution.		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Further	 	improvements	 	integrating	 	copy	 	numbers	 	and	 	SNV	 	analyses	 	are	 	an	 	important	 	future		 	 	 	 	 	 	 	 	 	 	 	
direction.	 	For	 	example,	 	phasing	 	somatic	 	mutations	 	to	 	nearby	 	germline	 	SNPs	 	might	 	provide		 	 	 	 	 	 	 	 	 	 	 	
additional		information		to		identify		explained		mutations,		although		in		the		present		study,		only		a		small		 	 	 	 	 	 	 	 	 	 	 	 	 	
fraction		of		the		mutations		(<0.2%		in		the		prostate		and		<0.17%		in		pancreas		cancer		patients)		are		on		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the			same			sequencing			read			as			a			heterozygous			germline			SNP.	” 	

Lastly,  the  reviewer’s  suggestion  to  analyze  the  minor-allele  fraction  (namely  the  B-allele  frequency              
(BAF))  of  germline  polymorphisms  (i.e.  SNPs)  is  also  a  good  one.  We  already  performed  three                
analyses  using  BAFs  to  assess  the  copy  numbers  and  proportions  inferred  by  HATCHet.  First,  we                
have  used  the  shift  of  BAF  from  BAF=0.5  –  the  expected  value  for  allelic  balanced  regions  –  to  show                    
that  the  clonal  CNAs  inferred  by  HATCHet  are  more  supported  than  the  subclonal  CNAs  inferred  by                 
Battenberg  in  the  prostate  cancer  patients  (see  x-axis  in  Fig.  3C  and  3E  as  well  as  Supplementary                  
Fig.  S13).  Second,  we  used  the  same  shift  in  BAF  to  show  that  the  subclonal  CNAs  inferred  by                   
HATCHet  are  more  supported  than  the  clonal  CNAs  inferred  by  Control-FREEC  on  the  pancreas               
cancer  patients  (see  x-axis  in  Fig.  4B-D  and  Fig.  5B).  Third,  we  introduced  a  novel  distance  function                  
(called  clonality  distance)  that  uses  BAF  values  (together  with  RDR  values)  to  provide  further               
evidence   to   the   subclonal   CNAs   and   WGDs   inferred   by   HATCHet   (Supplementary   Results   E.6).  

“Minor   comments  
1.  In  Figure  3E,  why  did  HATCHet  call  the  small  “cloud”  to  the  left  of  (1,1)  as  “clonal”?  It  looks  very                      
subclonal  (and  I’m  guessing  it  corresponds  to  the  dip  near  chr11).  The  cloud  could  represent  a                 
sequencing   artefact,   given   how   the   (2,1)   region   nearby   also   appears   to   dip.”  

The  small  cloud  to  the  left  of  (1,  1)  does  correspond  to  the  dip  near  chr11.  We  believe  that  this  dip  is                       
due  to  sequencing  artefacts,  as  there  is  no  shift  observed  in  BAF  (x-axis).  Both  HATCHet  and                 
Battenberg  infer  that  the  small  cloud  belongs  to  the  clonal  cluster  with  allele-speci�ic  copy  numbers                
of   (1,   1).  

“Additionally,  it  seems  strange  that  Battenberg  would  deem  the  (2,1)  cluster  of  bins  as  a  subclonal                 
region   when   it   had   no   such   problem   in   the   B/C.   Is   Battenberg   being   thrown   off   by   coverage   biases?”  

Battenberg  deems  the  (2,1)  cluster  of  bins  as  subclonal  both  in  sample  A10-C  in  Fig.  3C  and  in                   
sample  A10-A  in  Fig.  3E.  However,  Fig.  3C  highlights  (magenta)  the  regions  that  are  identi�ied  as                 
subclonal  by both	HATCHet  and  Battenberg,  while  Fig.  3E  highlights  (green)  the  regions  that  are   	             
identi�ied   as   subclonal    only		  by   Battenberg.   
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To  highlight  the  additional  subclonal  CNAs  identi�ied  only  by  Battenberg  in  A10-C,  we  added  a  new                 
Supplementary  Fig.  S14  in  the  manuscript  (reproduced  in  Fig.  R2  below)  which  highlights  in  green                
the  regions  in  A10-C  that  are  identi�ied  as  subclonal  only  by  Battenberg  (panels  (C)  and  (D)).  To                  
facilitate  a  visual  comparison,  we  also  highlight  in  magenta  in  panels  (A)  and  (B)  of  the  new  Fig.  S14                    
the   regions   in   sample   A10-C   that   are   identi�ied   as   subclonal   CNAs   by   both   HATCHet   and   Battenberg.  

 

Fig.	 	R2:	 	Battenberg	 	overestimates	 	the	 	presence	 	of	 	subclonal	 	CNAs	 	in	 	the	 	sample	 	A10-C	 	of	 	prostate		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
cancer	 	patient	 	A10.	 (A)	 In  sample  A10-C  of  patient  A10,  both  HATCHet  and  Battenberg  identify  reliable 	 	  	             
subclonal  CNAs  that  correspond  to  sample-subclonal  clusters  (magenta)  with  positions  in  the  scaled  BAF-RDR               
plot  (each  point  corresponds  to  50kb  genomic  bin)  that  are  clearly  in  between  the  positions  of  sample-clonal                  
clusters  (black  clusters  with  corresponding  copy-number  states). (B)	  The  sample-subclonal  clusters  in  (A)              
correspond  to  large  genomic  regions  (magenta)  with  values  of  RDR  (for  50kb  genomic  bins)  that  are  clearly                  
distinct  from  the  RDR  values  of  regions  from  sample-clonal  clusters  (black). (C)	  In  the  same  sample  A10-C,                  
Battenberg  identi�ies  extensive  clusters  of  genomic  bins  with  subclonal  CNAs  (green).  However,  the  clusters               
corresponding  to  these  subclonal  CNAs  are  not  clearly  distinguished  in  the  scaled  RDR-BAF  plot  (each  point                 
corresponds  to  50kb  genomic  bins)  from  sample-clonal  clusters  (black).  Thus,  HATCHet  only  identi�ies  clonal               
CNAs  in  this  sample. (D)	  The  sample-subclonal  clusters  in  (C)  correspond  to  large  genomic  regions  (green)  with                  
values  of  RDR  (for  50kb  genomic  bins)  approximately  equal  to  the  RDR  values  of  nearby  regions  from                  
sample-clonal   clusters   (black).  
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“2.  For  �igures  4  and  5,  it  would  help  to  show  which  of  the  clusters  (in  panels  B  onward)  were  called                      
in  the  published  analysis  and  what  were  the  estimated  copy  number  states  for  the  clusters  that                 
HATCHet  did  deem  as  subclonal  or  arising  from  a  WGD.  As  presented,  �igures  4  and  5  are  not  clear                    
enough  to  visually  show  what  unique  information  about  SCNAs  would  HATCHet  provide,  so  some               
additional   annotation   would   be   helpful”  

We  have  revised  Fig.  4  and  5  in  the  manuscript  (reproduced  in  Fig.  R3  and  R4  below)  to  include  the                     
copy  numbers  inferred  in  the  published  analysis  and  to  clarify  the  unique  information  provided  by                
HATCHet.  Speci�ically,  we  made  four  major  changes.  First,  we  used  additional  annotations  (arrows              
and  red  squares)  to  highlight  the  novel  subclonal  CNAs  or  WGD-related  copy  numbers  revealed  by                
HATCHet.  Second,  we  swapped  the  axes  of  the  scaled  RDR-BAF  plots:  RDRs  (or  fractional  copy                
numbers)  are  now  on  the  y-axis.  Although  this  is  not  directly  related  to  the  reviewer’s  comment,  we                  
believe  that  this  representation  provides  a  better  alignment  with  standard  RDR  plots  as  in  Fig.  4E.                 
Third,  we  indicated  the  total  copy  numbers  inferred  by  Control-FREEC  in  the  published  analysis  for                
the  different  clusters  on  the  right  side  of  the  scaled  BAF-RDR  plots  in  Fig.  4B  and  Fig.  4E  as  well  as  in                       
Fig.  5B.  Lastly,  we  highlighted  with  black  dashed  lines  the  values  of  fractional  copy  numbers                
corresponding  to  clonal  CNAs.  This  change  should  help  the  reader  to  easily  distinguish  the  clonal                
clusters  that  lay  on  these  black  lines  from  the  subclonal  clusters  that  are  located  in  between  these                  
lines.  

 
Fig.	 	R3:	 	HATCHet	 	identi�ies	 	well-supported		subclonal		CNAs		in		metastatic		pancreas		cancer		patients.	 	(A)		 	 	 	 	 	 	 	 	 	 	 	  
HATCHet  identi�ies  subclonal  CNAs  in  15  of  35  samples,  while  published  analysis  used  Control-FREEC  and                
excluded  subclonal  CNAs. (B)	  In  the  lymph  node  metastasis  sample  Pam01_NoM1,  HATCHet  infers  two  distinct                
tumor  clones  (ellipses  in  lower  right  of  plot  with  corresponding  proportions)  and  a  tumor  purity  of  69%.  Five                   
sample-subclonal  clusters  (arrows)  of  50kb  genomic  bins  occupy  intermediate  positions  between  the  other              
sample-clonal  clusters  (dashed  black  lines)  in  the  scaled  BAF-RDR  plot,  and  thus  have  distinct  copy-number                
states  in  the  two  clones,  corresponding  to  subclonal  CNAs.  Control-FREEC  copy  numbers  are  shown  on  right                 
y-axis  labels. (C)	  In  a  second  liver  metastasis  sample  Pam01_LiM2  from  the  same  patient,  HATCHet  infers  two                  

6  



/

distinct  tumor  clones,  one  (red)  shared  with  the  lymph  node  sample  Pam01_NoM1.  A  large  sample-subclonal                
cluster  (brown,  starred)  occupies  an  intermediate  position  in  the  scaled  BAF-RDR  plot  and  has  distinct                
copy-number  states  in  the  two  clones.  In  contrast,  the  �ive  sample-subclonal  clusters  in  Pam01_NoM1  (arrows)                
clearly  overlap  the  sample-clonal  clusters  in  this  sample  and  thus  correspond  to  clonal  CNAs  (dashed  black                 
lines). (D)	  In  the  liver  metastasis  sample  Pam01_LiM1,  HATCHet  identi�ies  a  single  tumor  clone  (white)  that  is                  
shared  with  the  lymph  node  metastasis  sample  Pam01_NoM1  in  (B).  The  �ive  sample-subclonal  clusters  in                
Pam01_NoM1  (arrows)  correspond  to  clonal  CNAs  in  sample  Pam01_LiM1  but  have  different  copy-number  states               
than  those  in  (C).  The  inferred  low  tumor  purity  (28%)  of  this  sample  results  in  a  partial  overlap  of  clusters  that                      
are  clearly  distinguished  in  higher  purity  samples  in  (B)  and  (C). (E)	  The  �ive  sample-subclonal  clusters  in                  
Pam01_NoM1  (arrows)  correspond  to  large  genomic  regions  with  values  of  RDR  that  are  clearly  distinct  from  the                  
other  sample-clonal  clusters  (dashed  black  lines).  Genomic  regions  that  are  part  of  small  clusters  or  have                 
out-of-scale  values  are  reported  in  gray.  Ranges  of  fractional  copy  numbers  corresponding  to  the  total  copy                 
numbers   inferred   by   Control-FREEC   in   the   previously   published   analysis   are   shown   on   right   y-axis   labels.  

 
Fig.		R4:		HATCHet		identi�ies		WGDs		in		three		of		four		pancreas		cancer		patients.		(A)	 HATCHet  predicts  a  WGD  in 	 	 	 	 	 	 	 	 	 	 	 	       
all  31  samples  from  3  patients  (Pam01,  Pam02,  and  Pam03).  In  contrast,  published  analysis  used  Control-FREEC                 
and  excluded  WGDs. (B)	 In  four  samples  of  patient  Pam02,  HATCHet  predicts  a  WGD  and  infers  two  tumor  clones                    
(ellipses  in  upper  right  of  plot  with  corresponding  proportions)  with  7  large  tumor-clonal  clusters  (arrows  with                 
corresponding  copy-number  states).  These  clusters  preserve  their  relative  positions  in  the  scaled  BAF-RDR  plot               
(each  point  corresponds  to  50kb  genomic  bin)  across  samples  and  their  fractional  copy  numbers  correspond  to                 
sample-clonal  clusters  in  each  sample  (dashed  black  lines),  supporting  the  inference  of  a  tumor-clonal  CNA  (i.e.                 
unique  copy-number  state  across  samples)  for  each  of  these  clusters.  Note  that  without  a  WGD  three  clusters  (red                   
dashed  squares)  would  correspond  to  subclonal  CNAs  in  all  samples.  Two  additional  clusters  (peach  and  olive,                 
starred)  are  tumor-subclonal  as  they  change  their  relative  position  across  samples  (Pam02_PT18  and              
Pam02_LiM4  vs.  Pam02_LiM3  and  Pam02_LiM5),  supporting  the  inference  of  two  distinct  tumor  clones  in  this                
patient.  The  total  copy  numbers  inferred  by  Control-FREEC  in  published  analysis  are  shown  on  right  y-axis  labels                  
in   the   �irst   scaled   BAF-RDR   plot.  

Furthermore,  we  added  a  new  Supplementary  Figure  S17  in  the  manuscript  (reproduced  in  Fig.  R5                
below)  to  show  the  published  copy  numbers  inferred  by  Control-FREEC  for  the  same  clusters  and                
cancer   samples   depicted   in   Fig.   4   and   5.  
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Fig.	 	R5:	 	Published		copy		numbers		derived		from		Control-FREEC		for		pancreas		cancer		patients		Pam01		and		 	 	 	 	 	 	 	 	 	 	 	 	 	
Pam02		are		inconsistent		across		samples		and		miss		subclonal		CNAs		and		WGDs.		(A)	  RDRs  and  BAFs  of  50kb 	 	 	 	 	 	 	 	 	 	 	       
genomic  bins  in  three  samples  from  the  pancreas  cancer  patient  Pam01  are  colored  according  to  the  published                  
total  copy  numbers  inferred  by  Control-FREEC. (B)	  RDRs  and  BAFs  of  50kb  genomic  bins  in  four  samples  from                   
the  pancreas  cancer  patient  Pam02  are  colored  according  to  the  published  total  copy  numbers  inferred  by                 
Control-FREEC.  

Reviewer			4	 

“HATCHet,  a  method  for  studying  tumor  clonal  architecture  from  multi-sample  bulk  sequencing             
data  and  using  copy  number  aberrations  as  identi�iers  of  individual  tumor  clones,  is  introduced.               
Similarly  to  many  existing  methods,  in  particular  those  designed  for  SNVs,  HATCHet  uses  all               
samples  simultaneously  and  assuming  that  each  bulk  tumor  sample  is  a  mixture  of  distinct  clones  (I                 
will  refer  to  each  population  of  cells  with  unique  copy  number  pro�ile  as  clone).  The  set  of  clones                   
typically  consists  of  a  few  clones  (in  the  simulated  data  up  to  3  tumor  clones),  with  one  of  them                    
representing  population  of  healthy  cells,  whereas  the  others  are  tumor  clones  characterized             
(de�ined)  with  unknown  copy  number  pro�iles.  Clones  are  assumed  to  be  shared  among  bulk               
samples,  with  varying  proportions,  which  is  a  standard  assumption  well  motivated  by  tree  of  tumor                
evolution  that  is  common  to  all  samples.  It  is  allowed  that  some  clones  are  absent  from  a  given                   
sample,  but  if  a  clone  is  present  then  at  least  u_min  fraction  of  cells  in  the  sample  are  required  to                     
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belong  to  this  clone,  where  u_min  is  a  parameter.  In  addition  to  inferring  copy  number  pro�iles  of                  
clones,  method  also  infers  the  number  of  clones  and  their  prevalence  in  tumor  samples.  Two                
distinct   cases   are   considered   when   inferring   the   unknowns:  

1.   case   where   it   is   assumed   that   no   whole   genome   duplication   (WGD)   occurred  
2.   case   where   it   is   assumed   that   WGD   occurred  

Using  selection  criterion  it  is  decided  which  of  the  two  is  more  likely  and  the  number  of  clones  is                    
selected  as  well.  HATCHet  is  not  limited  to  working  with  the  total  copy  number,  but  distinguishes                 
between  minor  and  major  alleles  by  the  use  of  standard  B-allele  frequencies  computed  at  the  sites                 
of   heterozygous   SNPs.  

Looking  into  the  method,  genome  is  �irst  segmented  into  small  bins  and  read-depth  ratio               
(RDR)  and  B-allele  frequency  (BAF)  values  are  computed  for  each  bin  in  each  sample.  These  values                 
are  then  combined  in  a  speci�ic  order  in  vector  of  dimension  2k,  where  k  is  the  number  of  bulk                    
samples  (each  sample  gives  one  RDR  and  one  BAF  value)  and  clustered  through  BPNY  (reference                
provided  in  the  Supp  Material).  During  this  clustering,  bins  are  clustered  into  m  clusters,  with                
number  of  clusters  inferred  by  the  clustering  algorithm.  Each  cluster  consists  of  a  set  of  genomic                 
bins  sharing  similar  BAF  and  RDR  values  across  all  samples.  Note  that  the  inferred  clusters  do  not                  
necessarily  contain  only  block  of  adjacent  bins  but,  for  example,  bins  from  different  chromosomes               
can  be  clustered  together  as  soon  as  their  BAF  and  RDR  values  are  similar  across  all  samples.  The                   
algorithm  then  mostly  works  with  the  obtained  clusters  instead  of  bins.  Assuming  correct              
clustering,  RDR  and  BAF  estimates  of  clusters  are  expected  to  be  more  stable  than  these  of                 
individual  bins.  In  addition,  clustering  also  leads  to  signi�icant  dimensionality  reduction  as  the              
number   of   clusters   is   usually   small   in   comparison   to   the   number   of   bins.  

After  that,  fractional  copy  numbers  are  estimated.  This  step  requires  sequencing  data  of              
matching  normal  (healthy)  tissue  and  assumes  that  a  good  fraction  of  the  genome  is  diploid  and  not                  
affected  by  copy  number  aberrations  if  no  WGD  is  present  (similar  assumption  is  made  in  case                 
where  WGD  is  present).  The  fractional  copy  number  values  are  then  used  as  the  input  to  another                  
important  part  of  the  algorithm  where  allele-speci�ic  copy  numbers  of  all  segments  are  inferred               
together  with  clonal  frequencies.  This  inference  is  done  using,  from  the  algorithmic  point  of  view,                
minor  modi�ications  of  previously  published  ideas  and  solutions  based  on  coordinate-descent            
algorithm  for  some  of  the  problems  presented  in  "Phylogenetic  Copy-Number  Factorization  of             
Multiple  Tumor  Samples"  (by  the  same  authors,  published  in  Journal  of  Computational  Biology).              
Note  that  this  was  later  also  used  in  "Deconvolution  and  phylogeny  inference  of  structural               
variations  in  tumor  genomic  samples"  (Eaton  et  al.,  Bioinformatics,  2018).  In  addition  to  the               
coordinate-descent  algorithm,  the  optimization  problem,  which  is  not  solvable  by  most  (if  not  all)  of                
the  available  solvers  in  the  introduced  form,  is  transformed  to  an  instance  of  classic  ILP  using                 
standard   linearization   techniques.”  

We   thank   the   reviewer   for   the   thorough   summary   of   our   algorithm.  

“Assume,  for  simplicity  of  notation,  that  in  this  paragraph  of  the  review  u  =  u_ip  and  x  =  x_ip.  For                     
u_min  >  0  (which  is  a  case,  otherwise  having  u_min  is  meaningless),  combination  of  constraints  (46)                 
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and  (47)  given  in  the  Supplementary  Material  would  force  that  all  x's  are  set  to  1.  Namely,  constraint                   
(46)   can   be   rewritten   as  

u   >=   u_min   +   (1-x)  
so  setting  variable  x  to  0  would  imply  that  u  >=  1  +  u_min  >  1,  which  is  impossible  due  to  the                       
de�ined  range  of  variables  u  (as  well  as  due  to  the  constraint  (45)).  Alternatively,  x=0  would  enforce                  
that  u=0  through  (47)  and  then  (46)  will  not  be  ful�illed.  Therefore  x  would  never  be  set  to  0                    
enforcing   that   each   clone   is   present   in   each   sample   that   is   obviously   unrealistic   requirement.  
The   correct   system   is:  

u   +   1   -   x   >=   u_min  
u   <=   x  

Alternatively,   one   can   impose   the   following   constraints:  
u   >=   u_min   *   x  
u   <=   x  

I  hope  that  this  is  just  one  of  numerous  typos  in  the  manuscript  (see  below).  It  is  de�initely  very  bad                     
place  to  have  typos  as  this  would  most  likely  waste  hours  of  time  of  the  potential  user  interested  in                    
re-implementing  this  part  of  the  tool  (such  re-implementation  might  be  needed  if,  for  example,  user                
does  not  have  Gurobi  license  and  wants  to  re-implement  this  in  other  optimization  software,  like                
CPLEX  or  some  freely  available  ILP  solver).  If  this  is  not  a  typo,  the  authors  might  need  to  re-run  the                     
experiments   performed.”  

The  error  was  indeed  a  typo  in  the  manuscript  and  we  thank  the  reviewer  for  catching  it.  The                   
correct  equations  are  those  stated  by  the  reviewer,  and  we  corrected  the  equations  in  the                
manuscript   accordingly.   

“While  considering  the  possibility  of  existence  of  whole  genome  duplications  (WGDs),  three  main              
assumptions  about  WGDs  are  made:  (i)  WGDs  occur  at  most  once  (ii)  if  WGD  occurs,  then  it  affects                   
all  tumor  clones  (iii)  if  WGD  is  present,  there  also  exist  some  other  clonal  copy  number  aberrations.                  
While  each  of  the  assumptions  is  not  necessarily  always  true  in  practice,  I  �ind  the  �irst  two  of  them                    
quite  fair.  For  example,  there  is  indeed  evidence  in  the  literature  that  WGDs  are  early  events  in                  
carcinogenesis.  The  third  assumption  is  questionable  as  single  WGD  combined  with  SNVs,  indels,              
fusions  and/or  translocations  can  suf�ice  for  cancer  formation.  Although  future  studies,  primarily             
those  involving  single-cell  data,  will  provide  better  insight  on  this,  I  am  of  the  opinion  that  it  is  more                    
likely  that  this  assumption  is  true  than  not  in  most  cases,  but  I  recommend  adding  very  brief                  
discussion   on   the   potential   limitation   of   the   method   due   to   this   assumption.”  

We   added   a   corresponding   comment   in   Discussion:  

“ Third,		HATCHet’s		modeling		of		WGD		could		be		further		generalized.		While		recent		pan-cancer		studies		 	 	 	 	 	 	 	 	 	 	 	 	
5–8,	 	12	 	show		that		the		current		assumptions		used		in		HATCHet		(namely		that		a		WGD		occurs		at		most		once		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
as	 	a	 	clonal	 	event	 	and	 	that	 	additional	 	clonal	 	CNAs	 	also	 	occur)	 	are	 	reasonable	 	for	 	most	 	tumors,		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
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HATCHet’s	 	model	 	could	 	be	 	extended	 	to	 	allow	 	for	 	multiple		WGD		(e.g.		hexaploid		or		higher		ploidy),		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subclonal			WGD,			or			a			WGD			occurring			without			any			other			clonal			CNAs.	”  

“Why  the  inference  of  similar  fractions  of  the  genome  affected  by  CNAs  implies  that  subclonal  CNAs                 
inferred  by  Battenberg  are  clonal  (see  sentence  "Second,  both  methods  inferred  similar  fractions  of               
the  genome  affected  by  CNAs  on  these  20  samples  (Fig.  S34A),  suggesting  that  the  subclonal  CNAs                 
inferred   by   Battenberg   are   clonal   instead")?  

We  used  the  difference  between  the  fractions  of  the  genome  with  CNAs  to  quantify  the  difference                 
between  the  proportions  of  the  genome  that  contain  subclonal  CNAs,  as  inferred  by  Battenberg  and                
by  HATCHet.  We  observed  that  many  of  the  subclonal  CNAs  identi�ied  by  Battenberg  are  inferred  to                 
be  clonal  by  HATCHet,  especially  in  20  prostate  cancer  samples  where  HATCHet  only  infers  clonal                
CNAs  (Fig.  38).  Since  Battenberg  does  not  �it  the  observed  RDRs  and  BAFs  better  than  HATCHet  (Fig.                  
S41),  the  additional  subclonal  CNAs  inferred  by  Battenberg  can  be  equally  explained  as  clonal  CNAs.                
To   clarify   this   point,   we   have   revised   the   corresponding   paragraph   in   the   manuscript:  

“ While	 	it	 	is	 	possible	 	that	 	Battenberg	 	has	 	higher	 	sensitivity	 	in	 	detecting	 	subclonal	 	CNAs	 	than		 	 	 	 	 	 	 	 	 	 	 	 	 	
HATCHet,		the		extensive		subclonal		CNAs		reported		by		Battenberg		in		all		samples		is		concerning.		This		is		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
because		the		inference		of	subclonal		CNAs		will		always		produce		a		better		�it		to		the		observed		RDRs		and		 	 	  	 	 	 	 	 	 	 	 	 	 	 	 	
BAFs,	 	but	 	with	 	a	 	cost	 	of	 	increasing	 	the	 	number	 	of	 	parameters	 	required	 	to	 	describe	 	the		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
copy-number	 	states	 	(model	 	complexity).	 	Battenberg	 	models	 	the	 	clonal	 	composition	 	of	 	each		 	 	 	 	 	 	 	 	 	 	
segment		independently		(Fig.		S15),		and		thus		has		6X		more		parameters		than		HATCHet		on		this		dataset		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Fig.	 	S42).	 To	 	avoid	 	over�itting,	 	it	 	is	 	important	 	to	 	evaluate	 	the	 	trade-off	 	between	 	model	 	�it	 	and		  	 	 	 	 	 	 	 	 	 	 	 	 	 	
model	 	complexity.	 	Battenberg	 	does	 	not	 	include	 	a	 	model-selection	 	criterion	 	to	 	evaluate	 	this		 	 	 	 	 	 	 	 	 	 	 	
trade-off,	 	and	 	it	 	consequently	 	infers		a		high		fraction		of		subclonal		CNAs		in		every		sample		(Fig.		S38)		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
without		�itting		the		observed		RDRs		and		BAFs		better		than		HATCHet		(Fig.		S41).		In		contrast,		HATCHet		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
uses	 	a	 	model-selection	 	criterion	 	to	 	identify		the		number		of		clones;		consequently		in		20/49		samples		 	 	 	 	 	 	 	 	 	 	 	 	 	
HATCHet		infers		that		all		the		subclonal		CNAs		identi�ied		by		Battenberg		are		instead		clonal		(Fig.		S38).		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Since	 	HATCHet	 	�its	 	the	 	observed	 	RDRs	 	and	 	BAFs	 	as	 	well	 	as	 	Battenberg	 	(Fig.	 	S41)	 	but	 	without		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subclonal		CNAs,		the		extensive		subclonal		CNAs		reported		by		Battenberg		in		these		samples		are		equally		 	 	 	 	 	 	 	 	 	 	 	 	 	
well-explained			as			clonal			CNAs.	”  

“The  next  sentence,  "Finally,  we  found  that  ReMixT’s  inference  of  subclonal  CNAs  from  the  same                
dataset  was  more  similar  to  HATCHet  than  Battenberg".  What  is  the  main  message  that  one  should                 
take   from   this   sentence?”  

According  to  the  benchmark  on  simulated  data,  both  HATCHet  and  ReMixT  outperformed             
Battenberg  (Section  2.2).  Therefore,  the  fact  that  ReMixT  infers  results  more  similar  to  HATCHet               
than  Battenberg  suggests  that  the  results  of  HATCHet  and  ReMixT  are  more  accurate.  Moreover,  we                
emphasize  that  the  comparison  between  HATCHet  and  ReMixT  on  the  prostate  cancer  dataset  has               
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been  introduced  in  response  to  the  previous  requests  of  Reviewer  2.  We  have  correspondingly               
revised   the   sentence   as   follows:  

“ Finally,	 	we	 	found	 	that	 	ReMixT’s	 	inference	 	of	 	subclonal	 	CNAs	 	from	 	the	 	same	 	dataset	 	was	 	more		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
similar		to		HATCHet		than		Battenberg		(Fig.		S40		and		Supplementary		Note		E.2).		Since		both		HATCHet		 	 	 	 	 	 	 	 	 	 	 	 	 	
and		ReMixT		outperformed		Battenberg		on		the		simulated		data,		the		similarity		between		HATCHet		and		 	 	 	 	 	 	 	 	 	 	 	 	
ReMixT			on			this			dataset			suggests			that			Battenberg’s			results			are			less			accurate.	”  

“Why  is  comparison  of  results  of  HATCHet  and  Control-FREEC  on  pancreatic  cancer  dataset              
relevant?  Can  available  alternative  methods  give  the  same  insight  as  HATCHet  into  clonal              
composition   of   these   tumors?”  

The  main  point  in  the  analysis  of  the  pancreas  dataset  is not	  to  directly  compare  HATCHet  with                  
Control-FREEC  but  rather  to  investigate  whether  subclonal  CNAs  and  WGDs  are  present  in  the               
pancreas  cancer  samples.  Since  Makohon  et  al.  (2017)  used  Control-FREEC  and  excluded  the              
possibility  of  subclonal  CNAs  and  WGDs,  we  wanted  to  evaluate  whether  HATCHet’s  joint  analysis  of                
multiple  samples  and  rigorous  model  selection  of  WGD  would  identify  either  of  these  features  in  the                 
data.  This  is  particularly  interesting  because  WGD  have  been  previously  reported  as  common  in               
pancreatic  tumors  [TCGA, Cancer	 	Cell	  2017].  We  clari�ied  this  motivation  in  the  �irst  paragraph  of    	            
Section   2.3:  

“ While	 	both	 	datasets	 	contain	 	multiple	 	tumor	 	samples	 	from	 	individual	 	patients,	 	the	 	previously		 	 	 	 	 	 	 	 	 	 	 	
published	 	analyses	 	inferred	 	CNAs	 	in	 	each	 	sample		independently.		Moreover,		these		studies		reached		 	 	 	 	 	 	 	 	 	 	 	
opposite	 	conclusions	 	regarding	 	the	 	landscape	 	of	 	CNAs	 	in	 	these	 	tumors.	 	Gundem	 	et	 	al.	11	 	report		 	 	 	 	 	 	 	 	 	 	 	 	 	
subclonal	 	CNAs	 	in	 	all	 	primary	 	and	 	metastatic	 	prostate	 	samples.	 	In	 	contrast,	 	Makohon-Moore	 	et		 	 	 	 	 	 	 	 	 	 	 	 	
al.	30	 	report	 	no	 	subclonal	 	CNAs	 	in	 	the	 	primary	 	and	 	metastatic	 	pancreatic	 	samples.	 	An		important		 	 	 	 	 	 	 	 	 	 	 	 	 	
question	 	is	 	whether	 	this	 	difference		is		due		to		cancer-type		speci�ic		or		patient-speci�ic		differences		in		 	 	 	 	 	 	 	 	 	 	 	 	 	
CNA	 	evolution	 	of	 	these		tumors,		or		a		consequence		of		differences		in		the		bioinformatic		analyses.		We		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
investigated		whether		the		HATCHet’s		analysis	 	would		con�irm		or		refute		the		discordance		between		the		 	 	 	 	 	 	 	 	 	 	 	 	
copy-number			landscapes			reported			in			these			studies.	”  

We   also   clari�ied   the   motivation   by   adding   the   following   paragraph   in   Section   2.4:  

“ We	 	next	 	examined	 	the	 	prediction	 	of	 	whole-genome	 	duplications	 	(WGDs)	 	on	 	the	 	prostate	 	and		 	 	 	 	 	 	 	 	 	 	 	 	
pancreas	 	cancer	 	datasets.	 	The	 	previously	 	published	 	analyses	 	of	 	these	 	datasets	 	reached	 	opposite		 	 	 	 	 	 	 	 	 	 	 	
conclusions		regarding		the		landscape		of		WGDs		in		these		tumors.		Gundem		et		al.	11	 	report		WGDs		in		12		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
samples	 	of	 	4	 	prostate	 	cancer	 	patients	 	(A12,	 	A29,	 	A31,	 	and		A32).		In		contrast,		Makohon-Moore		et		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
al.	30	 	did		not		evaluate		the		presence		of		WGDs		in		the		pancreas		cancer		samples,		despite		reports		of		high		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
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prevalence	 	of	 	WGD	 	in	 	pancreas	 	cancer	45	.	 	We	 	investigated	 	whether	 	HATCHet	 	analysis	 	would		 	 	 	 	 	 	 	 	 	 	 	
con�irm			or			refute			the			different			prevalence			of			WGD			reported			in			the			previous			studies.	”  

“Looking  into  Figure  S1,  how  does  blue  subclone  differ  from  the  healthy  cells?  I  see  blue  pro�iles                  
twice,  each  time  it  is  (1,1).  Furthermore,  why  some  of  the  clusters  have  black  and  blue  pro�iles                  
associated  with  them,  whereas  the  others  have  only  black?  Overall,  I  do  not  �ind  explanation                
(caption)   of   this   �igure   clear   enough.”  

We  previously  labelled  the  clusters  corresponding  to  clonal  CNAs  by  only  using  a  single  pair  of  copy                  
numbers  (the  one  from  the  black/white  clone),  and  we  speci�ied  the  copy  numbers  of  the  blue  clone                  
only  for  subclonal  CNAs.  However,  we  understand  the  confusion  of  the  previous  choice  and  we                
revised  Fig.  S1  in  the  manuscript  (reproduced  in  Fig.  R6  below)  to  include  the  copy  numbers  of  both                   
clones   for   every   cluster.   Moreover,   we   fully   revised   the   caption   of   Fig.   S1   to   improve   clarity.  

 

Fig.  R6: Interpretation	 	of	 	many	 	clusters	 	as	 	subclonal	 	CNAs	 	vs.	 	WGD.	  RDRs  and  BAFs  for  �ive  clusters  of   	 	 	 	 	 	 	 	         
genomic  bins  (colors)  have  two  alternate  explanations.  (Bottom  left)  The  �irst  explanation  has  two  distinct  tumor                 
clones  (white  and  blue)  with  nearly  the  same  clone  proportions  (48%  and  47%)  and  the  normal  clone  in  low                    
proportion  (5%).  In  this  explanation,  three  clusters  (green,  dark  orange,  and  dark  blue)  correspond  to  clonal                 
CNAs  with  the  same  indicated  copy-number  state  in  both  clones  and  the  two  remaining  clusters  (light  orange  and                   
light  blue)  correspond  to  subclonal  CNAs  with  different  copy-number  states  as  indicated  in  each  clone.  (Bottom                 
right)  The  second  explanation  has  a  single  tumor  clone  (white)  containing  a  WGD  with  the  tumor  clone  in  high                    
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proportion  (90%)  and  the  normal  clone  in  low  proportion  (10%).  In  this  explanation,  all  �ive  clusters  correspond                  
to   clonal   CNAs.  

“The  end  of  Section  2.4:  Why  is  having  one  of  WGD  and  subclonal  CNAs,  but  not  both  of  these,  a                     
good  indication  of  the  quality  of  solution?  Can't  WGD  introduce  higher  genomic  instability  leading               
to   the   subsequent   subclonal   CNAs?”  

We  agree  with  the  reviewer  that  subclonal  CNAs  and  WGDs  can  be  both  present,  and  HATCHet                 
makes  this  inference  in  some  cases;  see  for  example  the  HATCHet’s  results  on  sample  A29-A  of                 
patient  A29  (Fig.  S19).  However,  while  this  is  indeed  a  possibility,  the  inference  of  solutions  with                 
both  subclonal  CNAs  and  WGDs  requires  care.  Inferring  both  subclonal  CNAs  and  WGDs  generally               
produces  a  better  �it  to  the  data  than  inferring  only  subclonal  CNAs  or  only  WGDs.  This  is  because                   
both  subclonal  CNAs  and  WGDs  increase  the  total  number  of  copy-number  states  available  to               
explain  distinct  clusters  (see  response  above).  Following  the  parsimony  principle  (or  most             
reasonable  model  selection  procedures)  the  simpler  explanation  (with  only  subclonal  CNAs  or  only              
WGD)   is   preferred.  

We   clari�ied   the   explanation   of   the   paragraph   mentioned   by   the   reviewer   in   Section   2.4:  

“ The	 	two	 	discordant	 	samples,	 	A12-C	 	and	 	A29-C,	 	are	 	single	 	samples	 	from	 	patients	 	A12	 	and	 	A29,		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
respectively	 	(Fig.	 	S18A,B).	 	Battenberg	 	predicted	 	a	 	WGD	 	only	 	in	 	A12-C	 	and	 	no	 	WGD		in		the		other		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
samples	 	from	 	this	 	patient.	 	Conversely,	 	Battenberg	 	predicted	 	no	 	WGD	 	in		A29-C		but		a		WGD		in		the		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
other	 	sample	 	from		this		patient.		However,		the		divergent		predictions		of		WGD		in		only		one		sample		of		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
these		patients		is		not		well-supported		by		the		data.		In		particular,		the		observation		of		a		large		number		of		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
distinct		clusters		of		genomic		bins		(i.e.		distinct		copy-number		states)		in		a		sample		has		two		reasonable		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
explanations:	 	subclonal	 	CNAs	 	or	 	a	 	WGD	 	(Fig.	 	S1).	 	Since	 	Battenberg	 	analyzes	 	each	 	sample		 	 	 	 	 	 	 	 	 	 	 	 	
independently	 	it	 	may	 	choose	 	a	 	different	 	explanation	 	(subclonal	 	CNAs	 	vs.	 	WGD)	 	for	 	the	 	large		 	 	 	 	 	 	 	 	 	 	 	 	 	
number	 	of	 	clusters	 	observed	 	in	 	each	 	sample	 	from	 	the	 	same	 	patient.	 	In	 	some	 	cases	 	like	 	sample		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
A12-C,	 	Battenberg	 	predicts	 	both	 	subclonal	 	CNAs	 	and	 	WGD	 	(Fig.		S18C		and		Fig.		S19A).		Since		both		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subclonal	 	CNAs	 	and	 	WGDs	 	increase	 	the	 	total	 	number	 	of		copy-number		states		available		to		explain		 	 	 	 	 	 	 	 	 	 	 	 	 	
distinct		clusters,		they		will		generally		provide		a		better		�it		to		the		data.		However,		there		is		a		danger		of		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
over�itting		since		both		WGD		and		subclonal		CNAs		increase		the		number		of		parameters		in		the		model.		In		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
contrast,		HATCHet		jointly		analyzes		multiple		samples		and		predicts		the		absence/presence		of		a		WGD		 	 	 	 	 	 	 	 	 	 	 	 	
consistently	 	across	 	all	 	samples	 	from	 	the	 	same	 	patient	 	(Fig.	 	S18A,B):	 	no	 	WGD	 	in	 	all	 	samples	 	of		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
patient		A12		and		a		WGD		in		all		samples		of		patient		A29.		Moreover,		HATCHet		integrates		the		choice		of		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
WGD	 	into	 	the	 	model	 	selection	 	procedure,	 	providing	 	a		simpler		explanation		of		the		data		(with		only		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subclonal		CNAs		or		only		WGD)		with		an		equally		good		�it		to		the		observed		RDRs		and		BAFs		(Fig.		S18D,		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Fig.			S19B,			and			Fig.			S60A).	”  

“Overall,  while  the  results  on  real  sequencing  data  to  some  extent  demonstrate  that  considering               
multiple  samples  simultaneously  might  provide  some  advantage  to  clonal  architecture           
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reconstruction  method,  many  of  the  results  are  anecdotal,  debatable  and  it  is  not  very  convincing                
why  solutions  reported  by  HATCHet  are  a  good  explanation  of  the  observed  read  counts.  Instead  of                 
comparing  HATCHet's  results  with  the  results  of  available  alternatives  on  datasets  for  which  even               
no  proxy  of  ground  truth  is  available,  have  the  authors  considered  analyzing  copy  number  pro�iles                
of  tumors  for  which  copy  number  pro�iling  at  single-cell  level  was  performed?  A  lot  of  work  on  this                   
was  done  for  example  by  Nicholas  Navin,  one  of  the  pioneers  of  single-cell  sequencing,  and  his                 
group  at  MD  Anderson  Cancer  Center.  There  are  also  many  studies  from  the  other  groups  and                 
growing   number   of   datasets   with   available   single-cell   and   matching   bulk   sequencing   data.”  

We  performed  a  new  analysis  comparing  HATCHet’s  results  on  bulk  sequencing  data  with  DOP-PCR               
derived  single-cell  copy-number  pro�iles  of  8  breast  cancer  patients  from  two  publications  from              
Nicholas  Navin’s  group.  Speci�ically,  we  used  HATCHet  to  analyze  whole-exome  sequencing  data             
from  12  bulk  tumor  samples  of  4  breast  cancer  patients  (P6,  P9,  P14,  and  P11)  from  Kim  et  al.                    
(2018)  and  whole-exome  sequencing  data  from  9  bulk  tumor  samples  of  4  breast  cancer  patients                
(P4,  P5,  P6,  and  P10)  from  Casasent  et  al.  (2018).  We  observed  a  reasonable  consistency  between                 
the  single-cell  copy-number  pro�iles  and  the  copy  numbers  derived  by  HATCHet  from  the  bulk               
whole-exome  sequencing  data  (Fig.  S9  and  Fig.  S10  in  the  revised  manuscript,  reproduced  in  Fig.  R7                 
and  Fig.  R8  below).  Despite  the  consistency  between  the  results,  we  note  that  this  comparison  has                 
some  limitations.  First,  identi�ication  of  CNAs  from  whole-exome  sequencing  data  is  much  more              
challenging  than  from  whole-genome  sequencing  data  since  whole-exome  sequencing  targets  <2%            
of  the  genome.  Second,  the  clonal  composition  of  the  bulk  samples  and  the  single  cell  samples  may                  
be  different.  Lastly,  the  published  DOP-PCR  copy-number  pro�iles  are  particularly  noisy  as  DOP-PCR              
sequencing  has  very  low  coverage  per  cell  (<0.3X).  Although  the  reviewer  is  correct  that  increasing                
amounts  of  single-cell  sequencing  is  being  performed,  many  of  these  datasets  are  limited  in  their                
utility  as  a  validation  for  HATCHet.  We  are  not  aware  of  any  publicly-available  dataset  that  contains                 
high-coverage  whole-genome  sequencing  from  multiple  bulk-tumor  samples  as  well  as  single-cell            
DNA  sequencing  data  from  the  same  samples  with  suf�iciently  high  and  uniform  sequencing              
coverage   per   cell.  

We  added  the  new  analysis  in  Section  2.2  and  we  describe  its  details  in  the  new  section  in                   
Supplementary   Note   E.7:  

“ Finally,	 	we	 	further	 	assessed	 	the	 	performance	 	of	 	HATCHet	 	by	 	comparing	 	copy-number	 	pro�iles		 	 	 	 	 	 	 	 	 	 	 	
derived	 	by	 	HATCHet	 	on	 	bulk-tumor	 	sequencing	 	data	 	with	 	copy-number	 	pro�iles	 	from	 	DOP-PCR		 	 	 	 	 	 	 	 	 	 	 	
single-cell		DNA		sequencing		data		from		the		same		tumors.	 	Speci�ically,		we		used		HATCHet		to		analyze		 	 	 	 	 	 	 	 	 	 	 	 	 	
whole-exome	 	sequencing	 	data	 	of	 	21	 	bulk-tumor	 	samples	 	from	 	8	 	breast	 	cancer	 	patients:	 	12		 	 	 	 	 	 	 	 	 	 	 	 	
bulk-tumor		samples		from		4		breast		cancer		patients		(P6,		P9,		P14,		and		P11)		from		Kim		et		al.		(2018)		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and		9		bulk-tumor		samples		from		4		breast		cancer		patients		(P4,		P5,		P6,		and		P10)		from		Casasent		et		al.		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(2018).	 	We	 	compared	 	the	 	copy	 	numbers	 	inferred	 	by	 	HATCHet	 	jointly		across		the		2-3		bulk-tumor		 	 	 	 	 	 	 	 	 	 	 	 	 	
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samples	 	from	 	each	 	patient	 	with	 	the		copy-number		pro�iles		inferred		from		the		DOP-PCR		single-cell		 	 	 	 	 	 	 	 	 	 	 	 	
sequencing			data			from				the			same			patient.			

We		observed		a		reasonable		consistency		between		HATCHet's		results		and		the		single-cell		copy-number		 	 	 	 	 	 	 	 	 	 	 	
pro�iles		(Fig.		S9		and		Fig.		S10).		Speci�ically,		HATCHet		correctly		identi�ied		~93%		of		the		clonal		CNAs		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
reported	 	in	 	the	 	single-cell	 	copy-number	 	pro�iles	 	across	 	all	 	8	 	patients.	 	In	 	5/8		patients,		HATCHet		 	 	 	 	 	 	 	 	 	 	 	 	 	
identi�ies	 	a	 	single	 	tumor	 	clone.	 	In	 	some	 	of	 	these	 	patients,	 	more	 	than	 	one	 	distinct	 	single-cell		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
copy-number	 	pro�ile	 	was	 	reported,	 	but	 	most	 	of	 	these	 	additional	 	copy-number	 	pro�iles	 	were		 	 	 	 	 	 	 	 	 	 	 	
associated		with		a		small		fraction		of		cells		(<7%).		Such		low		prevalence		pro�iles		are		dif�icult		to		detect		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
in		bulk		tumor		samples,		and		may		be		present		at		different		frequencies		in		the		bulk		samples,		since		each		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
bulk		sample		and		the		single		cells		are		distinct		collections		of		cells		from		the		same		tumor.		In		the		other		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3/8	 	patients,	 	HATCHet	 	identi�ied	 	multiple	 	tumor	 	clones.	 	In	 	particular,	 	HATCHet	 	identi�ied		 	 	 	 	 	 	 	 	 	 	
subclonal		CNAs		in		~76%		of		the		genomic		regions		where		the		single-cell		copy-number		pro�iles		exhibit		 	 	 	 	 	 	 	 	 	 	 	 	 	
different	 	copy	 	numbers	 	across	 	cells.	 	In	 	most	 	of	 	these	 	regions,	 	HATCHet	 	correctly	 	identi�ied	 	the		 	 	 	 	 	 	 	 	 	 	 	 	 	
copy	 	numbers	 	of	 	the	 	most	 	prevalent	 	tumor	 	clone.	 	While	 	HATCHet	 	is	 	unable	 	to	 	identify	 	all		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subclonal		CNAs		found		in		the		single-cell		pro�iles,		there		are		notable		limitations		in		this		comparison.		 	 	 	 	 	 	 	 	 	 	 	 	 	
First,	 	identi�ication	 	of	 	CNAs	 	from	 	whole-exome	 	sequencing		data		is		much		more		challenging		than		 	 	 	 	 	 	 	 	 	 	 	 	
from		whole-genome		sequencing		data		since		whole-exome		sequencing		targets		<2%		of	 	the		genome.		 	 	 	 	 	 	 	 	 	 	 	
Second,	 	the	 	clonal		composition		of		the		bulk		samples		and		the		single		cell		samples		may		be		different.		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Third,		the		published		DOP-PCR		copy-number		pro�iles		are		particularly		noisy		as		DOP-PCR		sequencing		 	 	 	 	 	 	 	 	 	 	 	
has			very			low			coverage			per			cell			(<0.3X)	.   

Finally,  we  emphasize  that  our  simulator  MASCoTE  was  developed  to  generate  realistic  simulated              
multi-sample  DNA  sequencing  data  with  full-known  ground  truth  (Section  2.2  and  Section  4.2).              
While  these  simulations  may  not  re�lect  the  full  spectrum  of  variability  in  real  data,  the  ground  truth                  
of  each  simulated  dataset  is  fully  known  and  the  simulated  datasets  are  not  characterized  by  the                 
high  levels  of  noise  and  the  sample  biases  found  in  the  single-cell  sequencing  datasets.  Thus,                
MASCoTE  provides  a  reasonable  approach  to  assess  the  performance  of  copy-number            
deconvolution   methods   without   uncertainty   on   the   ground   truth.  
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Fig.  R7: HATCHet’s	 	copy	 	numbers	 	are	 	consistent	 	with	 	published	 	single-cell	 	copy-number	 	pro�iles	 	of	 	4	  	 	 	 	 	 	 	 	 	 	 	 	
breast	 	cancer	 	patients	.  (Top  of  each  panel)  Single-cell  copy-number  pro�iles  for  each  clone  identi�ied  in 	 	              
DOP-PCR  single-cell  sequencing  data  from  4  breast  cancer  patients  in  Kim  et  al.  (2018).  On  the  right  are  the                    
proportion  of  cells  assigned  to  each  clone.  (Bottom  of  each  panel)  Total  copy  numbers  inferred  by  HATCHet                  
using  whole-exome  sequencing  data  from  2-3  bulk  tumor  samples  (OP,  0,  and  2)  from  each  patient.  On  the  right                    
are   the   clone   proportions   inferred   by   HATCHet.  
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Fig.  R8: HATCHet’s	 	copy	 	numbers	 	are	 	consistent	 	with	 	published	 	single-cell	 	copy-number	 	pro�iles	 	of	 	4	  	 	 	 	 	 	 	 	 	 	 	 	
breast	 	cancer	 	patients	.  (Top  of  each  panel)  Single-cell  copy-number  pro�iles  for  each  clone  identi�ied  in 	 	              
DOP-PCR  single-cell  sequencing  data  from  4  breast  cancer  patients  in  Casasent  et  al.  (2018).  On  the  right  are  the                    
proportion  of  cells  assigned  to  each  clone.  (Bottom  of  each  panel)  Total  copy  numbers  inferred  by  HATCHet                  
using  whole-exome  sequencing  data  from  2  bulk  tumor  samples  (DCIS  and  INV)  from  each  patient.  On  the  right                   
are   the   clone   proportions   inferred   by   HATCHet.  
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“I  also  have  many  other  comments  and  suggestions  related  to  the  manuscript  and  the  repository                
and   they   are   listed   below.  

Isn't  the  variable  forming  the  left  hand  side  of  Supp  Equation  (99)  already  explicitly  de�ined  in  the                  
few  lines  above  as  a  variant  allele  frequency  of  SNV  e  in  sample  p?  I  think  that  the  current                    
presentation  is  very  confusing.  On  one  side  of  Supp  Equation  (99)  we  have  a  very  clearly  de�ined                  
VAF  value,  which  is  given  as  a  function  of  variant  and  total  read  counts  that  are  directly  observed.                   
Then,  this  value  is  expressed  as  a  function  of  variables  f,  c  and  u  through  Supp  Equations  (99)  and                    
(100),  where  u's  are  unknowns  and  f  and  c  are  de�ined  at  the  level  of  cluster  of  segments  (and  their                     
values   depend   on   set   of   reads   spanning   many   different   genomic   coordinates).”  

This  was  a  typo  and  Supplementary  Eq.  (99)  was  meant  to  model  the  predicted  VAF ,  while  the                ψ    
observed  VAF  is  indeed  de�ined  as  the  fraction  of  variant  reads  (see  Fig.  R1A  above).  We  clari�ied   ψ                 
these  de�initions  in  the  text  and  corrected  the  corresponding  typos  (note  that  previous  Eq.  (99)  is                 
now   Eq.   (98)):  

“ We		observe		the		variant-allele		frequency		(VAF)	 	of		every		mutation	 	from		every		sample	 	as		 	 	 	 	 	 ψe, p 	 	 	 	 e 	 	 	 	 p 	 	
the	 	fraction	 	of	 	reads	 	in	 	harboring	 	at	 	the	 	corresponding	 	locus	 	(Fig.	 	S52	 	and	 	Fig.	 	S53,		 	 	 	 	 p 	 	 e 	 	 	 	 	 	 	 	 	 	
respectively).	 	When	 	the	 	mutation	 	is	 	located	 	in	 	a	 	genomic	 	region	 	belonging		to		a		cluster	 ,		we		 	 	 	 e 	 	 	 	 	 	 	 	 	 	 	 s 	 	
model			the			predicted			VAF				 		of			 		in			 		similarly			to			the			BAF			 		in			Section			A.2			as			the			following	ψe, p e p βs, p 	

                                                                         (98) ψe, p = f s, p

 ḟ s, p, e  

where			is			 		is			the			mutated			fractional			copy			number			correspondingly			equal			to	f ̇ s, p, e 	

    f c  u ̇ s, p, e = ∑
 

2≤i≤n
 ̇ s, i, e i, p        (99)  

where			 		is			the			related			mutated			total			copy			number			for			every			clone			 ,			i.e.			the			number			of			copies	c   ̇ s, i, e i 	
of			 		that			harbor			the			mutation			 		over			the			total			copy			number			 .	” s e  cs, i  

“In  Supp  Equation  (101),  why  f_{s,p}  is  used  in  denominator?  In  other  words,  why  elements  of                 
matrix   F   are   used   instead   of   elements   of   the   product   (A+B)U   of   inferred   matrices?”  

We   agree   with   the   reviewer   and   we   corrected   the   equation   accordingly.  
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“On  page  16,  in  sentence  "We  also  de�ine  the  corresponding  distance  for  F^B,  B,  and  b.",  what  is  b?                    
Should   this   be   U?”  

Yes,   we   corrected   it   accordingly.  

“How  do  the  authors  justify  use  of  minimum  subclonal  prevalence  as  high  as  15%  for  several                 
patients   analyzed   in   real   data   section?   How   should   a   user   set   this   important   parameter?”  

The  minimum  clone  proportion  as  high  as  15%  has  been  only  applied  to  2  prostate  cancer  patients                  
and  2  pancreas  cancer  patients  where  there  were  1-2  sequenced  samples  with  extremely  noisy               
sequencing  data.  The  approach  that  we  adopted  was  to  increase  the  value  of  the  minimum  clone                 
proportion  when  the  inferred  solution  was  composed  of  tumor  clones  with  proportions  exactly  umin              
equal  to ,  which  may  generally  indicate  over�itting.  Further  details  of  the  experimental   umin            
procedure  adopted  to  choose  these  values  is  described  in  Supplementary  Section  E.1             
(“Experimental   setup”)   and   in   the   new   Supplementary   Table   S3.  

“In  Supp  Equation  (1)  denominator  seems  to  be  incorrect.  Similarly,  I  think  that  the  left  hand  side  in                   
Supp   Equation   (7)   has   a   typo   (b   ->   s).”  

We   corrected   both   equations   accordingly.  

“What   is   the   purpose   of   adding   Supp   Equation   (11)?”  

We  agree  that  explicitly  de�ining  the  A-speci�ic  fractional  copy  number  is  not  necessarily  needed               
and   we   removed   the   old   Supplementary   Eq.   (11).  

“In  Supp  Equation  (17),  unde�ined  variables  are  used  in  the  nominator  (\hat{u_{i,p}},  in  LaTex               
notation).”  

We   corrected   the   typo     into     accordingly. ûi,p ui,p  

“In  Figure  S11,  part  A,  right  part  (Copy-number  pro�iles),  for  segment  s_5,  why  is  it  composed  of                  
70%  of  total  copy  number  3  and  50%  of  total  copy  number  4  when  70%  of  (2,  1)  and  20%  of  (3,  1)                        
are   shown   in   the   left.”  

The   proportions   (70%,   50%)   had   a   typo   and   we   corrected   those   into   (70%,   20%)   accordingly.  
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“In  the  introduction  in  Supp  Section  B.2.,  there  is  an  incomplete  part  of  the  sentence:  "i.e.  a  cluster  s                    
is   tumor-clonal   if   (a_{s,2},   b_{s,2}),   (a_{s,3},   b_{s,3}),   ...,   (a_{s,n},   b_{s,n})."”  

We   completed   the   sentence   as   follows:  

“ i.e.			a			cluster			s			is			tumor-clonal			if			 .	” {(a , ), (a , ), , (a , )}∣ 1  ∣ s,2 bs,2  s,3 bs,3  . . .   s,n bs,n =   

“In  the  sentence  introducing  Supp  Equation  (24),  gamma_p,  which  does  not  appear  in  the  system,  is                 
mentioned.  Please  remind  a  reader  of  Supp  Equation  (8)  and  dependency  of  f_{s,p},  gamma_p  and                
r_{s,p}.  All  in  all,  I  recommend  expanding  f_{s,p}  based  on  Equation  (8)  and  discussing  what  are                 
known  (observed)  and  unknown  variables.  When  it  comes  to  solving  the  system,  it  is  obviously  very                 
trivial  and  straightforward  task  and  full  details  of  solving  it  can  be  omitted  (as  is  already  the  case).                   
Furthermore,  the  authors  talk  about  unknown  mu_p  (before  Supp  Equation  (24))  and  then  after               
Supp   Equation   (24)   they   provide   formula   for   tau_p,   yet   another   mistake.”  

We  applied  all  the  suggested  changes:  we  reminded  the  reader  of  Supplementary  Eq.  (8),  we                
expanded  in  the  system  based  on  Supplementary  Eq.  (8),  we  clearly  stated  which  values  are  f s, p                
either   known   or   unknown,   and   we   corrected   the   typo     into   . τ p μp  

“In   the   sentence   starting   on   5-th   line   on   supp   page   36,   sentence   should   end   with   bin   t,   not   bin   b   ?”  

We   corrected     into     accordingly. b t  

“At  the  very  top  of  supp  page  42,  |a_s,i  -  a_s,j|  <=  1  appears  twice.  The  second  one  should  be  |b_s,i  -                       
b_s,j|   <=   1.”  

We   corrected   it   accordingly.  

“On  supp  page  36,  for  the  sentence  "Since  we  know  that  the  BAF  for  the  diploid/tetraploid  cluster  s                   
is  approximately  0.5,  we  proportionally  correct  the  BAF  of  every  cluster  with  mirrored  BAF  ...",                
please   provide   very   exact   formula   as   well.”  

We   revised   the   sentence   to   introduce   the   exact   formula   as   well:  

“ Since		we		know		that	 	for		the		diploid/tetraploid		cluster	 ,		we		proportionally		correct		the		 	 	 	 .5βs, p = 0 	 	 	 	 	 s 	 	 	 	 	

BAF	 	of		every		cluster		z		with		mirrored		BAF		approximately		equal		to		0.5		by		a		factor		of	 ,	 	i.e.		 β̂z, p 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.5
β̂ s, p
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,	 	where	 	are	 	the	 	average	 	mirrored	 	BAFs	 	for	 	the	 	bins	 	within	 	s	 	and	 	z,	βz, p = β̂z, p
0.5
β̂ s, p

	 	 β , βŝ, p  ˆ
z, p

	 	 	 	 	 	 	 	 	 	 	 	 	

respectively.	”  

“On  supp  page  42,  in  the  de�inition  of  Problem  3,  specify  \theta.  I  am  aware  that  it  has  been                    
discussed  before  this  de�inition,  but  to  make  the  de�inition  mathematically  sound  it  needs  to  be                
mentioned  inside  it  that  theta  is  a  given  constant.  Do  the  same  at  the  other  places  where  needed,                   
like   at   the   end   of   the   �irst   paragraph   on   supp   page   43.”  

We  added  in  all  the  problem  de�initions  in  both  the  main  text  and  in  supplementary  material,  and   θ                 
in   any   other   relevant   place.   For   example,   we   have   the   following   for   Problem   3:  

“ Problem	 	3	 	(Distance-based	 	Constrained	 	Allele-speci�ic	 	Copy-number	 	Factorization		 	 	 	 	 	 	
(D-CACF)		problem).	 	Given		the		allele-speci�ic		fractional		copy		numbers	 	and	 ,		a		number	 	of		 	 	 	 	 	 	 	F A 	 	F B 	 	 	 n 	 	
clones,	 	a	 	maximum	 	total	 	copy	 	number	 ,	 	a	 	minimum	 	clone	 	proportion	 ,	 	and	 	a	 	constant		 	 	 	 	 	  cmax 	 	 	 	 	 umin 	 	 	 	
value	 ,	 	�ind	 	allele-speci�ic	 	copy	 	numbers	 ,	 ,	 	and	 	clone	 	proportions		 1, 2}  θ ∈ {  	 	 	 	 	 a ]A = [ s, i 	 b ]B = [ s, i 	 	 	 	

	such	 	that:	 	the	 	distance	 	is	 	minimum;	u ]U = [ i, p 	 	 	 	 	 ∣F U ∣∣ ∣F U ∣∣  D = ∣ A − A + ∣ B − B 	 	 	  as, i + bs, i ≤ cmax 	
for		every		cluster	 	and		clone	 ;		either	 	or	 	for		every		clone	 	and		sample	 ;		for		 	 	 s 	 	 	 i 	 	 ui, p ≥ umin 	 	 ui, p = 0 	 	 	 	 i 	 	 	 p 	 	
every		cluster	 ,		either	 	or	 	for		all		clones	 ;		for		every		cluster	 ,		either	 	or		 	 s 	 	 as, i ≥ θ 	 	 as, i ≤ θ 	 	 	 	 i 	 	 	 	 s 	 	 bs, i ≥ θ 	 	

			for			all			clones			 .	” bs, i ≤ θ i  

“I  could  not  �ind  instructions  for  installing  this  tool  on  Windows  OS.  Is  this  going  to  be  provided  in                    
the  future?  If  not,  HATCHet  would  not  be  the  only  tool  tool  missing  such  speci�ications  and  I  would                   
be   �ine   then   with   testing   this   on   Linux,   but   please   just   clarify   it.”  

HATCHet  can  be  potentially  run  on  Windows  OS  using  an  environment  that  supports  C++  libraries                
(e.g.  MSVC)  and  python  libraries  (e.g.  using  conda).  However,  at  the  present  time,  HATCHet  has  not                 
been  yet  tested  on  Windows  OS.  We  added  such  information  in  the  “Current  issues”  section  of  the                  
HATCHet’s   repository   and   we   will   update   it   once   the   tests   are   performed.  

“Interestingly,  the  following  is  stated  in  the  repository  "Gurobi  is  a  commercial  ILP  solver  with  two                 
licensing  options:  (1)  a  single-host  license  where  the  license  is  tied  to  a  single  computer  and  (2)  a                   
network  license  for  use  in  a  compute  cluster  (using  a  license  server  in  the  cluster).  Both  options  are                   
freely  and  easily  available  for  users  in  academia  \url{here}."  This  is  the  �irst  time  that  I  hear  from                   
someone  that  setting  up  free  compute  cluster  license  for  Gurobi  is  so  easy  and  straightforward.  In                 
the  past  years  several  of  our  collaborators  tried  to  set  Gurobi  on  their  clusters  with  varying  success,                  
some  of  them  giving  up  and  for  the  others  it  took  a  long  time  and  was  everything  but  not  easy                     
(assuming  no  money  paid).  Maybe  something  has  changed  in  the  past  few  months  or  their                
institutions  had  some  speci�ic  requirements.  Anyway,  I  recommend  toning  this  sentence  down.  On              
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the  other  hand,  from  my  personal  experience  setting  up  free  Gurobi  license  on  a  private  computer                 
(e.g.   Windows   laptop)   is   quite   easy   for   students   and   others   eligible   to   apply   for   it.”  

We   applied   the   suggested   change   to   the   repository.  

“Are  related  previous  tools  from  this  group,  THetA  and  THetA2,  now  obsolete?  If  they  are,  can  you                  
please  make  sure  that  this  is  very  clearly  indicated  in  their  repositories  and  that  appropriate  link  to                  
this  new  tool  is  provided.  Adding  this  information  to  the  introduction  in  README  in  HATCHet's                
repository  would  also  be  bene�icial.  In  this  crowded  �ield  it  is  very  important  that  the  user                 
community  can  easily  identify  the  best  performing  tool  of  this  group  and  be  spared  of  wasting  time                  
on  running  out  of  date  tools.  What  about  the  tool  accompanying  the  publication  "Phylogenetic               
Copy-Number  Factorization  of  Multiple  Tumor  Samples"  mentioned  above?  If  it  is  not  obsolete,  how               
does  it  compare  to  HATCHet  and  are  there  clear  recommendations  how  to  decide  which  one  of  them                  
to   use?”  

We  believe  that  HATCHet  supersedes  some  older  tools  from  the  same  research  group  for  calling                
CNAs  from  bulk-tumor  samples,  including  THetA  and  THetA2,  and  we  will  add  a  corresponding               
statement  to  their  repositories  after  the  �inal  release  of  HATCHet.  In  contrast,  HATCHet  does  not                
supersede  the  CNT-ND  method  that  we  previously  presented  in  " Phylogenetic	 	Copy-Number	         	 	
Factorization		of		Multiple		Tumor		Samples	"  [Zaccaria  et  al., JCB	,  2018]  since  the  main  goal  of  CNT-MD 	 	 	 	             
is   to   reconstruct   the   phylogenetic   tree   of   the   different   tumor   clones,   differently   than   HATCHet.  

“(Minor)   In   the   caption   of   Figure   3:   "HATCHet   and   Battenberg   infers",   should   be   "infer".”  

We   corrected   the   typo   accordingly.  

“(Minor)  In  the  caption  of  Figure  S37,  "...  and  a  average  error  lower  than  Battenberg  ..."  should  be  "...                    
and   an   average   error   lower   than   Battenberg   ...".”  

We   corrected   the   typo   accordingly.  

“(Minor)  In  the  caption  of  Figure  S11,  correct  the  following  sentence:  "Methods  based  on  a                
clone-speci�ic   model   group   CNAs   into   close   and   model   the   speci�ic   proportion   of   every   clone."”  

We  fully  revised  the  caption  of  Fig.  S11  (corresponding  to  Fig.  S15  in  the  revised  manuscript)  and                  
corrected   the   previous   typos.  

“(Minor)  Supplementary  Material,  section  A.1.:  why  is  the  total  number  of  reads  indexed  by  sample                
(it  is  denoted  by  R_p),  whereas  the  total  number  of  cells  is  not  (it  is  denoted  by  E)?  This  is  not                      
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necessarily  wrong,  but  it  seems  as  inconsistent  and  introduces  unnecessary  confusion.  Also,  adding              
the  expected  approximate  value  of  L_1,  which  is  around  6  billion  bases  for  the  human  genome,                 
would  help  reader  in  better  understanding  of  L_1,  ...,  L_n  (this  is  mentioned  later  "...  with  respect  to                   
the  genome  length  L1  of  the  normal  cells,  that  is  twice  the  reference  length,  i.e.  L1  =  2L.",  but  I                     
recommend   mentioning   it   as   soon   as   L_i's   are   introduced).”  

We   applied   both   the   suggested   changes.  

“(Minor)  Supplementary  Methods,  page  31,  please  revisit  the  sentence:  "More  speci�ically,  we  �irst              
de�ine  the  read-depth  ration  (RDR)  and  we  model  the  fractional  copy  numbers  to  show  that  their                 
are   directly   proportional."”  

We   revised   the   sentence   as   follows:  

“ More	 	speci�ically,	 	we	 	�irst	 	de�ine	 	the	 	read-depth	 	ration		(RDR)		and		we		show		that		RDR		is		directly		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
proportional			to			the			corresponding			fractional			copy			number.	”  

“(Minor)   There   is   no   need   to   repeat   de�initions   of   several   variables   after   Supp   Equation   (19).”  

We   removed   the   repeated   de�initions.  

“(Minor)  In  "...  as  previously  reported  in  the  prostate  publication",  "prostate  publication"  sounds              
inappropriate.”  

We   changed   the   sentence   into:  

“ ...			as			reported			in			the			published			analysis			of			the			prostate			cancer			patients	11	.	”  

“(Minor)   Supp   page   43   "We   design   a   ILP"   ->   "We   design   an   ILP".   Same   on   supp   page   44.”  

We   corrected   those   accordingly.  

“(Minor)   Is   one   of   "the"   and   "our"   redundant   in   "A   detailed  
description   of   our   the   model   selection   procedure   is   in   Supplementary   Note   B.4."   ?”  

We   corrected   it   accordingly.  
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REVIEWERS' COMMENTS: 

Reviewer #3 (Remarks to the Author): 

I was satisfied with the previous version. I see that the authors have done an impressive job in 

responding carefully to all the points for a new set of comments. 

Reviewer #4 (Remarks to the Author): 

I thank the authors for considering my comments and modifying the manuscript. 

Being quite familiar with the published work from the group of prof. Ben Raphael, I was very upset 

and disappointed with surprisingly large number of mathematical mistakes of all sorts present in the 

previous version of the manuscript. I hope that we have now found and corrected most of them and 

that this will make the whole publication better. It is also good that several overblown statements 

have now been relaxed or better clarified. 

One point that remains is the following: I still do not completely understand the major difference 

between HATCHet and CNT-MD. Could the authors please provide more detailed clarification, 

including a clear examples where one should opt for using CNT-MD rather than HATCHet (and vice 

versa). I assume that there should be examples for both scenarios since in the Response to reviewers 

letter it is stated that HATCHet does not supersede CNT-MD (I will assume that CNT-ND used in the 

response letter is yet another typo). Why can't a user just run CNT-MD as it even provides an insight 

into tumor evolution? 

Assume that I am interested in obtaining both, clonal composition of tumor and phylogenetic 

relationships of the clones. Are these two methods sufficient for getting some answer to this 

question? If yes, what should I use? Should I first run HATCHet and then CNT-MD, or can I just 

directly run CNT-MD? It is clear that I can not only run HATCHet as it does not perform phylogenetic 

inference. 

I am bringing this up because I am concerned that some of potential users will unnecessarily cope 

with arduous task of figuring out which tools from this group are outdated and which ones should be 

tried out. In addition, lack of clear instructions about this can even reduce the number of users of 

HATCHet. 

Can we also confirm that my understanding of the following is correct: (i) THetA and THetA2 are now 

completely obsolete and should not be used in practice at all in the future; and (ii) this will be 

indicated very clearly on the webpages of these tools; ? 

Otherwise, I am satisfied with the corrections made and additional analysis performed. In my 

opinion, the method has a potential to be used in some studies of intra-tumor heterogeneity and I 



recommend it for publication (assuming that my above questions/concerns are addressed 

satisfactorily). 



Reviewer   responses   for   manuscript  
NCOMMS-20-03751A  

Simone   Zaccaria 1    and   Benjamin   J.   Raphael 1,*   
1 Department   of   Computer   Science,   Princeton   University,   Princeton,   NJ   08540  

*Correspondence:   braphael@princeton.edu  

We  thank  the  reviewers  for  their  detailed  and  thoughtful  comments.  In  response  to  their  final                
comments,  we  provide  below  the  answers  ( blue  text )  to  each  reviewers’  comment  (black  text).  All                
references  to  sections  and  figures  refer  to  the  revised  version  of  the  manuscript,  including  the                
revision   of   the   main   text   and   the   revision   of   the   Supplementary   Note.  

Reviewer   3  

“I  was  satisfied  with  the  previous  version.  I  see  that  the  authors  have  done  an  impressive  job  in                   
responding   carefully   to   all   the   points   for   a   new   set   of   comments.”  

We   thank   the   reviewer   for   the   positive   evaluation   of   our   manuscript.  

Reviewer   4  

“I  thank  the  authors  for  considering  my  comments  and  modifying  the  manuscript.  Being  quite               
familiar  with  the  published  work  from  the  group  of  prof.  Ben  Raphael,  I  was  very  upset  and                  
disappointed  with  surprisingly  large  number  of  mathematical  mistakes  of  all  sorts  present  in  the               
previous  version  of  the  manuscript.  I  hope  that  we  have  now  found  and  corrected  most  of  them  and                   
that  this  will  make  the  whole  publication  better.  It  is  also  good  that  several  overblown  statements                 
have   now   been   relaxed   or   better   clarified.”  

We  have  carefully  reviewed  the  text  and  equations  and  removed  some  extraneous  claims  while               
shortening   the   manuscript   per   editorial   requirements.   

“One  point  that  remains  is  the  following:  I  still  do  not  completely  understand  the  major  difference                 
between  HATCHet  and  CNT-MD.  Could  the  authors  please  provide  more  detailed  clarification,             
including  a  clear  examples  where  one  should  opt  for  using  CNT-MD  rather  than  HATCHet  (and  vice                 
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versa).  I  assume  that  there  should  be  examples  for  both  scenarios  since  in  the  Response  to                 
reviewers  letter  it  is  stated  that  HATCHet  does  not  supersede  CNT-MD  (I  will  assume  that  CNT-ND                 
used  in  the  response  letter  is  yet  another  typo).  Why  can't  a  user  just  run  CNT-MD  as  it  even                    
provides   an   insight   into   tumor   evolution?  

Assume  that  I  am  interested  in  obtaining  both,  clonal  composition  of  tumor  and  phylogenetic               
relationships  of  the  clones.  Are  these  two  methods  sufficient  for  getting  some  answer  to  this                
question?  If  yes,  what  should  I  use?  Should  I  first  run  HATCHet  and  then  CNT-MD,  or  can  I  just                    
directly  run  CNT-MD?  It  is  clear  that  I  can  not  only  run  HATCHet  as  it  does  not  perform  phylogenetic                    
inference.  

I  am  bringing  this  up  because  I  am  concerned  that  some  of  potential  users  will  unnecessarily  cope                  
with  arduous  task  of  figuring  out  which  tools  from  this  group  are  outdated  and  which  ones  should                  
be  tried  out.  In  addition,  lack  of  clear  instructions  about  this  can  even  reduce  the  number  of  users  of                    
HATCHet.”  

HATCHet  infers  integer  and  fractional  copy  numbers  that  can  be  used  as  input  for  reconstructing  a                 
phylogenetic  tree  using  CNT-MD.  Specifically,  CNT-MD  cannot  be  directly  applied  to  DNA  sequencing              
data  but  it  requires  an  estimate  of  the  fractional  copy  numbers,  which  is  one  of  the  main                  
innovations  of  HATCHet.  Therefore,  if  one  is  interested  in  inferring  both  the  tumor  clonal               
composition  and  tumor  phylogeny,  HATCHet  and  CNT-MD  can  be  jointly  used  to  solve  these  tasks,                
with  HATCHet  estimating  the  copy  numbers  and  CNT-MD  reconstructing  their  evolution.  We  added              
a   related   note   in   Section   4.4   of   Method:  

“ We  note  that  HATCHet  does  not  directly  reconstruct  a  tumor  phylogenetic  tree.  However,  the  copy                
numbers  inferred  by  HATCHet  can  be  used  as  input  to  methods  for  phylogenetic  reconstruction.  For                
example,  the  integer  copy  numbers  inferred  by  HATCHet  can  be  input  to  MEDICC 51  or  CNT 52,53 ,  and  the                  
fractional   copy   numbers   can   be   input   to   CNT-MD 23,24    or   Canopy 37 . ”  

Finally,  we  highlight  that  HATCHet  infers  allele-specific  copy  numbers,  while  CNT-MD  only  considers              
total  copy  numbers.  Therefore,  the  allele-specific  analysis  of  HATCHet  is  necessary  to  identify              
allele-specific  CNAs,  which  include  fundamental  and  frequent  events  in  cancer  like  copy-neutral             
loss-of-heterozygosity   (LOH)   and   whole-genome   duplications   (WGDs).  

“Can  we  also  confirm  that  my  understanding  of  the  following  is  correct:  (i)  THetA  and  THetA2  are                  
now  completely  obsolete  and  should  not  be  used  in  practice  at  all  in  the  future;  and  (ii)  this  will  be                     
indicated   very   clearly   on   the   webpages   of   these   tools;   ?”  
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We  confirm  the  statements  of  the  reviewer  and  we  clearly  added  the  following  statement  to  the                 
THetA’s   repository:  

“ UPDATE:  If  you  aim  to  infer  allele-  and  clone-specific  copy-number  aberrations  (CNAs)  from  bulk               
tumor  samples,  we  recommend  that  you  use  [HATCHet](https://github.com/raphael-group/hatchet),         
an   new   algorithm   with   several   improvements   over   THetA. ”  

Otherwise,  I  am  satisfied  with  the  corrections  made  and  additional  analysis  performed.  In  my               
opinion,  the  method  has  a  potential  to  be  used  in  some  studies  of  intra-tumor  heterogeneity  and  I                  
recommend  it  for  publication  (assuming  that  my  above  questions/concerns  are  addressed            
satisfactorily).”  

We   thank   the   reviewer   for   the   positive   evaluation   of   our   manuscript.  
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