The transcription factor Spt4-Spt5 complex regulates the expression of *ATG8* and *ATG41*

Xin Wen, Damián Gatica, Zhangyuan Yin, Zehan Hu, Jörn Dengjel and Daniel J. Klionsky

Supplementary data

Name	Genotype	Ref
BY4741	MATa his $3\Delta 1 \ leu 2\Delta 0 \ met 15\Delta 0 \ ura 3\Delta 0$	[1]
BY4742	MAT α his 3 Δ 1 leu 2 Δ 0 lys 2 Δ 0 ura 3 Δ 0	[1]
DGY047	WLY176 SPT5-MYC::TRP1	This study
DGY048	WLY176 SPT5-MYC S1009A S1015A S1025A S1032A S1043A	This study
	S1052A S1058A::TRP1	
DGY049	WLY176 SPT5-MYC S1009E S1015E S1025E S1032E S1043E	This study
	S1052E S1058E::TRP1	
DGY050	WLY176 GFP-ATG8(405)::LEU2 SPT5-MYC::TRP1	This study
DGY051	WLY176 GFP-ATG8(405)::LEU2 SPT5-MYC S1009A S1015A	This study
	S1025A S1032A S1043A S1052A S1058A::TRP1	
DGY052	WLY176 GFP-ATG8(405)::LEU2 SPT5-MYC S1009E S1015E	This study
	S1025E S1032E S1043E S1052E S1058E::TRP1	
JMY97	WLY176, $ume6\Delta$::HIS3	[2]
JMY347	SEY6210, ZEO1p-pho13 Δ pho8 Δ 60,	This study
	CUP1p-GFP-ATG8(405)::LEU2	5
SEY6210	MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 lys2-	[1]
	801; GAL	
TVY1	MATα leu2–3,112 ura3–52 his3-Δ200 trp1-Δ901 lys2–801 suc2-	[3]
	$\Delta 9 \ GAL \ pep4\Delta$::LEU2	
WLY176	SEY6210 pho13 Δ pho8 Δ 60	[4]
WXY100	TVY1 spt4 Δ ::HIS3	This study
WXY101	TVY1 $bur2\Delta$:: URA3	This study
WXY102	WLY176 SPT5-PA::TRP1	This study
WXY103	WLY176 spt4 Δ ::KAN SPT5-PA::TRP1	This study
WXY104	WLY176 bur2∆::URA3 SPT5-PA::TRP1	This study
WXY105	WLY176 spt4 Δ ::HIS3	This study
WXY106	WLY176 SPT4-PA::TRP1	This study
WXY107	WLY176 SPT5-GFP::KAN	This study
WXY108	WLY176 ATG5-PA::TRP1	This study
WXY109	WLY176 spt4 Δ ::KAN ATG5-PA::TRP1	This study
WXY110	WLY176 ATG20-PA::TRP1	This study
WXY111	WLY176 spt4 Δ ::URA3 ATG20-PA::TRP1	This study
WXY112	WLY176 CUP1p-GFP-ATG8(405)::LEU2	This study
WXY113	WLY176 <i>spt4</i> ∆:: <i>URA3 CUP1p-GFP-ATG8(405)</i> :: <i>LEU2</i>	This study
WXY114	ZYY108 $spt4\Delta$::URA3	This study
WXY115	WLY176 $bur2\Delta$::KAN	This study
WXY116	WLY176 bur2A::KAN ATG41-PA::TRP1	This study
WXY117	WLY176 SPT5-PA::TRP1 SGV1-MYC::KAN	This study
WXY120	WLY176 rim15A::URA3 SPT5-PA::TRP1 SGV1-MYC::KAN	This study
WXY121	BY4741 vac8∆::HIS3	This study
WXY122	BY4741 spt4 Δ ::URA3 vac8 Δ ::HIS3	This study
WXY123	WLY176 <i>rim15</i> ∆::URA3	This study

Table S1. Strains used in this study.

WXY124	ZYY108 $rim15\Delta$::URA3	This study
WXY125	WLY176, pNHK53::URA3 SPT5-AID-MYC::KAN	This study
WXY126	SEY6210, $atg1\Delta$::HIS3	This study
WXY127	ZYY108 SPT5-MYC::TRP1	This study
WXY128	ZYY108 SPT5-MYC S1009A S1015A S1025A S1032A S1043A	This study
	S1052A S1058A::TRP1	
WXY129	ZYY108 <i>ume6</i> ∆:: <i>URA3</i>	This study
WXY130	ZYY124 $spt4\Delta$::URA3	This study
WXY131	JMY347, $spt4\Delta$::URA3	This study
WXY132	ZYY108 SPT5-MYC S1009E S1015E S1025E S1032E S1043E	This study
	S1052E S1058E::TRP1	
WXY133	WXY125, CUP1p-GFP-ATG8(405)::LEU2	This study
WXY134	WXY125, ATG41-PA:: TRP1	This study
YZY007	BY4742 $arg4\Delta$:: $URA3$	This study
YZY076	BY4742 $arg4\Delta$:: URA3 $rim15\Delta$:: KAN	This study
ZYY108	WLY176 ATG41-PA::HIS3	[5]
ZYY124	WLY176 GCN4-PA::LEU2	[5]

Supplemental references

[1] Winston F, Dollard C, Ricupero-Hovasse SL. Construction of a set of convenient *Saccharomyces cerevisiae* strains that are isogenic to S288C. Yeast. 1995;11:53-5.

[2] Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin M, Lynch-Day MA, et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci U S A. 2012;109:11206-10.

[3] Gerhardt B, Kordas TJ, Thompson CM, Patel P, Vida T. The vesicle transport protein Vps33p is an ATP-binding protein that localizes to the cytosol in an energy-dependent manner. J Biol Chem. 1998;273:15818-29.

[4] Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell. 2009;20:4730-8.

[5] Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy. 2015;11:2288-99.

Name	Sequence	Use
		ATG1 mRNA level
ATG1_F	ATCTAAGATGGCCGCACATATG	check
		ATG1 mRNA level
ATG1_R	AGGGTAGTCACCATAGGCATTC	check
		ATG5 mRNA level
ATG5_F	TCGGTCAACGAAGCTCGAAA	check
		ATG5 mRNA level
ATG5_R	GATGAGCGGTATATGTCGCG	check
		ATG7 mRNA level
ATG7_F	ATGAGCATTGTCCAGCATGTAG	check
		ATG7 mRNA level
ATG7_R	GACCTCCTGCTTTATGACTGAC	check
		ATG8 mRNA level
ATG8_F	GAAGGCCATCTTCATTTTTGTC	check
		ATG8 mRNA level
ATG8_R	TTCTCCTGAGTAAGTGACATAC	check
		ATG9 mRNA level
ATG9_F	CGTACTAACAGAGTCTTTCCTTG	check
		ATG9 mRNA level
ATG9_R	CTAAGACACCACCCTTATTGAG	check
		ATG20 mRNA level
ATG20_F	CAGGTAGCGGTGGGAAATCA	check
		ATG20 mRNA level
ATG20_R	TGCGGTATGCGGATCTGTTT	check
		ATG41 mRNA level
		check
ATG41_F	CGAGTACTGAAGACGATTGCAT	ATG41 ChIP-qPCR
		check
		ATG41 mRNA level
		check
ATG41_R	TGCGACATTGGCAAAGGCAT	ATG41 ChIP-qPCR
		check
XATT1 D		YATT mRNA level
YAII_F		check
XATTI D		YATT mRNA level
YAII_K		Check
ALG9_F		KT-qPCK check
ALG9_K		KI-qPCK check
IFCI_F	GUIGGUAUICATATUTTATUGTTTUACAATGG	ChIP-qPCR check
TFCI_R	GAACCTGCTGTCAATACCGCCTGGAG	ChIP-qPCR check
		ATGI ChIP-qPCR
ATG1-500_F	TCCTTGTTCGTTTCGTGTATCTG	check

Table S2. Oligonucleotide primers used in this study.

		ATG1 ChIP-qPCR
ATG1-500_R	GGTTTAAGAAATCAGAGCCGAGC	check
		ATG1 ChIP-qPCR
ATG1+80_F	TAAAGATCACAAACCTCTGTGAACC	check
		ATG1 ChIP-qPCR
ATG1+80_R	GATACTTCCTTTATGGCTACATGCTG	check
		ATG1 ChIP-qPCR
ATG1+330_R	ATTGACTGTGAACGAACATCAACAG	check
		ATG1 ChIP-qPCR
ATG1+330_F	GGTTCTCACTCGGTGGAGGGTATTT	check
		ATG41 ChIP-qPCR
ATG41-100_F	GCGGCTCTGCGTAAAAGGT	check
		ATG41 ChIP-qPCR
ATG41-100_R	TTGGTTGGTTTGGTGTAGCC	check
		ATG41 ChIP-qPCR
ATG41+20_F	GGCTACACCAAACCAACCAA	check
		ATG41 ChIP-qPCR
ATG41+20_R	GGCTCGAAAGCAACGTTTGA	check
		ATG41 ChIP-qPCR
ATG41+110_F	TCAAACGTTGCTTTCGAGCC	check
		ATG41 ChIP-qPCR
ATG41+110_R	GTGCATTCTGACTCATCGAC	check
		ATG41 ChIP-qPCR
ATG41+200_F	TTTTCCGCTATCGTACCCGA	check
		ATG41 ChIP-qPCR
ATG41+200_R	TCCTTACTAGCAGCAGCAAC	check
		ATG8 ChIP-qPCR
ATG8-20_F	GGGAACCATTAAAGGTTGAGGAG	check
		ATG8 ChIP-qPCR
ATG8-20_R	AATCCTCTCCGACTCCGCCTTC	check
		ATG8 ChIP-qPCR
AIG8+50_F	ACIAGAGACAIGAAGICIACAIIIAAGICI	check
ATCOLOOD		AIGO CNIP-qPCK
AIG8+30_K		CNECK
ATC9 150 F		AIGO CHIP-QPCK
AIG8+130_F	UUAUAUUATIUUTUAUAUUTIUAAU	ATC9 ChID -DCD
ATC0 150 D		AIGS ChiP-qPCK
AIG8+150_R	AAATGAAGATGGCCTTCTCAGGGGG	спеск

Figure S1. Spt4 protein level does not change after starvation, and protein levels of Atg5, Atg20 and Atg1 remain similar in *spt4* Δ cells. (**A**) Samples were collected from a strain expressing PA-tagged Spt4 (WXY106) under both growing and starvation conditions, and protein extracts were analyzed by western blot using antibodies to PA; Pgk1 was used as the loading control. (**B-C**) The anti-PA antibody was used to detect Atg5 (as the Atg12–Atg5 conjugate) and Atg20 protein levels, by probing for the PA tag in wild-type (WXY108, WXY110) and *spt4* Δ (WXY109, WXY111) cells in growing (YPD) and starvation (SD-N, t=2 h) conditions. Pgk1 was used as a loading control. (D) Samples from the wild-type (WLY176) and *spt4* Δ (WXY105) strains were collected in growing (YPD) and starvation (SD-N, t=2 h) conditions. The samples were analyzed by western blot with anti-Atg1 antibodies; Pgk1 was used as a loading control.

Figure S2. Autophagy activity and ATG41/Atg41 expression are upregulated in cells expressing phosphomimetic Spt5[S7E]. (A) The RT-qPCR analysis of the ATG8 mRNA level in WT (DGY047) and Spt5[S7A] (DGY048) cells in growing and starvation conditions. Error bars represent the SEM of at least 3 independent experiments, and WT was set as 1 in both conditions; other values were normalized. N.S., not significant. (B) Autophagy was measured with the quantitative Pho8\Delta60 assay in WT (DGY047), Spt5[S7A] (DGY048) and Spt5[S7E] (DGY049) cells under growing conditions (+N) and after 4 h of nitrogen starvation (-N). Error bars represent the SEM of at least 3 independent experiments. *, p<0.05; **, p<0.01. (C-D) Autophagy activity was measured with the GFP-Atg8 processing assay in WT (DGY050) and Spt5[S7E] (DGY052) cells. Proteins were analyzed by western blot with anti-YFP antibody and anti-Pgk1 (loading control) antiserum. The quantitative analysis of processed GFP after starvation is shown in (D), and the error bar represents the SEM of 3 independent experiments. The processed GFP ratio after starvation has been set as 1, and other values were normalized. ***, p<0.005. (E) The mRNA level of ATG41 was measured by RT-qPCR in WT (DGY047) and Spt5[S7E] (DGY049) cells in growing conditions. Error bars represent the SEM of at least 3 independent experiments, and WT was set as 1; other values were normalized. *, p<0.05. (F) The Atg41-PA protein level was tested by western blot and analyzed using anti-PA antibody in WT (WXY127) and Spt5[S7E] (WXY132) cells.

Figure S3. The temporal depletion of Spt5 using an Spt5-inducible degradation strain leads to decreased autophagy activity. (A) Spt5 levels were measured by western blot in an Spt5 auxininducible degron (AID) strain (WXY125) in both nutrient-rich and starvation conditions in the presence of DMSO (vehicle) or 300 µM auxin; the loss of Spt5-AID-MYC was detected with anti-MYC antibody after auxin treatment. (B-C) Autophagy activity was measured by the GFP-Atg8 processing assay. The Spt5-AID-MYC strain (WXY133) was incubated with DMSO or auxin in both growing (YPD, mid-log phase) and starvation (SD-N, t=2 h) conditions. Anti-YFP antibody and anti-Pgk1 (loading control) antiserum were used to detect the corresponding proteins. The quantitative analysis of processed GFP is shown in (C), and the error bar represents the SEM of 3 independent experiments. The processed GFP after 2 h of starvation was set as 1, and other values were normalized. (**D**) The mRNA level of ATG41 was quantified by RT-qPCR in both growing (+N) and starvation (-N) conditions. The value of the strain treated with DMSO in -N was set as 1, and other values were normalized. The error bars indicate the SEM of at least 3 independent experiments. ***, p<0.005. (E) Anti-PA antibody was used to detect the protein level of Atg41-PA in the Spt5-AID-MYC strain (WXY134) when the strain was incubated with DMSO or auxin in either growing (SD-N, t=0 h) or starvation (SD-N, t=2 h) conditions.

Figure S4. The nonphosphorylable mutant of Spt5 in the Spt5-inducible degradation strain displays a decreased ATG41 mRNA level. (A) The centromeric HIS3-marked Spt5 WT (WT) and Spt5[S15A] (MUT) plasmids were transformed into the Spt5-inducible degradation strain (WXY125). The anti-p-Spt5 antibody was used to detect Spt5 phosphorylation after starvation. (B) The mRNA level of ATG41 and ATG8 were quantified by RT-qPCR in Spt5-AID-MYC strains with WT and MUT plasmids incubated with DMSO and auxin in the nutrient-depleted condition. The value of WT with auxin was set as 1, and other values were normalized. The error bars indicate the SEM of at least 3 independent experiments. N.S., not significant; ***, p<0.005.

Figure S5. The deletion of *ATG1* results in a partial block of Spt5 phosphorylation but has no effect on *ATG41*. (A) The phosphorylation of Spt5 was detected with anti-p-Spt5 antibody in western blot samples of WT (SEY6210) and *atg1* Δ (WXY126) cells collected from growing and starvation (SD-N=2 h) conditions. (B) The RT-qPCR analysis of *ATG41* mRNA level in WT and *atg1* Δ cells after starvation. Error bars represent the SEM of at least 3 independent experiments, and WT was set as 1; the other value was normalized. N.S, not significant.

Figure S6. ChIP analysis shows that Spt5 and Spt4 may not bind to *ATG1* DNA. (**A-B**) ChIP analysis was conducted using the protein A-tagged (**A**) Spt5 (WXY102) and (**B**) Spt4 (WXY106) strains on 3 regions of DNA at the *ATG1* locus: -500 base pairs (bps), +80 bps, and +330 bps. The ChIP results were normalized to the input DNA, and *TFC1* was used as a negative control for both strains. N.S., not significant.

Figure S7. The transcription factors Ume6 and Gcn4 are not involved in Spt4-Spt5 complex regulation on autophagy. (A) The Atg41-PA protein level was detected with anti-PA antibody in WT (ZYY108) and *ume6* Δ (WXY129) cells in growing (SD-N, t=0 h) and starvation (SD-N, t=2 h) conditions. Anti-Pgk1 antiserum was used to detect the loading control. (B) The Gcn4-PA protein level was analyzed by western blot with the anti-PA antibody in WT (ZYY124) and *spt4* Δ (WXY130) strains.

Figure S8. The direct binding of the Spt4-Spt5 complex with *ATG8* and the effect of the Sgv1/Bur1-Bur2 complex on *ATG8*/Atg8. (**A-B**) Spt5- and Spt4-dependent ChIP analysis (WXY102, WXY106) on different regions (-20, +50, +150) of *ATG8*. Results were normalized to the input DNA, and *TFC1* was used as a negative control for both strains. The error bars show the SEM of at least 3 independent experiments: *, p<0.05; N.S., not significant. (**C**) The Atg8 protein level was detected by western blot with anti-Atg8 antiserum in wild-type (TVY1) and *bur2*\Delta

(WXY101) samples collected from both growing (YPD) and starvation (SD-N, 1 h) conditions. (**D**) The wild-type (WLY176) and *bur2* Δ (WXY115) cells were cultured until mid-log phase in growing conditions (YPD) and then shifted to starvation (SD-N) for 1 h. The mRNA level of *ATG8* was measured by RT-qPCR. The error bar represents the SEM of 3 independent experiments, and p values are reported for the comparison between the wild-type and *bur2* Δ strains during starvation. ***, p<0.005. (**E**) The *ATG8* mRNA level was measured by RT-qPCR in both WT and *ume6* Δ (JMY97) cells in growing conditions (YPD). Error bars represent the SEM of at least 3 independent experiments, and WT was set as 1. **, p<0.01.