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1 Benchmark methods

Table [A] summarizes the key information of six benchmark methods in breast
cancer prognosis. PAM50 starts with an extended intrinsic gene set from
previous studies, then selects genes based on their contributions in terms of
distinguishing the five intrinsic breast cancer subtypes [I]. Mamma infers
the differentially expressed genes and ranks them based on the correlation
between gene expression profiles and survival outcomes [2]. RS selects 16
gene signatures which are associated with the distant recurrence of patients
from 250 published candidate genes [3]. GGI97 ranks genes according to their
differentially expressed between histologic grade 1 and 3 tumors [4]. Endo
conducts uni-variable Cox regression and finally chooses 8 genes of interest [5].
LM analyzes transcriptomics in the parental MDA-MB-231 and the LM2 cell
lines and identifies 54 unique genes associated with lung metastagenicity and
virulence [6].



Table A: The description of benchmark methods.

Method Platform #transcript  #gene  Function enrichment of signatures

PAM50 [1] Agilent array 50 50 cell cycle regulation, nuclear division
and proliferation

Mamma [2]  Agilent array 70 66 cell cycle regulation, proliferation and
spindle localization

RS [3] RT-PCR 16 16 proliferation, invasion, ER and HER2

GGI97 4] Affymetrix array 128 97 cell cycle regulation and proliferation

Endo [5] gqRT-PCR  and 8 8 proliferation, apoptosis, cell adhesion,

Affymetrix array and cell signaling
LM [6] Affymetrix array 54 54 EREG, chemokine, the matrix metal-

loproteinases, cell adhesion and recep-
tor

This table shows the platform, number of signatures (transcripts, and the mapping genes) and
the functional enrichment of signatures in each method. The number of genes within a method
is less than the number of transcripts because some genes are duplicated with different probe

names.

2 Experiment details

In the pre-processing step, we use the magic() function in the RMAGIC pack-
age to denoise and impute the value for all genes. The function requires three
input parameters: the number of PCA components npca, the number of near-
est neighbors in the adaptive Gaussian kernel ka, the number of times for the
exponentiation of Markov affinity matrix ¢. In this study, we use the default
parameters suggested in the paper [7]. Then, we extract the fully smoothed
data matrix and filter out low expression genes and genes expressed in less than
20% cells. After pre-processing, the scRNA-seq data after filtering consists of
78 EMT markers and 3443 other genes.

In step 2 of scPrognosis, we need to infer a linear trajectory as EMT
pseudotime. Similar to the paper [7], we can simply use the expression profile
of VIM as the proxy for EMT pseudotime, which is named VIM-time to
distinguish from the pseudotime inferred by a trajectory algorithm. We use the
method Wanderlust [8] to identify EMT pseudotime (named W-time) based
on pre-defined EMT markers from 315 general EMT markers in cancers [9].
Dropout events may lead to a lack of detection of expressed EMT markers,
which obscures the relationship between EMT markers and dynamic EMT
trajectory. Thus we estimate W-time by running Wanderlust on a set of EMT
markers with the hyper-variance(10 genes for epithelial markers and 10 genes
for mesenchymal markers). There are four key parameters in Wanderlust:
the number of nearest neighbors k, the start point, the number of neighbors
selected for each node in a k-nearest neighbors graph [ and the number of
l-out-of-k-nearest neighbors graphs ng. In this study, the start point is set to
a set of cells with high expression of epithelial markers and low mesenchymal
markers. The parameters k, [ and ng are set to 60, 12 and 5, respectively.

Based on the obtained EMT pseudotime, we can construct a dynamic
gene co-expression network from scRNA-seq data. Each node of the network
represents a gene. we use the MAC_perm() function in LEAP [I0] package to
determine the cutoff # which is used to identify if there is an edge between
two nodes. MAC_perm() estimates the false discovery rate (FDR) by the ratio



of the average number observed in the permuted datasets to the number of
observed correlations at a cutoff. We can get the § when the FDR is less than
0.05.

3 Integrative method is better than individual
methods

In this section, we investigate the performance of cancer prognosis using our
integrative method (scP.V and scP.W) and three individual methods (MAD,
SDE, and NET). SDE and NET rely on the pseudotime, so we use prefix
notations of these methods to indicate the utilized pseudotime in the experi-
ment. scP.V and scP.W are two versions of the proposed integrative method
that uses different pseudotimes, VIM-time and W-time, respectively. For each
method, we extract its top 50 ranked genes for validation. Table [B| summa-
rizes the mean C-index produced by 100 runs of 10-fold cross-validation on
each dataset. From the results, we observe that most of the C-indices reported
here are bigger than 0.5, which means scRNA-seq based methods effectively
predict the risk scores of patients in most cases. According to the mean
ranks, the order of methods is scP.W > scP.V - W.SDE = VIM.SDFE »
VIM.NET - W.NET = MAD. That means the integrative method outper-
forms individual methods.

Table B: Performance comparison of cancer prognosis using integrative
method and individual methods based on scRNA-seq data.

MAD VIM.SDE VIM.NET W.SDE W.NET scP.V = scP.W

TCGA(OS) 0.53 0.52 0.56 0.59 0.59 0.62 0.60
TCGA(RF) 0.48 0.53 0.54 0.65 0.53 0.56 0.66
METABRIC(OS) 0.58 0.57 0.58 0.56 0.57 0.59 0.59
METABRIC(RF) 0.58 0.61 0.60 0.61 0.60 0.63 0.62
GEO 0.51 0.51 0.49 0.51 0.49 0.53 0.54
UK 0.55 0.58 0.55 0.60 0.55 0.62 0.64
Mean rank 2.42 3.08 2.92 4.17 2.58 6.25 6.58

The top-performing methods are highlighted for each dataset. The reported C-index is the
average C-index of 100 runs of 10-fold cross-validation on each dataset. VIM.SDE and
W.SDE are two versions of the SDE method using VIM-time and W-time, respectively.
VIM.NET and W.NET are two versions of the NET method using VIM-time and W-time,
respectively. OS is overall survival time and RF is relapse-free survival time.

4 Performance for cancer signatures on the val-
idation datasets

We train our model on one dataset and test on the other three indepen-
dent datasets. We validate whether our signatures are comparable to those
signatures in benchmark methods. Considering the sample size and the het-
erogeneity of datasets, we choose two big and homogeneous datasets TCGA
and METABRIC to train. Compared to training on the TCGA dataset, we
obtain better results when training on the METABRIC dataset because it has



more training samples than the TCGA dataset. We show the results based on
the METABRIC dataset in the main manuscript of this work. We report the
results based on the TCGA dataset here because the TCGA dataset is com-
monly used in breast cancer research. When training on the TCGA dataset,
we only use one gene ASPM to achieve better results than the current 6 bench-
mark methods (Table . Additionally, ASPM expression levels have greater
prognostic significance than those of AURKA, ESR1, and ERBB2 which are
used to be independent predictors in breast cancer [I1].

Table C: Performance for cancer signatures on the three validation sets
(METABRIC, GEO, and UK).

PAM50 Mamma RS GGI97 Endo LM scPW AURKA ESR1 ERBB2
METABRIC(OS) 0.47 0.54 0.56 0.48 0.56  0.52 0.57 0.57 0.52 0.47
METABRIC(RF) 0.46 0.56 0.59 0.48 0.58  0.55 0.62 0.64 0.58 0.49
GEO 0.50 0.52 0.58 0.53 0.55  0.53 0.57 0.56 0.57 0.51
UK 0.50 0.59 0.52 0.57 0.63  0.52 0.63 0.50 0.58 0.51
Mean rank 1.25 5.50 7.50 3.88 7.38  4.38 9.12 7.00 6.62 2.38

The top-performing result is highlighted for each dataset. The reported C-index is the average C-index of
100 runs of 10-fold cross-validation on each dataset. OS is overall survival time and RF is relapse-free
survival time.

Table D: Performance for cancer signatures on the three validation
datasets (TCGA, GEO, and UK).
PAM50 Mamma RS GGI97 Endo LM  scP.W

TCGA(RF) 0.51 0.38 0.75 0.61 0.74 0.55 0.79
TCGA(OS) 0.50 0.48 0.65 0.50 0.65 0.58 0.65
GEO 0.52 0.50 0.60 0.52 0.56 0.52 0.55
UK 0.66 0.70 0.68 0.68 0.66 0.55 0.62
Mean rank 2.75 2.50 6.12 3.75 5.12 2.75 5.00

The top-performing results are highlighted for each dataset. The reported C-index is the
average C-index of 100 runs of 10-fold cross-validation on each dataset. OS is overall
survival time and RF is relapse-free survival time.

scP.W has the best results of prediction overall survival and relapse-free
time on the TCGA dataset. From Table[D] we can see that our signatures still
have favorable performance compared to the signatures from the benchmark
methods.

The KM curve and the Log-rank test of risk group prediction using scP.W
have shown that scP.W successfully stratifies patients in TCGA into two risk
groups of relapse and overall survival. Fig[A]shows the KM curve and the Log-
rank test of risk group prediction using other benchmark methods. Regarding
relapse risk prediction, RS, Endo, and GGI97 can group patients according
to survival difference while PAM50, Mamma, and LM cannot. For overall
survival prediction, only RS, Mamma, and Endo result in two risk groups
that have significant differences in survival. However, Mamma predicts that
the high-risk group patients have high survival probability than low-risk group
patients, which is opposite to clinical information.
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Figure A: (1)The KM curve and Log-rank test of risk group prediction using
benchmark methods on TCGA(RF); (2)The KM curve and Log-rank test of
risk group prediction using benchmark methods on TCGA(OS).

5 Optimization of parameters for scPrognosis

scPrognosis has four parameters that require tuning: N, the number of se-
lected genes (signatures) used in the Cox PH model, «, 8, and v, the weights



for MAD, SDE, and NET respectively (see Materials and Methods section for
a full description of the parameters). Based on the constraint ao + 8 + v = 1,
the value of v depends on the values of a and 8. To obtain the breast can-
cer signatures, we train scPrognosis on the METABRIC dataset and perform
the grid search method to select the optimized parameters. The optimized
parameters are determined by the best average C-index of 100 runs of 10-fold
cross-validation. For the i*" run of 10-fold cross-validation (i = 1,..., 100), we
randomly partition the dataset into ten-equal sized sub-datasets. Of the ten
sub-datasets, one sub-dataset is retained as the testing data, and the remain-
ing nine sub-datasets are used as training data. Each of the ten sub-datasets
takes a turn to be testing data. At the end of the run, ten C-indices are pro-
duced, which are averaged to obtain the average C-index for this run of 10-fold
cross-validation, denoted as C-index;. We repeat this procedure 100 times and
finally we use the average C-index over the 100 runs of 10-fold cross-validation
as metric for tuning the parameters of scPrognosis.

Specifically, we conduct a grid search by setting the number of selected
genes i.e. N from 1 to 60, and the weights «, 8, and v from 0 to 1 with a
step of 0.1 and the constraint a + 5 + v = 1. We aim to obtain the best
C-index metric as described above with the lest signatures. Fig [B| shows the
performance of different combinations of parameters. From Fig [B]l, we can
observe that scPrognosis has the best C-index when oo = 0.4, 5 = 0.2 (y = 0.4)
and when choosing the top 10 gene as breast cancer signatures (Fig ) The
full results of the performed grid search for the optimal parameters can be
found online at https://github.com/XiaomeilLil/scPrognosis|

1.0 0.64
|
0.8 . I
C-index J
. . 0.63
.0.64 1
08 e 0o 0o . |
8 S
k] e 6 06 0 O c 1
Q '6052'
041 e 6 06 06 0 O |
e o000 0 0 [ ] |
0.50 |
02 ® 6 06 06 06 0 0 O 061
|
@ 6 06 06 06 06 0 0 o |
0w]® ®© © © ®© ¢ ®© 6 o o ©o 1
0.0 02 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60
alpha N

(1 @

Figure B: The performance of different combinations of parameters
on METABRIC.(1)The performance of the grid-search for «, and 8 when
N = 10. The X-axis is «, and the Y-axis is 3. The color of a point depends on
the value of C-index on its coordinate. (2)The performance of the grid-search
for N when a@ = 0.4, and § = 0.2. The X-axis is IV, and the Y-axis is C-index.
The red vertical dash line is N = 10 where obtains the best C-index.


https://github.com/XiaomeiLi1/scPrognosis

6 The significant switch-like differential expres-
sion of genes along pseudotime

We plot the expression and the maximum likelihood sigmoid fit of two EMT
markers and ten cancer signatures to visualize the switch-like behavior of genes
during the pseudotime. From the Fig[C| we can see that FXYD3, KRT15, and
KRT6B switch off at M stage, and VIM switch on at M stage. Interestingly,
the remain genes are off both the E and M stages but switch on in the hybrid
E/M stage, which may give us clues about the link between the hybrid E/M
stage and the clinical outcomes of breast cancer.
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Figure C: EMT markers and breast cancer signatures expression
across the EMT pseudotime. The X-axis is the EMT pseudotime, and
the Y-axis is the gene expression level. A grey point indicates a cell. The
red lines are the maximum likelihood sigmoid fit of gene tendencies along the
EMT pseudotime.



7 The significant biological process of the in-

ferred signatures

The 10 signatures are significantly enriched in several biological functions.
The top 10 functions are known to be critical for cell processes. In addi-
tion, ubiquitin-protein ligase activity might be a mechanism to trigger cancer

initialize and progress.

Table E: Gene Ontology mapped biological process for the 10 breast

cancer signatures.

Index Term P-value
1 regulation of ubiquitin protein ligase activity (GO:1904666) 6.93E-07
2 positive regulation of ubiquitin protein ligase activity (GO:1904668) 8.10E-06
3 positive regulation of protein ubiquitination involved in ubiquitin-dependent  9.66E-06
protein catabolic process (GO:2000060)

4 DNA topological change (GO:0006265) 8.08E-06

5 anaphase-promoting complex-dependent catabolic process (GO:0031145) 7.25E-06

6 negative regulation of ubiquitin protein ligase activity (GO:1904667) 6.71E-06

7 positive regulation of ubiquitin-protein ligase activity involved in regulation  6.46E-06
of mitotic cell cycle transition (G0O:0051437)

8 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 5.50E-06
(G0:0051439)

9 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell ~ 5.27E-06
cycle (GO:0051436)

10 DNA ligation (GO:0006266) 3.43E-05

The biological process are highly relevant to the cell cycle and ubiquitin protein ligase activity.
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