Rph1 coordinates transcription of ribosomal protein gene and ribosomal

RNA to control cell growth under nutrient stress conditions

Wen-Jie Shu¹, Runfa Chen¹, Zhao-Hong Yin¹, Feng Li¹, Heng Zhang², and Hai-Ning Du^{1,*}

Yeast strains	Genotype	Source
BY4741	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	Open Biosystems
W303	MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15	Open Biosystems
R1158	MATa URA3::CMV-tTA his3-1 leu2-0 met15-0 ura3-1	GE Healthcare
BY4741 <i>rph1∆</i>	rph1∆::KanMX	Open Biosystems
BY4741 <i>set2∆</i>	set2∆::KanMX	Open Biosystems
HNDY001	RPH1::RPH1-3xFlag-KanMX6	(1)
HNDY044	as BY4741 with pRS415 [empty vector]	(1)
HNDY122	BY4741 rph1Δ::KanMX, pRS415 [empty vector]	This study
HNDY123	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [endo-GFP-Rph1]	This study
HNDY124	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [endo-GFP-Rph1 H235A]	This study
HNDY125	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [endo-GFP-Rph1 JmjNΔ]	This study
HNDY126	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [endo-GFP-Rph1 ZFΔ]	This study
BY4741 <i>tor1∆</i>	tor1Δ::KanMX	Open Biosystems
HNDY127	BY4741 tor1Δ::KanMX, rph1Δ::HygB	This study
HNDY128	R1158 rph1Δ::HygB	This study
R1158 Tet-tor2	pTOR2::kanR-tet07-TATA	GE Healthcare
HNDY129	R1158 pTOR2::kanR-tet07-TATA, rph1∆::HygB	This study
BY4741 r <i>im15</i> ∆	rim15Δ::KanMX	Open Biosystems
HNDY130	BY4741 rph1Δ::KanMX, rim15Δ::HygB	This study
HNDY131	W303 rph1Δ::KanMX	This study
HNDY050	BY4741 with pRS415 [pMET17-GFP-Rph1]	(1)
HNDY051	BY4741 with pRS415 [<i>pMET17</i> -GFP-Rph1 H235A]	(1)
HNDY052	BY4741 with pRS415 [<i>pMET17</i> -GFP-Rph1 JmjNΔ]	(1)
HNDY053	BY4741 with pRS415 [<i>pMET17</i> -GFP-Rph1 ZFΔ]	(1)
HNDY054	BY4741 with pRS415 [pMET17-GFP-Gis1]	(1)
HNDY132	BY4741 with pRS415 [endo-GFP-Rph1]	This study
HNDY133	BY4741 pRS415 [endo-GFP-Rph1 S7A]	This study
HNDY134	BY4741 pRS415 [endo-GFP-Rph1 S7D]	This study
HNDY135	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -GFP-Rph1 S412A]	This study
HNDY136	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -GFP-Rph1	This study
	S425/S426A]	
HNDY137	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -GFP-Rph1	This study
	S429/430A]	
HNDY138	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -GFP-Rph1 S434A]	This study

Supplmentary Table S1. Yeast strains

HNDY139	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S557A]	This study
HNDY140	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S561A]	This study
HNDY141	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S575A]	This study
HNDY142	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S412D]	This study
HNDY143	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1	This study
	S425/S426D]	
HNDY144	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1	This study
	S429/430D]	
HNDY145	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S434D]	This study
HNDY146	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S557D]	This study
HNDY147	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S561D]	This study
HNDY148	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S575D]	This study
HNDY149	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S7A]	This study
HNDY150	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo-</i> GFP-Rph1 S7D]	This study
HNDY151	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -Rph1-3xFLAG]	This study
HNDY152	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -Rph1-3xFLAG S7A]	This study
HNDY153	BY4741 <i>rph1Δ::KanMX</i> , pRS415 [<i>endo</i> -Rph1-3xFLAG S7D]	This study
HNDY154	BY4741 RRN3::RRN3-3xFlag-HygB	This study
HNDY155	BY4741 rph1Δ::KanMX, RRN3-3xFlag-HygB	This study

Supplementary Table S2. Primer sequences

Primer	Sequence	Purpose	Reference
			/Source
ATG7-pro-5'	CGCAAGATTTTTAAACTTCCGCT	ChIP-qPCR	This study
ATG7-pro-3'	AGCATCGTAAAATAATGAGTTCCCT	ChIP-qPCR	This study
Chr V-5'	GGCTGTCAGAATATGGGGCCGTAGTA	ChIP-qPCR	(2)
Chr V-3'	CACCCCGAAGCTTTCACAATAC	ChIP-qPCR	(2)
rDNA A-5'	CAACCGAAACCAAAACCAAC	ChIP-qPCR	(3)
rDNA A-3'	TGGCATGGATTTCCCTTTAG	ChIP-qPCR	(3)
rDNA B-5'	TTTCTCGTAAGGTGCCGAGT	ChIP-qPCR	(3)
rDNA B-3'	GGGGATCGAAGATGATCAGA	ChIP-qPCR	(3)
rDNA C-5'	TACGAGCCTCCACCAGAGTT	ChIP-qPCR	(3)
rDNA C-3'	AATCGACCGATCCTGATGTC	ChIP-qPCR	(3)
rDNA D-5'	CAATCCAACGCTTACCGAAT	ChIP-qPCR	(3)
rDNA D-3'	CGATGTCGGCTCTTCCTATC	ChIP-qPCR	(3)
rDNA E-5'	TCCCTCCATTTCCCTCTCTT	ChIP-qPCR	(3)
rDNA E-3'	GGAAAGCGGGAAGGAATAAG	ChIP-qPCR	(3)
5S rDNA-5	GTTGCGGCCATATCTACCAG	ChIP-qPCR	This study
5S rDNA-3	GATTGCAGCACCTGAGTTTC	ChIP-qPCR	This study
NOP1-C ter-5'	CTACTGTAGACGCGGAAACC	ChIP-qPCR	This study
NOP1-C ter-3'	CCGCTTCTCATGTATCTACC	ChIP-qPCR	This study
NOP1-pro-5'	GTGTCCCTTAACCCTTTAGAGC	ChIP-qPCR	This study

NOP1-pro-3'	CGTGAATTTTACAGAACGGAGG	ChIP-qPCR	This study
NSR1-C ter-5'	AGACCATCTGGTTCTGGTGC	ChIP-qPCR	This study
NSR1-C ter-3'	AACCAGCGAAAGAAGCGGTA	ChIP-qPCR	This study
NSR1-pro-5'	AAATTTGCAAGGGCAGCTCA	ChIP-qPCR	This study
NSR1-pro-3'	TGCAGACAGCAACAGCTACA	ChIP-qPCR	This study
PHR1-pro-5'	TCACAGAACAGACAACCAGCA	ChIP-qPCR	This study
PHR1-pro-3'	TGATTTGCGCCTGTCCTAGT	ChIP-qPCR	This study
RPL10-C ter-5'	AACCAAGGACAGCAACAAGGA	ChIP-qPCR	This study
RPL10-C ter-3'	ACCGTCGTCCTTGACTTCAC	ChIP-qPCR	This study
RPL10-pro-5'	CCCTCCGAAACTAGTTAGCACA	ChIP-qPCR	This study
RPL10-pro-3'	AGCACTTGCGGAAAGGATGT	ChIP-qPCR	This study
RPL3-C ter-5'	TGGTTTCGTCCACTACGGTG	ChIP-qPCR	This study
RPL3-C ter-3'	TCAGCTGGGGTTTGGAATCT	ChIP-qPCR	This study
RPL3-pro-5'	CGCACACTGGAATGAATGGC	ChIP-qPCR	This study
RPL3-pro-3'	AAACAGTTGTGCGTCGCTTC	ChIP-qPCR	This study
RPS12-C ter-5'	AGGTGAATGGGCTGGTTTGG	ChIP-qPCR	This study
RPS12-C ter-3'	TCAGTTTCAGCACCCCAGTT	ChIP-qPCR	This study
RPS12-pro-5'	ACCTTACCCGCAAGCAAACT	ChIP-qPCR	This study
RPS12-pro-3'	ACTGCTCCGTGAAGAGTTTTGA	ChIP-qPCR	This study
ACT1-5'	GAAATGCAAACCGCTGCTCA	RT-qPCR	This study
ACT1-3'	TACCGGCAGATTCCAAACCC	RT-qPCR	This study
ATG7-5'	ATGAGCATTGTCCAGCATGTAG	RT-qPCR	This study
ATG7-3'	GACCTCCTGCTTTATGACTGAC	RT-qPCR	This study
ETS1-5'	TGGGTTGATGCGTATTGAGA	RT-qPCR	(4)
ETS1-3'	TCGCTGATTTGAGAGGAGGT	RT-qPCR	(4)
ITS1-5'	TGTTTTGGCAAGAGCATGAG	RT-qPCR	(4)
ITS1-3'	TCGAATGCCCAAAGAAAAAG	RT-qPCR	(4)
NOP1-5'	GATCTAAGTTGGCTGCCGGT	RT-qPCR	This study
NOP1-3'	CGGCGTAGACAACACCTTCT	RT-qPCR	This study
NSR1-5'	TTCCGTCCGTATCCCAACAC	RT-qPCR	This study
NSR1-3'	CTTCTTGGCGTCCTCCATGT	RT-qPCR	This study
RPS31-5'	ACAAGGTCGATGCTGAAGGT	RT-qPCR	This study
RPS31-3'	AGCCAAGAAAACACCAGCAC	RT-qPCR	This study
RPL5-5'	CTTAGCTGCTGCCTACTCCC	RT-qPCR	This study
RPL5-3'	TGCAAGGTTCTTCTGGCGAT	RT-qPCR	This study
RPL30-5'	TTGCCGCTAACACTCCAGTT	RT-qPCR	This study
RPL30-3'	CTTACCGACAGCAGTACCCA	RT-qPCR	This study
RPL3-5'	TGGTTTCGTCCACTACGGTG	RT-qPCR	This study
RPL3-3'	TCAGCTGGGGTTTGGAATCT	RT-qPCR	This study
RPS12-5'	AGGTGAATGGGCTGGTTTGG	RT-qPCR	This study
RPS12-3'	TCAGTTTCAGCACCCCAGTT	RT-qPCR	This study
RPH1-5	AACTCTAAGTTTGCGCCCGA	RT-qPCR	This study
RPH1-3	TCTCACCAGAGTGGACGGAT	RT-qPCR	This study

18S rDNA-5'	GCTTGCGTTGATTACGTCCC	RT-qPCR	(4)
18S rDNA-3'	CACTAAGCCATTCAATCGGT	RT-qPCR	(4)
25S rDNA-5	CGTTCATAGCGACATTGCTT	RT-qPCR	(4)
25S rDNA-3	GGGTGAACAATCCAACGCTT	RT-qPCR	(4)

Supplementary Figure legends

Figure S1. Protein levels of Rph1 is critical for controlling cell growth under nutrient stress conditions. The indicated strains were spotted on YPD plates with or without rapamycin (A-C). (A) *RPH1*-deficient cells in W303 strain were resistant to different doses of rapamycin.
(B) Cells lack of *RPH1* in BY4741 strain was also resistant to high concentration of rapamycin.
(C) Cells with overexpression of the indicated GFP-Rph1 constructs lead to distinct response to rapamycin (left panel). The expression levels of the indicated cells were examined by immunoblotting with various antibodies (right panel).

Figure S2. Transcriptional regulation by Rph1 under nutrient-rich medium. (**A**) Volcano plots indicating the differentially expressed genes (DEGs) from overlapped two biological repeats in *rph1* Δ cells relative to WT. The vertical dashed gray lines in the plot represent log2 normalized fold changes of ±0.5. The horizontal dashed gray line represents an adjusted *P* value of 0.05. (log₂(FC) > 0.5, *P* < 0.05). (**B**) GO analysis show the top 5 enriched upregulated gene clusters based on DEGs in A and C, respectively, by different pathways. BP: biological processes; CC: cellular components. (**C**) Boxplot showed genome-wide RPGs transcription in WT and *rph1* Δ cells. *P*-value denotes the result from two–tailed Student's *t*-test. (**D**) Expression of representative RPGs and Ribi genes was validated by RT-qPCR. Data are represented as mean ± SD from three biological replicates. *t*-test, **P* < 0.05; ***P* < 0.01; *** *P* < 0.001, n.s, "not significant".

Figure S3. Overexpression of Rph1 decreased RP gene expression. (**A**) Expression levels of Rph1 from cells expressing different *RPH1* constructs driven by the indicated promoters were examined by immunoblotting with an α -Rph1 antibody. (**B**) The indicated strains were spotted onto plates with or without rapamycin. (**C-D**) Comparison of expression levels of RP gene (C)

or rRNA (D) in different Rph1-overexpressing cells by RT-qPCR. Data are represented as mean \pm SD from three biological replicates. *t*-test, ***P* < 0.01; ****P* < 0.001.

Figure S4. Genomic-wide enrichment of Rph1 in budding yeast. (**A**) ChIP-seq profile of Rph1-Flag over chromosome V. (**B**) Genome browser view of Rph1 binding peaks on RPGs within the chromosome V of 30 kbp – 440 kbp. GSE121635 represents the ChIP-seq data obtained from NCBI. (**C**) Comparison of Rph1 ChIP-seq peaks between published dataset of GSE121635 and our dataset. (**D**) GO analysis from the published dataset of GSE121635 show the top 5 of Rph1-enriched peaks by different pathways. BP: biological processes; CC: cellular components.

Figure S5. The enrichment of Rph1 in different genomic regions. Enrichment of Rph1 ChIP-seq signals on RPGs (**A**), snoRNAs (**B**), rDNA loci(**C**), and Ribi genes (**D**) with or without rapamycin treatment. Data from two biological replicates. RPM: Read count Per Million mapped reads.

Figure S6. Deletion of Rph1 did not affect Rrn3 association of 35S rDNA loci and proecssivity of RNAPI transcription under untreated or treated rapamycin conditions. (A) ChIP-qPCR analysis were performed to examine RNAPI (Rpa190-Flag) enrichment over different rDNA loci in WT or *rph1* Δ cells without rapamycin treatment. IgG ChIP served as a negative control. (B) Western blot showed protein levels of theintegrated 3xFlag tagged Rrn3 from each colony in either WT or *rph1* Δ cells using an anti-Flag antibody. (C-D) Relative enrichement of Rrn3 with the indicated rDNA loci in WT or *rph1* Δ cells was normalized to chromosome V locus by ChIP-qPCR analysis without (C) or with (D) rapamycin treatment. (E) Processivity assay of RNAPI transcription were performed in the *rph1* Δ cells relative to WT. The IP/input value for the 3' end (the D locus) was divided by the value for the 5' end (the B locus), and the ratio ("processivity") for *rph1* Δ was normalized to that for WT. Data are represented as mean \pm SD from three biological replicates. *t*-test, n.s, represents "not significant"

Figure S7. Rim15-dependent Rph1 phosphorylation regulates cell growth under rapamycin stress conditions. (A) The phosphorylation states of Rph1-Flag at different time points upon rapamycin stress were examined using a phos-tag gel. (B) Phosphorylation sites on Rph1 protein identified in previous studies as indicated in the Saccharomyces Genome Database (SGD) were marked in red. (C-D) Rapamycin sensitivity of various Rph1 mutants were monitored by a spot assay (top panel), and protein levels of various GFP-Rph1 mutants expressed in *rph1* Δ strain were examined by immunoblotting (bottom panel). G6PDH served as a loading control. (E) Cells with overexpression of WT, S7A or S7D Rph1 constructs were spotted on YPD plates with or without different doses of rapamycin.

Reference:

- Li, F., Zheng, L.D., Chen, X., Zhao, X., Briggs, S.D. and Du, H.N. (2017) Gcn5mediated Rph1 acetylation regulates its autophagic degradation under DNA damage stress. *Nucleic Acids Res.*, 45, 5183-5197.
- Keogh, M.C. and Buratowski, S. (2004) Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae. *Methods Mol. Biol.*, 257, 1-16.
- Tessarz, P., Santos-Rosa, H., Robson, S.C., Sylvestersen, K.B., Nelson, C.J., Nielsen, M.L. and Kouzarides, T. (2014) Glutamine methylation in histone H2A is an RNApolymerase-I-dedicated modification. *Nature*, **505**, 564-568.
- Laribee, R.N., Hosni-Ahmed, A., Workman, J.J. and Chen, H. (2015) Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis. *PLoS Genet.*, **11**, e1005113.

D

MF

125

100

75

-log10 (P value)

50

6

5

ò

25

translation elongation factor activity -

large ribosomal subunit rRNA binding -

В

С

Α

Ε

2.0 D/B n.s. 1.5-0.0 N ph

no rapamycin treatment

Rapamycin