

Figure S1. GluProRS in the MSC. HEK293T cells were grown in DMEM until 80-90% confluent. The cells were lysed in buffer containing 20 mM Tris-HCI (pH 7.5), 150 mM NaCl, 0.5% Triton X-100 and Protease Inhibitor Cocktail, and the debris cleared by ultracentrifugation at 100,000 g for 1 h. The cleared lysate (3 mg protein) was applied to a Superose-6 FPLC column, and eluted at a flow rate of 0.5 ml/min in buffer containing 50 mM Tris-HCI (pH 7.5), 150 mM NaCl, 1 mM phenylmethanesulfonyl fluoride, and 1 mM dithiothreitol. Thyroglobulin (6701 kDa), gamma globulin (158 kDa), ovalbumin (44 kDa), bovine serum albumin (66 kDa), myoglobin (17 kDa), and vitamin B₁₂ (1.35 kDa, not shown) served as molecular weight standards. Aliquots from alternate fractions were run on 4-20% SDS-PAGE for western blot analysis.

Figure S2. MSC constituent structures. X-ray structures after adjustment for intra- and inter-protein XL-MS crosslinks. Lys residues and their intra-protein cross-links shown as yellow spheres (or blue for IIeRS).

Figure S3. MSC structures with dimer constituents. (**A**) Ribbon models of front (left) and rear (right) views of the MSC including dimers of AspRS, LysRS, and GluProRS. (**B**) X-ray structures of AspRS (left, PDB ID: 4J15), LysRS (center, PDB ID: 6ILD), and ProRS (right, PDB ID: 4HVC) dimers.

Supplementary Table S1. Inter-protein cross-links identified by XL-MS.

Peptide A	Peptide B	Occurrences,	Occurrences,
		in-cell	on-bead
		experiment	experiments
		(n=1)	(n=3)
AIMP1 K ₁₂₉	ArgRS K ₄₇₁	-	1
AIMP2 K ₆₄	GInRS K759	-	2
AIMP2 K ₇	LysRS K ₂₄₉	-	3
AIMP2 Y ₃₅	LysRS K ₂₄₉	-	1
AIMP2 K ₆₄	LysRS K ₂₄₉	-	1
AIMP3 K ₁₃₈	AspRS K ₃₇₄	1	3
ArgRS K ₂₀	GInRS K759	-	1
ArgRS K ₅₅₇	GInRS K ₂₅	-	1
ArgRS K ₆₀	IIeRS K ₃₈₂	-	1
ArgRS K ₅₂₂	IIeRS K ₈₈₅	1	-
ArgRS K ₄₇₁	LeuRS K ₁₁₀₂	1	1
AspRS K ₁₃	GInRS K ₃₀₉	-	1
AspRS K ₄₅₁	MetRS K729	-	2
GInRS K ₄₀₅	GluProRS K ₂₄₃	1	-
GInRS K405	GluProRS K ₃₀₀	1	2
GInRS K405	GluProRS K435	1	-
IIeRS K ₃₈₂	LeuRS K ₁₁₃₃	-	1
IleRS K ₄₅₀	LeuRS K ₁₁₃₃	1	1
IleRS K ₉₉₆	MetRS K ₇₂₉	-	1

Supplementary Table S2. Intra-protein cross-links identified by XL-MS.

Peptide A	Peptide B	Occurrences, in-cell experiment (n=1)	Occurrences, on-bead experiments (n=3)
		(11-1)	(1-0)
AIMP1			
K ₅₄	K ₄₆	-	1
AIMP3			
K ₈₈	K ₁₃₆	-	1
K ₈₈	K ₁₃₈	1	2
K ₉₆	K ₁₃₆	-	1
K ₉₆	K ₁₃₈	-	1
K ₁₀₅	K ₁₃₆	-	1
ArgRS			
K ₆₀	K ₆₈	1	1
K ₆₀	K ₅₅₇	1	2
K ₁₃₁	K ₁₄₃	-	1
K ₂₀₅	K ₃₂₁	-	1
K ₃₂₁	K ₄₇₁	1	3
K ₃₄₇	K ₃₆₂	-	1
K ₃₄₇	K ₃₉₃	1	2
K ₄₄₉	K ₅₂₂	-	1
K ₄₇₁	K ₄₇₆	1	1
K ₄₇₁	K ₄₇₈	1	3
AspRS			
K ₂₆	K ₄₀	1	3
K ₄₀	K ₅₅	1	-
K ₅₅	K ₁₂₂	1	1
K ₂₄₁	K ₄₅₁	-	1
GInRS			
K ₁₉	K ₅₀	-	1
K ₂₅	K ₂₀₅	1	2
K ₂₅	K ₄₉₈	1	2
K ₂₅	K ₅₈₆	1	3
K ₂₅	K ₇₅₉	-	2
K ₅₀	K ₁₆₃	-	1
K ₂₃₃	K ₂₅₄	-	1
K ₃₀₉	K ₄₂₁	-	1
K ₃₀₉	K ₄₉₆	-	1
K ₃₆₆	K ₄₁₂	1	3
K ₃₆₆	K ₄₂₁	-	3
K ₃₆₆	K ₄₉₈	1	3
K ₆₂₈	K ₆₇₃	1	3
K ₆₂₈	K ₇₆₉	1	1
K ₆₂₈	K ₇₇₄	-	2
GluProRS			
K ₁₄₈	K ₁₇₃	-	1
K ₁₇₃	K ₄₁₇	-	2
K ₁₉₇	K ₂₃₁	-	1
K ₂₄₃	K ₃₀₀	-	1
K ₂₄₅	K ₄₃₅	1	3
K ₂₇₈	K ₂₈₂	-	1
K ₂₈₂	K ₂₈₈	-	1
K ₂₈₂	K ₄₁₇	-	1
K ₃₀₀	K ₄₃₅	1	2

K ₃₀₀	K ₄₃₇	-	1
K ₄₁₇	K ₄₇₂	1	3
K ₄₃₅	K ₄₃₇	-	2
K ₄₃₅	K ₄₇₂	1	3
K491	K498	1	3
K ₅₇₈	K593	-	1
K ₉₁₇	K ₉₂₂	-	1
K ₁₀₁₀	K ₁₀₂₄	_	1
K 1010	K1034	_	1
K 1089	K 1109	1	3
K1091	K 1109	1	3
K1109	K 1156	1	1
K ₁₁₄₃	K ₁₁₅₆	-	ו ר
N 1156	N 1213	-	Ζ
IIERS	K		2
К 65	K ₁₃₂	-	<u> </u>
K ₁₃₂	K ₁₄₉	-	1
K ₁₃₂	K ₁₆₉	-	2
К ₁₃₂	K ₃₈₂	1	2
K ₁₃₂	K ₄₁₀	-	2
K ₁₃₂	K ₄₅₀	1	3
K ₁₃₂	K ₆₄₁	1	-
K ₁₃₂	K ₆₇₂	-	1
K ₁₃₂	K ₉₉₆	-	2
K ₁₆₉	K ₄₅₀	-	1
K ₁₆₉	K ₆₇₂	-	1
K ₁₇₇	K ₄₅₀	-	1
K ₂₆₈	K ₃₈₂	1	3
K ₂₆₈	K ₄₁₀	-	2
K ₂₆₈	K ₄₅₀	1	1
K ₂₆₈	K ₉₉₆	-	1
K ₂₈₅	K ₂₈₈	1	3
K ₂₈₅	K ₄₅₀	1	3
K ₃₁₄	K ₄₅₀	-	1
K ₃₇₅	K ₃₈₂	-	3
K ₃₇₅	K ₄₅₀	-	1
K382	K ₄₁₀	1	3
K ₃₈₂	K ₄₅₀	1	2
K ₃₈₂	Kaae	-	1
K ₄₁₀	K ₄₅₀	_	1
K440	K ₄₅₀	_	1
K445	K ₆₄₁	_	3
K 450	K	_	1
K ₀₄₄	K ₉₉₀	1	2
K ₆₄₁	K ₀₀₀	1	2
K ₆₄₁	K ₉₀₃	1	1
K 705	K 040	1	л 2
K	Kaa		J 1
r\817	r\861	- 1	1
IX839	K 1061		- 1
r\861	r\868	-	1
N868	r\996 K		1
к ₈₇₈	r. ₈₈₅	-	1
K ₈₇₈	K ₈₈₇	1	2
K ₈₈₅	K ₉₂₉	-	1
K ₈₈₇	K ₉₉₆	-	1
K ₉₀₃	K ₉₀₆	1	3
K ₉₉₆	K ₁₀₆₁	1	3
K ₁₀₁₄	K ₁₀₅₇	-	1
K ₁₀₁₆	K ₁₀₅₇	-	1
K ₁₀₅₁	K ₁₁₀₄	-	1
LeuRS			

K ₂₇₀	K ₂₈₃	-	2
K ₂₇₈	K ₃₁₂	-	1
K ₈₀₇	K ₁₀₀₂	1	3
K ₈₂₂	K ₁₀₀₂	1	3
K ₁₁₁₄	K ₁₁₃₈	-	1
LysRS			
K ₁₃₅	K ₁₄₁	1	1
K ₂₂₃	K ₂₄₃	-	2
K ₃₀₅	K ₄₇₉	1	1
K ₃₆₃	K ₃₇₀	-	1
K ₄₀₂	K ₄₇₉	1	2
K ₄₀₇	K ₄₇₉	1	3
MetRS			
K ₁₀₈	K ₂₀₄	-	1
K ₃₇₅	K ₄₉₁	1	3
K ₄₉₁	K ₅₀₀	-	1
K ₆₆₃	K ₇₂₉	1	3
K ₇₂₆	K ₇₂₉	1	3

Supplemental Data

3-Dimensional architecture of the human multi-tRNA synthetase Complex

Modeling of individual MSC constituents

ArgRS. A model of near full-length human ArgRS (Asp₂-Met₆₆₀) was built from the crystal structure of human ArgRS (chain B, PDB ID: 4R3Z (1)). The N-terminus domain (Asp₂-Pro₆₉) of ArgRS was relocated to satisfy Lys-Lys intra-molecular cross-links.

AspRS. A model of near full-length human AspRS monomer (Ala₄-Asp₄₉₅) was built from the crystal structure of human AspRS (Ala₂₁-Asp₄₉₅, PDB ID: 4J15 (2)) and a peptide (Ala₄-Ala₂₀) for the N-terminus modeled using SWISS-MODEL. Domains missing from this crystal structure, i.e., Met₁-Ala₂₀, Glu₁₆₃-Ala₁₇₂, Ile₂₂₄-Ala₂₄₇, Arg₂₇₃-His₂₈₂, and Pro₄₉₆-Pro₅₀₁ were constructed in the model except for Pro₄₉₆-Pro₅₀₁. To generate the cross-link between the N-terminus of AspRS (Lys₁₃) and GlnRS (Lys₃₀₉) a *de novo*-built α -helical peptide (Ala₄-Ala₂₀) was appended and the conformation of Ala₂₁-Asp₅₀ domain adjusted to satisfy the AspRS-GlnRS intermolecular crosslink. For construction of the MSC model with the AspRS dimer, the second chain was added by aligning chain A from the crystal structure of AspRS (PDB ID: 4J15 (2)) with the monomer in the MSC model. Maintaining the observed crosslinks between ArgRS and GlnRS induced some overlap of AspRS chain B with ArgRS.

GlnRS. A model of full-length human GlnRS (Met₁-Val₇₇₅) was built starting from the crystal structure of human GlnRS (Met₁-Asp₇₇₁) (PDB ID: 4YE6 (3)). Domains missing from this crystal structure, i.e., Ala₁₈₃-Gln₂₁₆, Glu₃₆₃-Asn₃₆₉, Glu₄₅₉-Gln₄₆₁, Ala₅₈₅-Leu₅₈₈, Leu₆₃₀-Leu₆₃₈, Ala₆₆₈-Lys₆₇₃, and Pro₇₇₂-Val₇₇₅, were constructed with SWISS-MODEL. The N-terminus domain (Met₁-Glu₁₈₂) was relocated with respect to the catalytic domain to satisfy XL-MS-derived intra-molecular crosslinks.

GluRS. A model of near full-length (Ala₂-Gln₆₈₂) human GluRS was assembled from the crystal structures of the GST-like domain (Ala₂-Thr₁₇₁) of human GluRS (chain C, PDB ID: 5Y6L (4)) and the catalytic domain (Leu₈₇-Lys₅₃₃) of GluRS from archaeal

Methanothermobacter thermautotrophicus (PDB ID: 3AII (5)) corresponding to Phe₁₈₇-Gln₆₈₂ in human GluRS, plus a *de novo*-built spacer (Thr₁₇₂-Lys₁₈₆) joining the GluRS GST-like and CD domains to satisfy intra-molecular cross-links.

GluProRS. A three-dimensional model of A and B chains of full-length human GluProRS (Ala₂-Tyr₁₅₁₂) was assembled from human GluRS monomer, a model of the WHEP domain-containing linker (Pro₆₈₃-Gly₁₀₁₅), and the crystal structure of ProRS dimer (PDB ID: 4HVC, (6)). The crystal structure of the multifunctional peptide motif-1 (helix-turn-helix, WHEP domain 1) from human GluProRS (PDB ID: 1FYJ (7)) was used to model the three helix-turn-helix WHEP domains Asp₇₄₉-Pro₈₀₅, Leu₈₂₆-Pro₈₇₈, and Val₉₀₃-Ala₉₅₅. Peptide regions (Pro₆₈₃-Glu₇₄₈, Ala₈₀₆-Ser₈₂₅, Leu₈₇₉-Lys₉₀₂, Thr₉₅₆-Gly₁₀₁₅) joining the WHEP domains were modeled as unstructured loops.

lleRS. A model of full-length human IleRS (Met₁-Phe₁₂₆₂) was built by homology modeling using multiple crystal structures. The domain Met₁-Ile₈₄₁ was modeled based on the crystal structure of IleRS from *Thermus thermophilus* (chain A, PDB ID: 1JZQ (8)), Ile₈₄₃-Ser₉₁₅ was based on LeuRS from *Pyrococcus horikoshii* (chain B, PDB ID: 1WZ2 (9)), Ile₉₁₈-Ser₉₄₅ was based on human pre-mRNA branch site protein p14 (chain B, PDB ID: 2F9D (10)), Ala₉₆₇-Thr₁₀₃₅ was based on heterodisulfide reductase from *Methanothermococcus thermolithotrophicus DSM* (chain D, PDB ID: 5ODC (11)), Ser₁₀₆₃-Pro₁₁₆₀ was based on RANBP/C3HC4-type zinc finger containing protein 1 from *Mus musculus* (chain A, PDB ID: 5Y3T (12)), and Ser₁₁₆₁-Leu₁₂₅₆ was based on human diubiquitin (chain B, PDB ID: 2Y5B (13)). Homologous crystal structures were not found for Arg₉₄₆-Asp₉₆₆ and Thr₁₀₃₆-Gly₁₀₆₂, and these regions were modeled *de novo*.

LeuRS. A model of near full-length human LeuRS (Phe₁₂-Leu₁₁₅₁) was built by homology modeling. Phe₁₂-Phe₁₀₆₁ was modeled based on the crystal structure of LeuRS from *Pyrococcus horikoshii* (chain B, PDB ID: 1WZ2(9)), Val₁₀₆₇-Met₁₁₁₆ was from ubiquitin-

like protein MDY2 from *Saccharomyces cerevisiae* (chain C, PDB ID: 3ZDM (14)), and Leu₁₁₂₃-Leu₁₁₅₁ was based on human VPX protein (chain B, PDB ID: 4Z8L). Short missing regions were de novo built with SWISS-MODEL.

LysRS. The crystal structure of human LysRS (Asp₇₂-Glu₅₇₆) (chain A PDB ID: 6ILD (15)) was used without modification.

MetRS. A model of full-length (Met₁-Lys₉₀₀) human MetRS was assembled from the crystal structures of the GST-like domain (Met₁-Ala₂₁₁) of human MetRS (chain A, PDB ID: 5Y6L (4)), the catalytic domain (Ala₂₂₆-Ala₈₂₂) of human MetRS (PDB ID: 5GL7), and the human MetRS WHEP-TRS domain (Thr₈₃₅-Lys₉₀₀) (PDB ID: 2DJV), plus two *de novo* spacers (Glu₂₁₂-Leu₂₂₅ and Lys₈₂₃-Val₈₃₄). The 14-aa spacer Glu₂₁₂-Leu₂₂₅ that connects the GST-like and catalytic (CD) domains, was modeled as an α -helical peptide (Lys₇₂₉-Lys₄₅₁) to position the CD and GST-like domains thus satisfying the constraint of a MetRS-AspRS cross-link. A second 12-aa spacer (Lys₈₂₃-Val₈₃₄) attached the WHEP domain of human MetRS to the CD domain.

AIMP1. A model of the human AIMP1 (Asp₅-Lys₃₁₂) was assembled from the crystal structure of the N-terminus domain of human AIMP1 (Asp₅-Phe₈₀) (chain A, PDB ID: 4R3Z(1)), a *de novo*-built α -helical structure for Pro₈₁-Lys₁₄₈, and a homology model for Pro₁₄₉-Lys₃₁₂ based on the crystal structure of human endothelium monocyte activating polypeptide 2 (EMAPII) (chain A, PDB ID: 1EUJ (16)). AIMP1 conformation was dictated by inter-molecular cross-links with AARSs in the MSC.

AIMP2. A model of AIMP2 (Pro_2-Lys_{320}) was assembled from the crystal structure of N-terminus domain (Pro_2-His_{31}) of human AIMP2 (chain C, PDB ID: 6ILD(15)), a model of Glu₄₆-Gln₈₁ based on bifunctional tail protein PIIGCN4 from *Saccharomyces cerevisiae* (PDB ID: 2VNL (17)), and the GST-like domain of human AIMP2 (Leu₁₀₆-Lys₃₂₀) (chain D, PDB ID: 5Y6L (4)). Gly₃₂-Gln₄₅ and Thr₈₂-Ala₁₀₅ domains were *de novo*-built with

SWISS-MODEL. AIMP2 conformation was dictated by cross-links with AARSs in the MSC.

AIMP3. The crystal structure of human aminoacyl tRNA synthetase complex-interacting multifunctional protein 3 (AIMP3, Met₁-Asn₁₇₂) (chain B, PDB ID: 5Y6L(4)) was used without modification.

Stepwise assembly of the MSC structural model

1. Construction of the pentameric MSC core. To construct the protein core consisting of monomers of AspRS, MetRS, GluRS, AIMP3, and the GST-like domain of AIMP2, AspRS (Ala₂₁-Asp₄₉₅) was first aligned with the AspRS fragment Pro₃₃₆-Lys₃₉₃ from the pentameric crystal structure 5Y6L (chain E) (4). Next, the catalytic domains of MetRS and GluRS were anchored to their corresponding GST-like domains from the crystal structure (chain A and C, PDB ID: 5Y6L (4)) by *de novo*-built spacers (*vide supra*) to satisfy XL-MS-derived intra- and inter-molecular cross-links.

2. Docking GlnRS. Before docking GlnRS to the AARS core, the Arg₅₈-Ala₁₀₅ domain of AIMP2 was joined to its GST-like domain (Leu₁₀₆-Lys₃₂₀) (chain D, PDB ID: 5Y6L (4)). The human GlnRS model was docked to the AARS core using distance constraints corresponding to GlnRS-GluRS and GlnRS-AIMP2 intermolecular cross-links.

3. Appending the N-terminus of AspRS. A *de novo*-built model of the N-terminus domain (Ala₄-Ala₂₀) of AspRS (*vide supra*) was joined to AspRS and docked to GlnRS using distance constraints corresponding to the peptide bond length between residues Ala₂₀ and Ala₂₁ of AspRS, and an intermolecular AspRS-GlnRS cross-link.

4. Docking ArgRS. ArgRS was docked to the partially assembled MSC using distance constraints corresponding to the intermolecular ArgRS-GlnRS cross-links.

5. Appending the N-terminus of AIMP1. We modeled the interaction between the tetramer of GST-like containing proteins and the N-terminus of AIMP1 as reported (18,19). The N-terminus of AIMP1 (Asp₅-Phe₈₀) (chain A, PDB ID:4R3Z(1)) was docked to the partially assembled MSC so that the N-terminus of the fragment interacts with the GST-like domain of AIMP2, while the C-terminus interacts with AIMP3.

6. Docking IleRS. IleRS was docked to the partially assembled MSC in two steps. First, the IleRS model was split into an N-terminus domain (Met₁-Pro₈₄₂) and a C-terminus domain (Ile₈₄₃-Phe₁₂₆₂), and docked separately to permit conformational flexibility. Initially, the N- and C-terminus domains were positioned such that the peptide bond Pro₈₄₂-Ile₈₄₃ and the intermolecular cross-links of IleRS with MetRS and ArgRS were satisfied. Next, the C-terminus domain (Ile₈₄₃-Phe₁₂₆₂) was docked using distance constraints corresponding to the peptide bond length between Pro₈₄₂ and Ile₈₄₃, and the IleRS-ArgRS cross-link. Finally, with the C-terminus domain in place, the N-terminus domain (Met₁-Pro₈₄₂) was docked using distance constraints corresponding to the peptide bond length between Pro₈₄₂ and Ile₈₄₃, and the peptide bond between residues Pro₈₄₂ and Ile₈₄₃, and the IleRS-MetRS cross-link.

7. Appending the C-terminus of LeuRS. LeuRS was split into N-terminus (Phe₁₂-Phe₁₀₆₁) and C-terminus (Arg₁₀₆₂-Leu₁₁₅₁) domains and docked separately. The C-terminus domain was docked first to the partially assembled MSC using distance constraints corresponding to LeuRS-ArgRS and LeuRS-IIeRS cross-links.

8. Docking LysRS. Monomeric LysRS (Asp₇₂-Glu₅₇₆) (chain A, PDB ID: 6ILD (15)) with bound AIMP2 (Pro₂-Glu₁₉) (chain C, PDB ID: 6ILD (15)) was manually docked to the partially assembled MSC using distance constraints corresponding to the LysRS (chain A)-AIMP2 cross-link. Next, the Leu₂₀-Ser₅₇ domain of AIMP2 was de novo built and joined to AIMP2. For assembly of the LysRS dimer, chain B was included with chain A as indicated in crystal structure (PDB ID: 6ILD (15)).

9. Appending the C-terminus of AIMP1. The C-terminus domain of AIMP1 (Pro₈₁-Lys₃₁₂) was threaded through the partially assembled MSC and docked using distance constraints corresponding to the peptide bond between Phe₈₀ and Pro₈₁ and the AIMP1-ArgRS cross-link. To complete the model of AIMP1, the crystal structure of human EMAPII (chain A, PDB ID: 1EUJ(16)) (Pro₁₄₉-Lys₃₁₂) was joined to AIMP1 and docked using a constraint corresponding to the peptide bond between Lys₁₄₈ and Pro₁₄₉.

10. Appending the N-terminus of LeuRS. The N-terminus of LeuRS (Phe₁₂-Phe₁₀₆₁) was docked satisfying the peptide bond constraint between Phe₁₀₆₁ and Arg₁₀₆₂.

11. Appending GluProRS dimer. The GluProRS dimer was added to the MSC by replacing the GluRS monomer in the assembled MSC with GluRS chain A of the GluProRS dimer.

REFERENCES – SUPPLEMENTAL DATA

- Fu, Y., Kim, Y., Jin, K.S., Kim, H.S., Kim, J.H., Wang, D., Park, M., Jo, C.H., Kwon, N.H., Kim, D. *et al.* (2014) Structure of the ArgRS-GInRS-AIMP1 complex and its implications for mammalian translation. *Proc. Natl. Acad. Sci. U. S. A.*, **111**, 15084-15089.
- Kim, K.R., Park, S.H., Kim, H.S., Rhee, K.H., Kim, B.G., Kim, D.G., Park, M.S., Kim, H.J., Kim, S. and Han, B.W. (2013) Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex. *Proteins*, **81**, 1840-1846.
- Ognjenovic, J., Wu, J., Matthies, D., Baxa, U., Subramaniam, S., Ling, J. and Simonovic, M. (2016) The crystal structure of human GlnRS provides basis for the development of neurological disorders. *Nucleic Acids Res.*, 44, 3420-3431.
- Cho, H.Y., Lee, H.J., Choi, Y.S., Kim, D.K., Jin, K.S., Kim, S. and Kang, B.S. (2019) Symmetric assembly of a decameric subcomplex in human multi-tRNA synthetase complex via interactions between glutathione transferase-homology domains and aspartyl-tRNA synthetase. *J. Mol. Biol.*, **431**, 4475-4496.
- Nureki, O., O'Donoghue, P., Watanabe, N., Ohmori, A., Oshikane, H., Araiso, Y., Sheppard, K., Soll, D. and Ishitani, R. (2010) Structure of an archaeal nondiscriminating glutamyl-tRNA synthetase: a missing link in the evolution of GlntRNAGIn formation. *Nucleic Acids Res.*, **38**, 7286-7297.
- Zhou, H., Sun, L., Yang, X.L. and Schimmel, P. (2013) ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. *Nature*, **494**, 121-124.
- Jeong, E.J., Hwang, G.S., Kim, K.H., Kim, M.J., Kim, S. and Kim, K.S. (2000) Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: Identification of RNA-binding residues and functional implications for tandem repeats. *Biochemistry*, **39**, 15775-15782.

- Nakama, T., Nureki, O. and Yokoyama, S. (2001) Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. *J. Biol. Chem.*, **276**, 47387-47393.
- Fukunaga, R., Ishitani, R., Nureki, O. and Yokoyama, S. (2005) Crystallization of leucyl-tRNA synthetase complexed with tRNALeu from the archaeon Pyrococcus horikoshii. *Acta Crystallogr .Sect. F Struct. Biol. Cryst. Commun.*, 61, 30-32.
- Schellenberg, M.J., Edwards, R.A., Ritchie, D.B., Kent, O.A., Golas, M.M., Stark, H., Luhrmann, R., Glover, J.N. and MacMillan, A.M. (2006) Crystal structure of a core spliceosomal protein interface. *Proc. Natl. Acad. Sci. U. S. A.*, **103**, 1266-1271.
- Wagner, T., Koch, J., Ermler, U. and Shima, S. (2017) Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. *Science*, **357**, 699-703.
- Fujita, H., Tokunaga, A., Shimizu, S., Whiting, A.L., Aguilar-Alonso, F., Takagi, K., Walinda, E., Sasaki, Y., Shimokawa, T., Mizushima, T. *et al.* (2018) Cooperative domain formation by Hhomologous motifs in HOIL-1L and SHARPIN plays a crucial role in LUBAC stabilization. *Cell Rep.*, 23, 1192-1204.
- Ye, Y., Akutsu, M., Reyes-Turcu, F., Enchev, R.I., Wilkinson, K.D. and Komander,
 D. (2011) Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. *EMBO Rep.*, **12**, 350-357.
- Tung, J.Y., Li, Y.C., Lin, T.W. and Hsiao, C.D. (2013) Structure of the Sgt2 dimerization domain complexed with the Get5 UBL domain involved in the targeting of tail-anchored membrane proteins to the endoplasmic reticulum. *Acta Crystallogr. D. Biol. Crystallogr.*, 69, 2081-2090.
- Hei, Z., Wu, S., Liu, Z., Wang, J. and Fang, P. (2019) Retractile lysyl-tRNA synthetase-AIMP2 assembly in the human multi-aminoacyl-tRNA synthetase complex. *J. Biol. Chem.*, **294**, 4775-4783.

- Kim, Y., Shin, J., Li, R., Cheong, C., Kim, K. and Kim, S. (2000) A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. *J. Biol. Chem.*, 275, 27062-27068.
- Seul, A., Muller, J.J., Andres, D., Stettner, E., Heinemann, U. and Seckler, R. (2014) Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker. *Acta Crystallogr. D. Biol. Crystallogr.*, **70**, 1336-1345.
- Schwarz, M.A., Lee, D.D. and Bartlett, S. (2018) Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-ProlyltRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex. *Int. J. Biochem. Cell Biol.*, **99**, 197-202.
- Norcum, M.T. and Warrington, J.A. (2000) The cytokine portion of p43 occupies a central position within the eukaryotic multisynthetase complex. *J. Biol. Chem.*, **275**, 17921-17924.