Supplementary Material 3:

Development of a Genome-Scale Metabolic Model of *Clostridium thermocellum* and its Applications for Integration of Multi-Omics Datasets and Computational Strain Design

Sergio Garcia^{1,2}, R. Adam Thompson^{2,3,6}, Richard J. Giannone^{2,5}, Satyakam Dash^{2,4}, Costas D. Maranas^{2,4}, and Cong T. Trinh^{1,2,3,*}

¹Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA.

²Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

³Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville and Oak Ridge National Laboratory, Oak Ridge, TN, USA.

⁴Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.

⁵Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

⁶Current affiliation: Quantitative Translational Pharmacology, DMPK-BA, Abbvie Inc., North Chicago, IL, USA.

*Corresponding author: 1512 Middle Dr, DO432, Department of Chemical and

Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA. Tel: 865-974-2181. Email: ctrinh@utk.edu

ID Formula Fold change pFBA*FVAcenter* proteomics MDH $mal_L_c + nad_c \leftrightarrow h_c + nadh_c + oaa_c$ 1.40.20.1PEPCK_re $co2_c + gdp_c + pep_c \rightarrow gtp_c + oaa_c$ 0.90.10.1VOR2b 0.912.3 $3mob_c + coa_c + 2.0 \ fdxo_42_c \rightarrow co2_c + 2.0 \ fdxr_42_c$ 0.8 $+ h_c + ibcoa_c$ \mathbf{PFL} 0.50.2 $coa_c + pyr_c \rightarrow accoa_c + for_c$ 0.8FRNDPR2r $2.0 \text{ fdxr}_42_c + h_c + \text{nadh}_c + 2.0 \text{ nadp}_c \leftrightarrow 2.0$ 0.22.30.3 $fdxo_42_c + nad_c + 2.0 nadph_c$ ALCD2x $acald_c + h_c + nadh_c \rightarrow etoh_c + nad_c$ 0.10.80.6 $h_c + ibcoa_c + nadh_c \rightarrow 2mppal_c + coa_c + nad_c$ **IBUTCOARx** 0.112.30.8ACALD $accoa_c + h_c + nadh_c \rightarrow acald_c + coa_c + nad_c$ 0.10.81.112.3ALCD23xi $2mppal_c + h_c + nadh_c \rightarrow ibutoh_c + nad_c$ 0.10.8 $mal_L_c + nadp_c \rightarrow co2_c + nadph_c + pyr_c$ 0.10.30.1ME2 PSCVT $pep_c + skm5p_c \rightarrow 3psme_c + pi_c$ -0.1 -0.3 0.7PTAr $accoa_c + pi_c \leftrightarrow actp_c + coa_c$ -0.1-2.7-0.13.0 h_c + 3.0 nadph_c + so3_c \rightarrow 3.0 h2o_c + h2s_c + HSOR -0.1 -0.3 -1.2 3.0 nadp_c TRDR $h_c + nadph_c + trdox_c \rightarrow nadp_c + trdrd_c$ -0.3-0.10.8IGPS $2cpr5p_c + h_c \rightarrow 3ig3p_c + co2_c + h2o_c$ -0.3 0.2-0.1GLUDy $glu_L_c + h2o_c + nadp_c \leftrightarrow akg_c + h_c + nadph_c +$ -0.1-0.5-0.2nh4_c ECH $2.0 \text{ fdxr}_42_c + 3.0 \text{ h_c} \leftrightarrow 2.0 \text{ fdxo}_42_c + \text{h}_2c + \text{h_e}$ -0.1-15.6-13.5ALLAS $24.0 \text{ ala}_Dc + 24.0 \text{ atp}_c + 24.0 \text{ cdpglyc}_c + \text{dg12dg}_c$ -0.1-0.20.0+ 24.0 h2o_c \rightarrow ala_lta_c + 24.0 amp_c + 24.0 cmp_c + $48.0 h_c + 24.0 ppi_c$ HSDxi $aspsa_c + h_c + nadh_c \rightarrow hom__L_c + nad_c$ -0.1-0.30.8PRMICI $prfp_c \rightarrow prlp_c$ -0.1-0.3-0.1OCBT $cbp_c + orn_L_c \leftrightarrow citr_L_c + h_c + pi_c$ -0.2 -0.3 -0.3 $\mathrm{pep}_{-}\mathrm{c} + \mathrm{uacgam}_{-}\mathrm{c} \rightarrow \mathrm{pi}_{-}\mathrm{c} + \mathrm{uaccg}_{-}\mathrm{c}$ UAGCVT -0.2-0.3-0.1ANS $chor_c + gln_L_c \rightarrow anth_c + glu_L_c + h_c + pyr_c$ -0.2 -0.3 0.2DHAD2 $23dhmp_c \rightarrow 3mop_c + h2o_c$ -0.2-0.30.6 $asp_L_c + nadp_c \rightarrow h_c + iasp_c + nadph_c$ -0.3 -0.3 ASPO2y -0.1 $atp_c + nad_c \rightarrow adp_c + h_c + nadp_c$ -0.3-0.3NADK -0.1-0.3 $5mthf_c + hcys_L_c \rightarrow met_L_c + thf_c$ -0.3 METS 0.8IMPD $h_{20}c + imp_c + nad_c \leftrightarrow h_c + nad_c + xmp_c$ -0.3-0.3-0.3 MG2abc $atp_c + h2o_c + mg2_e \rightarrow adp_c + h_c + mg2_c + pi_c$ -0.3 -0.3 -0.1 PDHam1hi $h_c + pyr_c + thmpp_c \rightarrow 2ahethmpp_c + co2_c$ -0.4 -0.312.4ACAS_2ahbut $2ahethmpp_c + 2obut_c \rightarrow 2ahbut_c + thmpp_c$ -0.4 -0.3 0.6GF6PTA $f6p_B_c + gln_L_c \rightarrow gam6p_c + glu_L_c$ -0.4 -0.30.0CHRS $3psme_c \rightarrow chor_c + pi_c$ -0.4 -0.30.7SERH $3ig3p_c + ser_L_c \rightarrow g3p_c + h2o_c + trp_L_c$ -0.4 -0.30.2ALATA_L $akg_c + ala_L_c \leftrightarrow glu_L_c + pyr_c$ -0.5-0.3-12.9NNDPR $h_c + prpp_c + quln_c \rightarrow co2_c + nicrnt_c + ppi_c$ -0.5-0.3-0.1TMDS $dump_c + mlthf_c \rightarrow dhf_c + dtmp_c$ -0.5-0.3 -0.1 PHETA1 -0.3 $akg_c + phe_L_c \leftrightarrow glu_L_c + phpy_c$ -0.6 0.8 $akg_c + tyr_L_c \leftrightarrow 34hpp_c + glu_L_c$ -0.6 -0.30.6TYRTA GMPS -0.3 atp_c + nh4_c + xmp_c \rightarrow amp_c + gmp_c + 3.0 h_c + -0.6 -0.3 ppi_c SKK -0.6 -0.3 0.7 $atp_c + skm_c \rightarrow adp_c + h_c + skm5p_c$ $acorn_c + akg_c \leftrightarrow acg5sa_c + glu_L_c$ ACOTA -0.6 -0.3-0.3 PPDK -0.7-10.00.1 $amp_c + 2.0 h_c + pep_c + ppi_c \rightarrow atp_c + pi_c + pyr_c$ GLUPRT $gln_L_c + h2o_c + prpp_c \rightarrow glu_L_c + h_c + ppi_c +$ -0.7-0.3-0.3 pram_c -0.3 KARI $2ahbut_c \leftrightarrow cpd10162_c$ -0.8 0.6 KARI_23dhmp $23dhmp_c + nadp_c \leftrightarrow cpd10162_c + h_c + nadph_c$ -0.8 -0.30.6 $argsuc_c \leftrightarrow arg_L_c + fum_c$ -0.3 -0.3 ARGSL -0.8

Table S1: A list of 70 consistent reactions in the $\Delta hydG\Delta ech$ case study and their associated fold changes. The biomass reaction is not included due to size. Note that this table is continued in the following pages.

ID	Formula	Fold change		
		proteomics	pFBA	FVA center
LEUTA	$4mop_c + glu__L_c \rightarrow akg_c + leu__L_c$	-0.8	-0.3	0.4
ILETA	$akg_c + ile_L_c \leftrightarrow 3mop_c + glu_L_c$	-0.8	-0.3	0.6
VALTA	$akg_c + val_L_c \leftrightarrow 3mob_c + glu_L_c$	-0.8	-1.4	-1.5
ARGSS	$asp_L_c + atp_c + citr_L_c \leftrightarrow amp_c + argsuc_c + 2.0$	-0.8	-0.3	-0.3
	$h_c + ppi_c$			
SHSL2	$h_{2s_c} + such m_s \to h_{cys_L} + suc_c$	-0.9	-6.0	0.8
AHSL	$achms_c + cys_L_c \leftrightarrow ac_c + cys_L_c + h_c$	-0.9	-10.6	-0.3
SHSL1	$cyst_Lc + h_c + succ_c \leftrightarrow cys_Lc + suchms_c$	-0.9	-10.6	0.4
ACKr	$actp_c + adp_c \rightarrow ac_c + atp_c$	-0.9	-2.7	-0.1
QULNS	dhap_c + iasp_c $\rightarrow 2.0 \text{ h}2o_c + h_c + pi_c + quln_c$	-0.9	-0.3	-0.1
NADS2	$atp_c + dnad_c + gln__L_c + h2o_c \rightarrow amp_c + glu__L_c$	-0.9	-0.3	-0.1
	$+ 2.0 \text{ h}_{-c} + \text{nad}_{-c} + \text{ppi}_{-c}$			
FE3abc	$atp_c + fe3_e + h2o_c \rightarrow adp_c + fe3_c + h_c + pi_c$	-1.0	-0.3	-0.1
ASPTA	$akg_c + asp_L_c \leftrightarrow glu_L_c + oaa_c$	-1.0	-0.3	0.2
CTPS1	$atp_c + nh4_c + utp_c \rightarrow adp_c + ctp_c + 2.0 h_c + pi_c$	-1.2	-0.3	0.0
ACGK	$acglu_c + atp_c \rightarrow acg5p_c + adp_c$	-1.2	-0.3	-0.3
IGPDH	$eig3p_c \rightarrow h2o_c + imacp_c$	-1.2	-0.3	-0.1
AGPR	$acg5sa_c + nadp_c + pi_c \leftrightarrow acg5p_c + h_c + nadph_c$	-1.3	-0.3	-0.3
PHEt2r	$h_e + phe_L_e \leftrightarrow h_c + phe_L_c$	-1.5	-0.3	0.8
UAG4Ei	$uacgam_c \rightarrow udpacgal_c$	-1.5	-0.3	-0.1
CYSS	$acser_c + h2s_c \rightarrow ac_c + cys_L_c$	-1.8	-0.3	-0.5
BIF	2.0 fdxr_42_c + 3.0 h_c + nadh_c \leftrightarrow 2.0 fdxo_42_c + 2.0	-1.8	-13.8	-12.5
	$h2_c + nad_c$			
UMPK	$atp_c + h_c + ump_c \rightarrow adp_c + udp_c$	-2.1	-0.3	0.0
SULabc	$atp_c + h2o_c + so4_e \rightarrow adp_c + h_c + pi_c + so4_c$	-4.6	-0.3	0.8

Table S2: The pFBA-simulated fluxes from the $\Delta hydG\Delta ech$ case study. In the table, we only presented reactions involving NADPH or exchange reactions that have different fluxes between the wild-type and mutant. We did not present the biomass reaction due to size as well as the reactions with the same fold change magnitude as the biomass reaction (|FC| = 0.26), likely because they are fully correlated.

ID	Formula	Fluxes (mmol/gCDW/hr)		
		W.T.	Mut.	FC
EX_ibutoh_e	ibutoh_e \rightarrow	0.0	0.49	12.26
KARA1	$alac_S_c + h_c + nadph_c \rightarrow 23dhmb_c + nadp_c$	0.22	0.59	1.42
EX_etoh_e	$\mathrm{etoh}_\mathrm{e} \rightarrow$	1.09	1.88	0.78
EX_h2o_e	$h2o_e \leftrightarrow$	-0.38	0.5	0.42
EX_co2_e	$co2_e \rightarrow$	2.07	2.77	0.42
ME2	$mal_L_c + nadp_c \rightarrow co2_c + nadph_c + pyr_c$	2.9	3.51	0.28
EX_for_e	$\text{for}_{-}e \rightarrow$	0.48	0.56	0.23
FRNDPR2r	2.0 fdxr_42_c + h_c + nadh_c + 2.0 nadp_c \leftrightarrow 2.0	-1.02	-1.17	0.2
	$fdxo_42_c + nad_c + 2.0 nadph_c$			
EX_nh4_e	$nh4_e \leftrightarrow$	-0.73	-0.53	-0.48
GLUDy	$glu_L_c + h2o_c + nadp_c \leftrightarrow akg_c + h_c + nadph_c$	-0.61	-0.42	-0.53
	$+ nh4_c$			
EX_h_e	$h_e \leftrightarrow$	2.93	1.19	-1.3
EX_valL_e	$\rm val_L_e \rightarrow$	0.18	0.06	-1.54
ICDHyr	$icit_c + nadp_c \rightarrow akg_c + co2_c + nadph_c$	0.21	0.04	-2.27
EX_ac_e	ac_e \rightarrow	0.93	0.17	-2.46
EX_lacL_e	$lac__L_e \rightarrow$	0.05	0.01	-2.49
EX_succ_e	$\mathrm{succ}_\mathrm{e} \rightarrow$	0.41	0.0	-12.01
EX_h2_e	h2_e \rightarrow	2.2	0.0	-14.43