Molecular Cell, Volume 79

Supplemental Information

Homogeneous Oligomers of Pro-apoptotic

BAX Reveal Structural Determinants

of Mitochondrial Membrane Permeabilization

Zachary J. Hauseman, Edward P. Harvey, Catherine E. Newman, Thomas E. Wales, Joel C. Bucci, Julian Mintseris, Devin K. Schweppe, Liron David, Lixin Fan, Daniel T. Cohen, Henry D. Herce, Rida Mourtada, Yael Ben-Nun, Noah B. Bloch, Scott B. Hansen, Hao Wu, Steven P. Gygi, John R. Engen, and Loren D. Walensky

Detergent	Molecular Weight (g/mol)	Critical Micelle Concentration (mM)
n-Dodecylphosphocholine (Fos-12)	351.5	1.5
n-Decyl-β-D-maltoside (DM)	482.6	1.8
n-Dodecyl- β -D-maltoside (DDM)	510.6	0.17
n,n-dimethyl-n-dodecylamine-n-oxide (LDA	AO) 229.4	1
3-((3-cholamidopropyl) dimethyl ammonio)-1-propanesulfonate (CHAPS)	614.9	8

С

8000

200 150 66 29 | 12 | 100-BAX_M BAX_o (Fos-12) 80 % Intensity 60-40-20 0 5 16 17 18 19 2 Elution Volume (mL) 20 21 22 13 14 15 100₇ • 1 μM Fos-12 90-%ANTS/DPX Release • 5 µM Fos-12 80-• 10 μM Fos-12 70-•100 μM Fos-12 60-50-40-30-20-

A

В

D

10-0--10-

2000

4000

Time (sec)

6000

Figure S1

Figure S1, Related to Figure 1. Production of BAX₀ at submicellar concentrations of Fos-12 and stability of the generated species in the absence of detergent.

(A) Characteristics of detergents screened for induction of BAX oligomerization.

(B) SEC analysis of BAX_M and BAX_O generated by treatment of BAX_M with submicellar concentration of Fos-12 (1 mM).

(C) Blue native PAGE analysis of BAX_M and Fos-12 induced BAX_O isolated in the absence of detergent, demonstrating the stability of the oligomeric band migrating at ~146 kDa.

(D) Treatment of liposomes with the indicated doses of Fos-12. Error bars are mean ± SEM for liposomal release experiments performed in technical triplicate, with data representative of two independent experiments.

В

D

Ε

Figure S2, Related to Figure 1. Negative stain EM reveals the curvilinear structure of BAX₀.

(A-C) Two-dimensional classification of negative stain EM of Fos-12-induced BAX_{O} (A) and the derived three-dimensional reconstruction (B) match the curvilinear envelope derived from SAXS analysis (C).

(D-F) Two-dimensional classification (D) and three-dimensional reconstruction of BAX₀ (E) generated by an alternative method, namely BIM SAHB_{A2}-triggered BAX_M in the presence of liposomes followed by BAX₀ extraction, likewise yielded a curvilinear macromolecular structure, mirroring the size and shape of the species observed by SAXS (F) and EM analyses of Fos-12-induced BAX₀ (A-C).

 $\begin{array}{c} \text{Liposomes +} \\ \text{BAX}_{_{\rm M}} \end{array}$

D

Liposomes + BIM SAHB_{A2} + BAX_M

Ε

Liposomes + BAX_o Figure S3, Related to Figure 2. Comparative membrane translocation, liposomal release, and morphology of BAX_M, BIM SAHB_{A2}-triggered BAX_M, and BAX₀ treated liposomes.

(A) Both BAX₀ and BIM SAHB_{A2}-triggered BAX_M translocate to liposomes, whereas the totality of vehicle-treated BAX_M remains in the soluble fraction, as monitored by liposomal translocation assay and BAX western analysis. Liposomal fractions (4-6) are marked with an overlying black bar, with supernatant fractions to the right (7-14). The data shown are representative of two independent biological replicates. BAX_M, 500 nM; BAX₀, 500 nM; BIM SAHB_{A2}, 500 nM.

(B) BAX₀ and BIM SAHB_{A2}-triggered BAX_M induce liposomal poration, as assessed by liposomal release assay. Error bars are mean \pm SEM for liposomal release experiments performed in technical triplicate, with data representative of two independent experiments. BAX_M, 500 nM; BAX₀, 500 nM; BIM SAHB_{A2}, 500 nM.

(C-E) Negative stain electron micrographs of liposomes incubated with BAX_M (C), BIM SAHB_{A2}-triggered BAX_M (D), or BAX_O (E), highlighting the similar morphology of membrane disruption induced by BH3-triggered BAX_M and BAX_O in the liposomal membranes.

Figure S4, Related to Figure 2. A series of control experiments further validate the fidelity of Fos-12-induced BAX₀.

(A) Comparative SEC analysis of BAX species generated upon treatment of full-length BAX monomer (BAX_M) with DM or Fos-12. The data shown are representative of two independent biological replicates.

(B) Blue native PAGE of BAX_M and DM-induced BAX oligomers, demonstrating the heterogeneity of the resultant species. The data shown are representative of two independent biological replicates.

(C) Fos-12-induced BAX₀ and DM-induced BAX oligomers demonstrate comparable membrane poration activity, as assessed by liposomal release assay. Error bars are mean \pm SEM for liposomal release experiments performed in technical triplicate, with data representative of two independent experiments. BAX oligomeric protein, 500 nM. (D) Comparative SEC analysis of BFL-1 Δ C, Fos-12-treated BFL-1 Δ C, and Fos-12-induced BAX₀.

(E) Blue native PAGE of BFL-1 Δ C and Fos-12-treated BFL-1 Δ C. The data shown are representative of two independent biological replicates.

(F) Fos-12-treated BFL-1 Δ C showed no membrane poration activity, as assessed by liposomal release assay. Error bars are mean ± SEM for liposomal release experiments performed in technical triplicate, with data representative of two independent experiments. BFL-1 Δ C protein, 500 nM.

(G) Comparative SEC analysis of full-length BCL-w, Fos-12-treated BCL-w, and Fos-12-induced BAX₀. The data shown are representative of two independent biological replicates.

(H) Blue native PAGE of BCL-w and Fos-12-treated BCL-w. The data shown are representative of two independent biological replicates.

(I) Fos-12-treated BCL-w showed no membrane poration activity, as assessed by liposomal release assay. Error bars are mean \pm SEM for liposomal release experiments performed in technical triplicate, with data representative of two independent experiments. BCL-w protein, 500 nM.

(J) Comparative SEC analysis of BAX_M G108E, Fos-12-treated BAX G108E, and Fos-12-induced BAX_O. The data shown are representative of two independent biological replicates.

(K) Blue native PAGE of BAX_M G108E and Fos-12-treated BAX G108E. The data shown are representative of two independent biological replicates.

(L) Fos-12-treated BAX G108E demonstrated impaired membrane poration activity as compared to Fos-12-induced BAX_0 in liposomal release assays. Error bars are mean \pm SEM for liposomal release experiments performed in technical triplicate, with data representative of two independent experiments. BAX proteins, 500 nM.

Α

B

С

Figure S5

Figure S5, Related to Figure 3. Comparative HXMS analyses of BAX_M vs. BAX_0 in the membrane environment, BAX_0 in solution vs. the membrane environment, and the inverse HXMS profiles of BAX_0 and BCL-2 BH4-inhibited BAX_M .

(A) The difference in deuterium uptake plot demonstrates the relative deuterium incorporation of BAX₀ (Figure 3B) minus the relative deuterium incorporation of BAX_M (Figure 3A), as measured at the indicated time points in the presence of liposomes. The regions of conformational deprotection upon formation of BAX₀ include the N-terminus, $\alpha 1$, and the $\alpha 7$ - $\alpha 8$ junction, whereas regions of protection are $\alpha 2$, $\alpha 4$ - $\alpha 5$ loop, proximal $\alpha 5$, distal $\alpha 8$, and $\alpha 9$. Dotted lines indicate the boundaries of significant differences in deuteration (± 1.0 Da). Data are representative of two independent experiments. (B) The deuterium difference plot demonstrates the relative deuterium incorporation of BAX₀ in the presence of liposomes minus the relative deuterium incorporation of BAX₀ in aqueous solution. The dotted lines indicate the boundaries for significant differences in deuteration (± 1.0 Da), and thus highlight the absence of meaningful, detectable

changes in deuterium uptake for BAX_O between the membrane and aqueous conditions. Data are representative of two independent experiments.

(C-D) Comparison of the HXMS profiles of BCL-2 BH4-bound BAX_M (C) and Fos-12 induced BAX_O (D) demonstrate that the conformational deprotection observed upon BAX oligomerization, such as in α 1, α 7 and α 8, are precisely those regions that are restrained upon treatment of BAX_M with a stapled BCL-2 BH4 helix.

See also Table S1.

Supplementary Figure S6, Related to Figure 6. Comparative HXMS analysis of BAX_M Δ C and BAX₀ Δ C, and quantitation of liposomal poration by BAX₀ vs. BAX₀ Δ C.

(A) Blue native PAGE of $BAX_{M\Delta}C$ and Fos-12-induced $BAX_{O\Delta}C$, showing the conversion of monomeric $BAX_{\Delta}C$ into a single oligomeric band migrating at ~120 kDa. The data shown are representative of two independent biological replicates.

(B) The deuterium difference plot demonstrates the relative deuterium incorporation of $BAX_{O}\Delta C$ minus the relative deuterium incorporation of $BAX_{M}\Delta C$ in aqueous solution. The dotted lines indicate the boundaries for significant differences in deuteration (± 1.0 Da). Data are representative of two independent biological replicates.

(C) The prominent regions of conformational deprotection and protection upon conversion of $BAX_{M\Delta}C$ to $BAX_{O\Delta}C$ are mapped onto the monomeric structure of BAX (PDB: 1F16) according to the orange and green color scale, and reflect a similar HXMS profile to that observed for the conversion of BAX_{M} to BAX_{O} (Figures 3, S5A).

(D) Mean pore size observed in LUVs treated with BAX₀ or BAX₀ Δ C for 15 min. Error bars are mean ± SEM for BAX₀ (n=81) and BAX₀ Δ C (n=53) pores counted. At 15 min, 84% and 30% of the liposomes were porated/disrupted upon treatment with BAX₀ or BAX₀ Δ C, respectively.

See also Table S2.

Figure S7

Supplementary Figure S7, Related to Figure 7. Mutagenesis of conserved arginines in the amphipathic BAX α 6 helix impairs mitochondrial membrane permeabilization by BAX₀.

(A) Blue native PAGE of BAX_M R134E and Fos-12-induced BAX_O R134E, demonstrating the conversion of monomeric BAX R134E into a single oligomeric band migrating at ~146 kDa.

(B) Comparative membrane translocation of tBID-triggered BAX R134E and BAX₀ R134E, as monitored by liposomal translocation assay and BAX western analysis. Liposomal fractions are marked with an overlying black bar (4-6), with supernatant fractions (7-17) to the right. The data shown are representative of two independent biological replicates.

(C) Comparative dose-responsive cytochrome *c* release upon treatment of BAX/BAKdeficient mouse liver mitochondria with BAX₀ or BAX₀ R134E. Error bars are mean \pm SEM for cytochrome *c* release experiments performed in technical triplicate, with data representative of two independent experiments. BAX_M and BAX_M R134E, 200 nM; BAX₀ and BAX₀ R134E, 6.25-200 nM.

(D) Blue native PAGE analysis of BAX_M R134E/R145E and Fos-12-induced BAX₀ R134E/R145E, demonstrating the conversion of monomeric BAX R134E/R145E into a single oligomeric band migrating at ~146 kDa.

(E) Comparative membrane translocation of tBID-triggered BAX_M R134E/R145E and BAX_O R134E/R145E, as monitored by liposomal translocation assay and BAX western analysis. Liposomal fractions are marked with an overlying black bar (4-6), with

supernatant fractions (7-17) to the right. The data shown are representative of two independent biological replicates.

(F) Comparative dose-responsive cytochrome *c* release upon treatment of BAX/BAKdeficient mouse liver mitochondria with BAX₀ R134E or BAX₀ R134E/R145E. Error bars are mean \pm SEM for cytochrome *c* release experiments performed in technical triplicate, with data representative of two independent experiments. BAX_M R134E and BAX_M R134E/R145E, 200 nM; BAX₀ R134E and BAX₀ R134E/R145E, 6.25-200 nM.

Data Set	BAX _M	BAX _M + liposomes	BAXo	BAX ₀ + liposomes	
HDX reaction details ^a	Final D ₂ O concentration = 92.3%, pH _{read} = 6.60, 21 °C				
HDX time course	0.167, 1, 10, and 60 minutes				
HDX controls	6 undeuterated controls, at least one for each state				
Back-exchange	30-35%				
Number of peptides ^b	80 identified, 39 followed coincident in all 4 states				
Sequence coverage ^c	89.1%				
Average peptide length ^c Redundancy ^c	Average length: 13.21 Redundancy: 3.01				
Replicates	2 biological replicates, 2 technical replicates of each biological				
Repeatability	+/- 0.25 relative Da				
Meaningful differences	<u>></u> 1.0 Da				

- ^a 12-fold dilution with labeling buffer [10 mM HEPES, 200 mM KCl, 1 mM MgCl₂, pD 7.0]. 1-fold dilution with quench buffer [0.8 M GdmCl, 0.8% FA pH 2.5].
- ^b Parameters to filter peptides for identification from the 6 undeuterated controls were: 4 consecutive products, 0.4 fragmentation products per amino acid, 10 ppm error.
- ^cCalculated for those peptides that were coincident in all 4 states for comparative analyses.

Table S1, Related to Figure 3. Data summary and list of experimental parameters for HXMS analyses of BAX_M and BAX_O .

Data Set	BAX _M ∆C	BAX _o ΔC	
HDX reaction details ^a	Final D ₂ O concentration = 94.7%, pH _{read} = 6.60, 21 °C		
HDX time course	0.167, 1, 10, and 60 minutes		
HDX controls	4 undeuterated controls, 2 for each state		
Back-exchange	30-35%		
Number of peptides ^b	85 identified, 50 followed coincident in both states		
Sequence coverage ^c	94.6%		
Average peptide length ^c Redundancy ^c	Average length: 10.44 Redundancy: 3.32		
Replicates	2 biological replicates, 1 technical replicate of each biological		
Repeatability	+/- 0.25 relative Da		
Meaningful differences	<u>></u> 1.0 Da		

- ^a 18-fold dilution with labeling buffer [10 mM HEPES, 200 mM KCl, 1 mM MgCl₂, pD 7.0]. 1-fold dilution with quench buffer [0.8 M GdmCl, 0.8% FA pH 2.5].
- ^b Parameters to filter peptides for identification from the 4 undeuterated controls were: 1 consecutive products, 0.25 fragmentation products per amino acid, 10 ppm error.
- ^cCalculated for those peptides that were coincident in both states for comparative analyses.

Table S2, Related to Figures 6 and S6. Data summary and list of experimental parameters for HXMS analyses of BAX_M Δ C and BAX_O Δ C.