Supplementary Information

Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis

Eun Bi Cha^{1, 2}, Keun Koo Shin¹, Jinho Seo^{1,*}, and Doo-Byoung Oh^{1,2,*}

- 1 Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- 2 Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Korea.

Contents

Supplementary Materials and Methods

Supplementary Table S1. Primer sequences.

Supplementary Figure S1. Establishment of pcDNA3.1-GFP, pCGf-GFP, and pCGfd-GFP vectors.

Supplementary Figure S2. The vector for secretory expression of anti-EGFR scFv-Fc.

Supplementary Figure S3. The EGFR expression levels of A431, HT-29, and A673 cells.

Supplementary Figure S4. The Establishment of EGFRKO A431 cells.

Construction of plasmids

The Lucia gene in the pCpGfree-Lucia purchased from InvivoGen (InvivoGen, San Diego, CA, USA) was replaced by the green fluorescent protein (GFP) gene amplified from pCFP4-CXCR4-IRES-EGFP by PCR using the GFP-Fw and GFP-Rv primers (Table S1), which generated pCGf-GFP. For the construction of pCGfd-GFP with the reduced size, the S/MAR and β-globin MAR sequences were removed from pCGf-GFP. Briefly, the sequences necessary for pCGfd-GFP were amplified by the PCR using two pairs of the dMAR-1 and dMAR-2 primers (Table S1). The amplified DNA fragments were joined by using the Gibson assembly method (New England Biolabs, Beverly, MA, USA), which generated pCGfd-GFP. All of the plasmid sequences were confirmed by sequencing (Cosmo Genetech, Seoul, Korea).

For the construction of pCGfd-aEGFR-scFv-Fc plasmid, the sequences coding anti-EGFR scFv (derived from Cetuximab) and human IgG-Fc-C223P were synthesized by Bioneer (Daejeon, Korea). The leader sequence of murine immunoglobulin kappa light chain was created in the front of the sequencing coding anti-EGFR scFv by the successive extension PCR using three forward primers (EGFR-1st-Fw, SP-2nd-Fw, SP-3rd-Fw), and one reverse EGFR-scFv-Rv primer (Table S1). Human IgG-Fc-C223P sequences were added at the end of anti-EGFR-scFv sequences by the fusion PCR using EGFR and Fc primers (Table S1). The resulting DNA fragment (leader sequence-anti-EGFR scFv-Fc) was subcloned into pCGfd by using the Gibson assembly method, which generated pCGfd-aEGFR-scFv-Fc.

The one vector CRISPR/cas9 system based on the pCGfd vector was constructed for efficient gene editing. The U6 promoter gRNA scaffold from pX330S-2 (58778; Addgene, Watertown, MA, USA) and the 1BPNLS-Cas9-1BPNLS-2AGFP gene from pCAG-1BPNLS-Cas9-1BPNLS-2AGFP (87109; Addgene) was amplified using U6-gRSca and NLS-GFP primers (Table S1). The resulting DNA fragments were subcloned into pCGfd vector, which generated pCGfd-gR-Cas9-2A-GFP. gRNA targeting EGFR gene was designed by using CCTop (https://crispr.cos.uni-heidelberg.de/) and subcloned into the pCGfd-gR-Cas9-2A-GFP, which produced pCGfd-gR-Cas9-2A-GFP.

Detection of EGFR using flow cytometry and immunoblotting

Cells were harvested and fixed with 2% paraformaldehyde (Bio-solution, Ansan, Korea) for 10 min. After fixing, the cells were permeabilized with permeabilization buffer (eBioscience, San Diego, CA, USA). The permeabilized cells were incubated with normal rabbit IgG (NI01; Sigma-Aldrich) or anti-EGFR antibody (Merck-Millipore) for 30 min at 4 °C. After incubation, the cells were incubated with Alexa Fluor 647-tagged anti-rabbit IgG secondary antibody (Thermo Fisher Scientific) for 30 min at 4 °C, and then analyzed by flow cytometry (FACS verse).

To detect the EGFR expressions in the wild-type and EGFR-knockout (EGFR^{KO}) A431 cells, the harvested cells were lysed with sample buffer and boiled for 10 min. The samples were then separated by SDS-PAGE using an 8% gel, and then transferred to a polyvinylidene fluoride (PVDF) membrane. The membrane was blocked by incubating with 5% skim milk for 1 h, followed by incubation with anti-EGFR (Merck-Millipore) and β-actin (Sigma Aldrich) antibodies for overnight at 4 °C. After incubation, the membrane was washed three times with TBST. The membrane was then incubated with HRP-conjugated anti-rabbit (Enzo Life Science, Farmingdale, NY, USA) or mouse IgG (Thermo Fisher Scientific) secondary antibodies for 1 h. The target protein bands were visualized using a chemiluminescence ECL solution.

Table S1. Primer sequences

Primer name	Primer sequences	Product
GFP-Fw	5'-CATGCCATGGTGAGCAAGGGCGAGG-3'	GFP
GFP-Rv	5'-CTAGCTAGC TTACTTGTACAGCTCGTCCATG-3'	GFP
dMAR-1-Fw	5'-CCTCTACAAATGTGGTAAAAATCAGCAGTTCAACCTG-3'	pCGfd-GFP
dMAR-1-Rv	5'-ATTGACTCCTGCAGGAATTCTAATTTTAATTAAAACAGGTAGTTG-3'	pCGfd-GFP
dMAR-2-Fw	5'-GAATTCCTGCAGGAGTCAAT-3'	pCGfd-GFP
dMAR-2-Rv	5'-CCATACCACATTTGTAGAGG-3'	pCGfd-GFP
EGFR-1st-Fw	5'-TCTGGGTGTCAGGCACCTGTGGAGACATCTTGCTGACTCAGTCTCC-3'	Anti-EGFR-scFv
SP-2nd-Fw	5'-GGCCCAAGTGCTGATGCTGTTGCTGCTCTGGGTGTCAGGCACCTGT-3'	Anti-EGFR-scFv
SP-3rd-Fw	5'-GGTGTACAGTAGCTTCCACCATGGACTCCCAGGCCCAAGTGCTGATGCTGT-3'	Anti-EGFR-scFv
EGFR-scFv-Rv	5'- TCTGGAGATTTGGGCTCAACTGCAGAGACAGTGACCAGAG-3'	Anti-EGFR-scFv
Fc-Fw	5'-GTTGAGCCCAAATCTCCAGAC-3'	Anti-EGFR-scFv-Fc
Fc-Rv	5'- CTTATCATGTCTGGCCAGCTAGCTCATTTACCCGGAGACAG-3'	Anti-EGFR-scFv-Fc
U6-gRSca-Fw	5'-CGTTAATTAAGGCATGTGAGGGCCTATTTC-3'	U6 promoter gRNA
U6-gRSca-Rv	5'-CGGAATTC TAGAGCCATTTGTCTGCAG-3'	U6 promoter gRNA
NLS-GFP-Fw	5'-GGTGTACAGTAGCTTCCACCATGAAGCGGACTGCTGATGG-3'	1BPNLS-Cas9-1BPNLS-2AGFP
NLS-GFP-Rv	5'-CTTATCATGTCTGGCCAGCTAGCTCACTTGTACAGCTCGTCCATGC-3'	1BPNLS-Cas9-1BPNLS-2AGFP
gRhEGFR-Fw	5'-CACCGGAAAACCTGCAGATCATCAG	guide RNA EGFR
gRhEGFR-Rv	5'-AAACCTGATGATCTGCAGGTTTTCC-3'	guide RNA EGFR

Fig. S1. Establishment of pcDNA3.1-GFP, pCGf-GFP, and pCGfd-GFP vectors. (A) Plasmid maps for pcDNA3.1-GFP, pCGf-GFP, and pCGfd-GFP. (B) Plasmids were incubated with the restriction enzyme, Nhel, and then separated in 1% agarose gel. M: DNA size marker

Fig. S2. The vector for secretory expression of anti-EGFR scFv-Fc. (A) Plasmid map of pCGfd-aEGFR-scFv-Fc. The sequences coding the leader sequence, anti-EGFR-scFv, and IgG-Fc are represented. (B) Domain structure of anti-EGFR scFv-Fc antibody.

Fig. S3. The EGFR expression levels of A431, HT-29, and A673 cells. (A) Representative histograms of EGFR expressions. The EGFR expressions of A431, HT-29, and A673 cells were analyzed by the flow cytometry using an anti-EGFR antibody. (B) Mean fluorescence intensities (MFIs) of EGFR expressions were compared. Data are the means ± standard deviation, n = 3. Statistical significance was determined by Two-way ANOVA, ns = non-significance, *p<0.05, and ***p<0.001.

Fig. S4. Establishment of EGFR^{KO} A431 cells. The EGFR^{KO} A431 cells were generated using CRISPR/Cas9. The EGFR expression levels of wild-type (WT) and EGFR^{KO} cells were analyzed by flow cytometry (A) and immunoblotting (B) using an anti-EGFR antibody. Data are presented as the mean ± standard deviation, n = 3. Statistical significance was determined by two-way ANOVA, ns = non-significance, and ***p<0.001. (C) The alignment of the EGFR sequences between the wild type and EGFR^{KO} clone. Red letters indicate the stop codons induced by one bp insertion in the EGFR^{KO} clone.