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Additional Methods 
 
Relative Water Content  

The relative water content (RWC) of a leaf was calculated using equation 1: 
 
RWC	(%) = !"#$%	'#()%*+,"-	'#()%*

./")(0	'#()%*+,"-	'#()%*
× 100	(%)    (1) 

 
The dry weight was determined after each leaf was heated at 50 °C for 5 days, when the mass 
became constant. The turgid weight was measured after immersing fresh leaves in distilled water 
for 5 hours in the dark and removing extra water on the surface with Texwipes. 
 

  



 
 

 
 

 
Fig. S1. Effects of ozone exposure. Images of underside (abaxial side) of a grape leaf after 
exposure to increasing doses of ozone. The scale bars are 10 mm. The vapor-deposited PEDOT-Cl 
electrode (“tattoo”) is clearly visible in the 0 ppmh image. Photo Credit: Dr. Jae Joon Kim, 
University of Massachusetts Amherst.  



 
 

 

 
Fig. S2. Comparison of electrode materials. a, Images of electrodes on grape leaves. The scale 
bars are 10 mm. The expansion shows a picture of the as-deposited PEDOT:PSS droplet on the 
hydrophobic surface of grape leaf. b, Picture of the PEDOT-Cl tattoo before and after exposure to 
ozone. c-f, Magnified images of the electrodes on the leaf after bending and rinsing treatment. The 
scale bars are 5 mm (top row) and 1 mm (bottom row). g-i, Comparison of relative conductivity 
change after water, saline water and ozone exposure. Photo Credit: Dr. Jae Joon Kim, University 
of Massachusetts Amherst.  



 
 

 

 
 
Fig. S3. Investigating the surface of a grape leaf. SEM images of the surface of a grape leaf.  



 
 

 

 
 
Fig. S4. Measurement setup. Picture and scheme of a typical impedance measurement on an 
electrode decorated grape leaf. The scale bar is 10 mm. Photo Credit: Dr. Jae Joon Kim, University 
of Massachusetts Amherst.  



 
 

 

 
 
Fig. S5. Conduction pathways in a representative leaf. Scheme of the conduction pathways 
operating at different bias frequencies during an impedance measurement.  



 
 

 
 

 
 
Fig. S6. Effect of electrode dimensions on impedance spectra of a grape leaf. a, Image of 
electrodes on the grape leaf. The scale bar is 10 mm. Photo Credit: Dr. Jae Joon Kim, University 
of Massachusetts Amherst. b, impedance and c, phase as a function of frequency.  



 
 

 

 
 
Fig. S7. Calibrating ozone dose. Calibration curve for obtaining ozone dose (ppmh) as a function 
of exposure time inside an ozone generation chamber.  



 
 

 
 

 
 
Fig. S8. The equivalent electrical circuit used to model impedance data. The equivalent 
circuit contains components arising from the electrode and leaf tissue.  



 
 

 

Table S1. Extracted values from circuit modelling. Extracted values, percent error for each 
circuit component and the corresponding fitting accuracy (chi-square). 
 

Ozone exposure   Element 
Electrode part Tissue part Chi- square Rpoly (Ω) AW (Ω) BW (s) p Cepi (F) Rex (Ω) Rin (Ω) Y0 p Cm (F) 

0  ppmh 
Value  (Ω, F) 1.1.E+04 1.4.E+05 1.1.E-03 3.2.E-01 1.7.E-10 3.3.E+04 4.2.E+03 4.2.E-09 6.6.E-01 4.6.E-11 1.8.E-06 Error  (%) 2.0.E+00 8.9.E-01 1.8.E+00 5.1.E-01 1.7.E+00 1.4.E+00 5.2.E-01 2.2.E+00 2.0.E-01 - 

6.5 ppmh 
Value  (Ω, F) 1.2.E+04 1.1.E+05 1.1.E-03 3.4.E-01 2.0.E-10 3.3.E+04 4.7.E+03 5.3.E-09 6.4.E-01 4.5.E-11 1.4.E-06 Error  (%) 9.2.E-01 7.0.E-01 1.4.E+00 3.8.E-01 1.3.E+00 1.1.E+00 4.7.E-01 2.3.E+00 2.1.E-01 - 

10.9 ppmh 
Value  (Ω, F) 9.9.E+03 9.2.E+04 7.4.E-03 3.4.E-01 2.2.E-10 3.8.E+04 5.8.E+03 7.8.E-09 6.1.E-01 4.7.E-11 1.7.E-06 Error  (%) 1.4.E+00 8.5.E-01 1.3.E+00 4.4.E-01 1.8.E+00 1.3.E+00 5.8.E-01 3.1.E+00 3.0.E-01 - 

15.0 ppmh 
Value  (Ω, F) 6.2.E+03 8.6.E+04 6.4.E-04 3.6.E-01 2.5.E-10 4.7.E+04 8.5.E+03 1.3.E-08 5.5.E-01 3.6.E-11 1.7.E-06 Error  (%) 2.9.E+00 9.7.E-01 1.2.E+00 4.5.E-01 2.2.E+00 1.5.E+00 7.8.E-01 4.5.E+00 4.8.E-01 - 

18.9 ppmh 
Value  (Ω, F) 2.7.E+03 7.0.E+04 5.4.E-04 3.8.E-01 2.5.E-10 7.1.E+04 1.1.E+04 4.9.E-08 4.4.E-01 4.3.E-11 2.3.E-06 Error  (%) 4.1.E+00 2.1.E+00 1.5.E+00 7.8.E-01 2.2.E+00 2.0.E+00 1.6.E+00 7.8.E+00 1.1.E+00 - 

22.7 ppmh 
Value  (Ω, F) 5.2.E+03 1.5.E+05 8.9.E-04 3.8.E-01 8.5.E-11 6.2.E+04 7.9.E+03 6.7.E-08 3.6.E-01 4.8.E-12 5.0.E-06 Error  (%) 1.9.E+00 1.6.E+00 2.1.E+00 6.9.E-01 2.0.E+00 2.8.E+00 1.5.E+01 2.3.E+01 4.0.E+00 - 

26.5 ppmh 
Value  (Ω, F) 7.0.E+03 1.6.E+05 8.0.E-04 3.8.E-01 7.9.E-11 5.4.E+04 2.0.E+04 9.6.E-09 4.7.E-01 2.7.E-12 4.8.E-06 Error  (%) 3.2.E+00 8.5.E-01 1.4.E+00 4.2.E-01 1.8.E+00 1.7.E+00 6.0.E+00 2.3.E+01 2.9.E+00 - 

 
The equivalent electrical circuit model is comprised of an electrode part and tissue components, 

as previously reported by our research group (47). Electrode parts include a resistor, Rpoly, that 
represents the intrinsic conductivity of the PEDOT-Cl electrode, a capacitor, Cepi, that accounts 
for the capacitance introduced at the interface between the electrode and the insulating leaf 
epidermis, and a transmissive Warburg component, Ws, that stands for ion diffusion between the 
polymer coating and leaf cells. The Warburg component is further comprised of three subparts: a 
diffusion impedance constant, AW, a Warburg exponent, p, and a characteristic ion diffusion time, 
BW. Additional circuit components for the saline droplet were not necessary to accurately fit the 
recorded data in the frequency range used in this study. The Hayden model (49) was used to 
translate three principal cellular components of a grape leaf into discrete circuit elements: 
extracellular fluid was represented by a resistor, Rex; intracellular fluid was represented by a 
resistor, Rin; and the cell membrane was represented by capacitor, CM. The cell membrane 
capacitance was represented in the circuit as a constant phase element (CPE) instead of a simple 
capacitor because leaf tissue is composed of an ensemble of cells that result in electronic dispersity. 
The value for CM was calculated using Equation 2 (48,50):  

𝐶1 = 𝑌2
!
"(𝑅(3 + 𝑅#4)

!#"
"       (2) 

 
where Y0 is the CPE constant and p is the CPE exponent.  
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Fig. S9. A. Comparison of the impedance-frequency relationship between the measured 
data and the fitting curve. The measured data is plotted with a solid black line and the fitting 
curve based on the equivalent model circuit is plotted as a dotted line. B. Comparison of the 
phase-frequency relationship between the measured data and the fitting curve. The measured 
data is plotted with a solid black line and the fitting curve based on the equivalent model circuit 
is plotted as a dotted line. 
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