Supplemental tables and figures for the manuscript:

Characterization of upregulated adhesion GPCRs in Acute Myeloid Leukemia

Jiawen Yang¹, Sharon Wu¹, Houda Alachkar¹

¹School of Pharmacy, University of Southern California, Los Angeles, CA

Genes	Number of patients with gene upregulation	Number of patients with gene downregulation
ADGRB1	23	0
CELSR2	19	0
ADGRD1	16	0
ADGRE1	21	0
ADGRE2	28	25
ADGRE5	22	10
ADGRG1	20	0
ADGRG3	23	0
ADGRA1	4	0
ADGRA2	27	0
ADGRA3	22	27
ADGRB2	15	0
ADGRB3	9	0
CELSR1	20	0
CELSR3	15	0
ADGRD2	13	0
ADGRE3	14	0
ADGRE4P	12	0
ADGRF1	5	0
ADGRF2	1	0
ADGRF3	20	18
ADGRF4	3	0
ADGRF5	15	0
ADGRG2	20	11
ADGRG4	15	0
ADGRG5	25	32
ADGRG6	7	0
ADGRG7	2	0
ADGRL1	16	0
ADGRL2	15	0
ADGRL3	13	0
ADGRL4	14	0
ADGRV1	6	0

Table S1. The frequencies of patients with upregulated and downregulated aGPCR genesin TCGA-AML dataset

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value
	(n=	=150)	(n	=23)	
FLT3(n, %)	40	26.7%	9	39.1%	0.223
TP53(n, %)	5	3.3%	9	39.1%	<0.001
WT1(n, %)	10	6.7%	0	0.0%	0.362
IDH1(n, %)	14	9.3%	2	8.7%	>0.999
IDH2(n, %)	17	11.3%	0	0.0%	0.133
CEBPA(n, %)	12	8.0%	1	4.3%	>0.999
RUNX1(n, %)	15	10.0%	0	0.0%	0.225
NRAS(n, %)	10	6.7%	2	8.7%	0.663
TET2(n, %)	11	7.3%	4	17.4%	0.119
NPM1(n, %)	40	26.7%	8	34.8%	0.456
DNMT3A(n, %)	34	22.7%	8	34.8%	0.204

Table S2a. Expression of *BAI1(ADGRB1)* (Z-score≥1) according to the top mutations present in AML (N=173 patients)

Table S2b. Expression of *CELSR2(ADGRC1)* (Z-score≥1) according to the top mutations present in AML (N=173 patients)

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value
	(n=	=152)	(n	=21)	
FLT3(n, %)	45	29.6%	4	19.0%	0.440
TP53(n, %)	13	8.6%	1	4.8%	>0.999
WT1(n, %)	9	5.9%	1	4.8%	>0.999
IDH1(n, %)	16	10.5%	0	0.0%	0.224
IDH2(n, %)	15	9.9%	2	9.5%	>0.999
CEBPA(n, %)	13	8.6%	0	0.0%	0.372
RUNX1(n, %)	13	8.6%	2	9.5%	>0.999
NRAS(n, %)	12	7.9%	0	0.0%	0.365
TET2(n, %)	14	9.2%	1	4.8%	0.698
NPM1(n, %)	42	27.6%	6	28.6%	>0.999
DNMT3A(n, %)	37	24.3%	5	23.8%	>0.999

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value				
	(n=	=156)	(n	=17)					
FLT3(n, %)	46	29.5%	3	17.6%	0.402				
TP53(n, %)	10	6.4%	4	23.5%	0.035				
WT1(n, %)	10	6.4%	0	0.0%	0.601				
IDH1(n, %)	16	10.3%	0	0.0%	0.373				
IDH2(n, %)	14	9.0%	3	17.6%	0.224				
CEBPA(n, %)	11	7.1%	2	11.8%	0.620				
RUNX1(n, %)	13	8.3%	2	11.8%	0.645				
NRAS(n, %)	9	5.8%	3	17.6%	0.099				
TET2(n, %)	15	9.6%	0	0.0%	0.367				
NPM1(n, %)	46	29.5%	2	11.8%	0.158				
DNMT3A(n, %)	38	24.4%	4	23.5%	>0.999				

Table S2c. Expression of *GPR133 (ADGRD1)* (Z-score≥1) according to the top mutations present in AML (N=173 patients)

Table 2d. Expression of *CD97 (ADGRE5)* (Z-score≥1) according to the top mutations present in AML (N=173 patients)

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value				
	(n=	=147)	(n	=26)					
FLT3(n, %)	38	25.9%	11	42.3%	0.101				
TP53(n, %)	13	8.8%	1	3.8%	0.697				
WT1(n, %)	10	6.8%	0	0.0%	0.362				
IDH1(n, %)	15	10.2%	1	3.8%	0.472				
IDH2(n, %)	14	9.5%	3	11.5%	0.724				
CEBPA(n, %)	12	8.2%	1	3.8%	0.694				
RUNX1(n, %)	15	10.2%	0	0.0%	0.131				
NRAS(n, %)	10	6.8%	2	7.7%	>0.999				
TET2(n, %)	15	10.2%	0	0.0%	0.131				
NPM1(n, %)	34	23.1%	14	53.8%	0.003				
DNMT3A(n, %)	33	22.4%	9	34.6%	0.215				

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value					
	(n=	=151)	(n	=22)						
FLT3(n, %)	41	27.2%	8	36.4%	0.448					
TP53(n, %)	14	9.3%	0	0.0%	0.221					
WT1(n, %)	10	6.6%	0	0.0%	0.365					
IDH1(n, %)	14	9.3%	2	9.1%	>0.999					
IDH2(n, %)	12	7.9%	5	22.7%	0.046					
CEBPA(n, %)	13	8.6%	0	0.0%	0.378					
RUNX1(n, %)	14	9.3%	1	4.5%	0.696					
NRAS(n, %)	11	7.3%	1	4.5%	>0.999					
TET2(n, %)	14	9.3%	1	4.5%	0.696					
NPM1(n, %)	34	22.5%	14	63.6%	<0.001					
DNMT3A(n, %)	34	22.5%	8	36.4%	0.184					

Table 2e. Expression of *EMR1(ADGRE1)* (Z-score≥1) according to the top mutations present in AML(N=173 patients)

Table 2f. Expression of *EMR2(ADGRE2)* (Z-score≥1) according to the top mutations present in AML(N=173 patients)

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value					
	(n=	=142)	(n	=31)						
FLT3(n, %)	40	28.2%	9	29.0%	>0.999					
TP53(n, %)	12	8.5%	2	6.5%	>0.999					
WT1(n, %)	9	6.3%	1	3.2%	0.693					
IDH1(n, %)	13	9.2%	3	9.7%	>0.999					
IDH2(n, %)	11	7.7%	6	19.4%	0.087					
CEBPA(n, %)	12	8.5%	1	3.2%	0.468					
RUNX1(n, %)	12	8.5%	3	9.7%	0.734					
NRAS(n, %)	10	7.0%	2	6.5%	>0.999					
TET2(n, %)	14	9.9%	1	3.2%	0.313					
NPM1(n, %)	35	24.6%	13	41.9%	0.075					
DNMT3A(n, %)	31	21.8%	11	35.5%	0.113					

Genes	Z-sc	ore(<1)	Z-sco	ore(≥1)	p value
	(n=	=147)	(n	=26)	
FLT3(n, %)	39	26.5%	10	38.5%	0.075
TP53(n, %)	10	6.8%	4	15.4%	0.083
WT1(n, %)	9	6.1%	1	3.8%	1
IDH1(n, %)	15	10.2%	1	3.8%	0.697
IDH2(n, %)	16	10.9%	1	3.8%	0.7
CEBPA(n, %)	12	8.2%	1	3.8%	1
RUNX1(n, %)	13	8.8%	2	7.7%	1
NRAS(n, %)	11	7.5%	1	3.8%	1
TET2(n, %)	12	8.2%	3	11.5%	0.411
NPM1(n, %)	39	26.5%	9	34.6%	0.2
DNMT3A(n, %)	35	23.8%	7	26.9%	0.426

Table 2g. Expression of *GPR56 (ADGRG1)* (Z-score≥1) according to the top mutations present in AML (N=173 patients)

Table 2h. Expression of *GPR97 (ADGRG3)* (Z-score≥1) according to the top mutations present in AML (N=173 patients)

Genes	Z-sco	ore(<1)	Z-sco	ore(≥1)	p value				
	(n=	=150)	(n	=23)					
FLT3(n, %)	38	25.3%	11	47.8%	0.044				
TP53(n, %)	11	7.3%	3	13.0%	0.404				
WT1(n, %)	8	5.3%	2	8.7%	0.624				
IDH1(n, %)	13	8.7%	3	13.0%	0.451				
IDH2(n, %)	15	10.0%	2	8.7%	1				
CEBPA(n, %)	12	8.0%	1	4.3%	1				
RUNX1(n, %)	14	9.3%	1	4.3%	0.696				
NRAS(n, %)	10	6.7%	2	8.7%	0.663				
TET2(n, %)	15	10.0%	0	0.0%	0.225				
NPM1(n, %)	37	24.7%	11	47.8%	0.026				
DNMT3A(n, %)	34	22.7%	8	34.8%	0.204				

Table S3.	Indenuity	pathway	analv	sis of	differentially	v exi	pressed	adhesion	GPCR	aenes.
	ingenuity	patitivay	anary	313 01	unicicituali	, cv	pi coocu	adhesion		genes.

	-log(p-	_	Z-
Ingenuity Canonical Pathways	value)	Ratio	score
EIF2 Signaling	1.48E+01	3.48E-01	-2.828
Regulation of eIF4 and p70S6K Signaling	8.96E+00	3.25E-01	0.209
Hereditary Breast Cancer Signaling	8.91E+00	3.33E-01	NaN
Salvage Pathways of Pyrimidine Ribonucleotides	6.88E+00	3.51E-01	1.372
mTOR Signaling	6.69E+00	2.75E-01	0
Role of BRCA1 in DNA Damage Response	6.31E+00	3.62E-01	-1.5
Fcϳ Receptor-mediated Phagocytosis in			
Macrophages and Monocytes	6.30E+00	3.44E-01	3.182
Huntington's Disease Signaling	6.18E+00	2.56E-01	0.392
IL-8 Signaling	5.87E+00	2.66E-01	3.286
ATM Signaling	5.73E+00	3.27E-01	-1.177
Telomerase Signaling	5.67E+00	3.08E-01	0.577
Pyridoxal 5'-phosphate Salvage Pathway	5.50E+00	3.69E-01	2.041
Integrin Signaling	5.48E+00	2.56E-01	3.501
Apoptosis Signaling	5.46E+00	3.23E-01	1.095
PI3K/AKT Signaling	5.26E+00	2.90E-01	-0.164
Chronic Myeloid Leukemia Signaling	5.25E+00	3.04E-01	NaN
Cell Cycle: G1/S Checkpoint Regulation	5.23E+00	3.58E-01	-0.277
B Cell Receptor Signaling	5.07E+00	2.58E-01	2.828
NGF Signaling	4.94E+00	2.88E-01	3.212
DNA Double-Strand Break Repair by Homologou	S	0.405.04	
Recombination	4.69E+00	6.43E-01	NaN
Acute Myeloid Leukemia Signaling	4.69E+00	3.03E-01	1.732
p70S6K Signaling	4.69E+00	2.75E-01	1.333
Cell Cycle: G2/M DNA Damage Checkpoint	4 60F±00	3 80⊑-01	2
Molecular Mechanisms of Cancer	4.09E+00	2.00⊑-01	2 NaN
		2.102-01	2 2 2 4

patients

Figure S1. Heatmaps of the adhesion GPCR genes. a. Heatmap of the expression of the 33 aGPCR genes (obtained from TCGA-AML). The red rectangles indicate the eight aGPCRs found to be associated with worse clinical outcome. **b.** Heatmap of the eight aGPCR genes only (red represent high RNA expression, green represent low RNA expression).

GPR110 Overall Survival

- n=6

Months

50

100-

50

승

Overa Surviva

Overa Surviva

- Z score ≥ 1

- Z score < 1

Months

100-

50-

۰ł

Overa Surviva

100

p-value: 0.3713

n=167

150

Months

Figure S2. Survival analysis of AML patients associated with 29 adhesion GPCRs mRNA expression. a. Overall survival analysis of AML patients associated with 29 individual aGPCRs. b. Disease-free survival analysis of AML patients associated with 29 individual aGPCRs

Figure S3. Survival analysis of AML associated with eight adhesion GPCRs mRNA expression in Metzeler Leukemia 1 and 2 datasets. a. Overall survival analysis of AML patients in Metzeler leukemia 1 dataset, associated with *ADGRG1(GPR56)*. b,c,d. Overall survival analysis of AML patients in Metzeler leukemia 2 dataset, associated with *ADGRG1(GPR56)*, *ADGRE2(EMR2)*, *ADGRE5(CD97)*. e. Overall survival of 79 AML patients from the Metzeler2 dataset dichotomized into 8-aGPCRs high (patients with at least one of the eight aGPCRs among the top 10% mRNA expression level) and low group (the remainder patients, or those with none of the eight genes among the top 10% mRNA expression level). The 8 genes are: *ADGRB1 (BAI1)*, *ADGRC2 (CELSE2)*, *ADGRE1 (EMR1)*, *ADGRE2 (EMR2)*, *ADGRE5 (CD97)*, *ADGRG1 (GPR56)*, *ADGRG3 (GPR97)*, *ADGRG5 (GPR133)*.

CELSR2

Figure S4. Eight adhesion GPCRs mRNA expression in patients with AML according to molecular risk status, cytogenetic and FAB classifications. log2 mRNA expression for all the eight genes were categorized by Molecular risk status, cytogenetic and FAB classifications (from left to right): *p < 0.05; **p<0.01; ***p < 0.001. a. *BAI*; b. *CELSR2*; c. *GPR133*; d. *EMR1*; e. *EMR2*; f. *CD97*; g. *GPR56*; h. *GPR97*.

Figure S5. Correlation between expression levels of the eight adhesion GPCRs genes. Spearman's rho correlation analysis and Pearson correlation analysis between expression levels of the eight aGPCR genes are conducted. Scatter-plots showing a log2 transformed mRNA expression levels of *ADGRE5* and *ADGRE2*, *ADGRE5* and *ADGRE1*, *ADGRB1* and *ADGRG1*, *ADGRG1* and *ADGRG3*. Expression correlations are shown in four pairs of the eight genes.

Figure S6. The methylation β value distribution of 109 patients in each of the eight adhesion GPCR genes. The 109 patients from the TCGA dataset whose methylation value are available were included in the analysis. The X-axis represent the methylation β -value, the Y-axis represent the distribution of the patients.

Figure S7. Associations between methylation and individual adhesion GPCR mRNA expression. Adhesion GPCRs methylation β value comparison between patients according to their expression (Z-score ≥ 1 and < 1). A non-parametric Mann–Whitney U test was used to compare the median of methylation β value between the groups.

	Similarities are on the lower-left side of the table, and identities on the up													e uppe	r-right.																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
1. [Human] ADGRL1		78	68	57	40	41	42	-38	44	21	-20	-21	-33	33	32	37	.27	24	18	28	22	28	28	26	27	28	20	28	32	25	30	-28	22.
2. [Human] ADGRL2	89		73	55	40	39	41	38	45	20	20	-20	33	32	28	34	28	24	18	28	22	27	28	27	27	28	30	28	32	26	31	27	22
3. [Human] ADGRL3	84	85		54	39	38	41	40	45	21	21	20	34	35	32	38	27	25	18	28	23	28	29	31	30	20	32	28	35	28	33	28	22
4. [Human] ADGRL4	74	74	72		40	42	42	40	43	21	18	20	30	29	30	32	25	26	21	28	24	25	28	30	28	22	33	29	32	27	29	28	191
5. [Human] ADGRE1	58	58	59	58		54	54	52	48	- 17	-21	18	-32	27	28	36	-27	22	19	24	-21	-21	-24	26	23	24	27	23	28	29	24	24	22
6. [Human] ADGRE2	59	58	61	59	68	-	82	61	44	20	21	20	32	31	25	30	28	24	19	30	24	24	28	28	25	23	31	25	29	26	29	24	21
7. [Human] ADGRE3	59	57	61	60	70	90		81	48	15	18	18	32	33	26	31	28	25	20	30	23	26	28	27	27	23	32	26	31	28	29	26	22
8. [Human] ADGRE4P	58	65	62	60	68	78	76	-	45	18	20	18	31	31	26	31	27	23	19	28	21	23	23	24	22	24	28	24	29	26	27	24	181
9. [Human] ADGRE5	62	83	62	62	69	62	64	63		23	22	24	-31	28	29	- 33	28	24	23	32	26	2.5	27	28	28	24	28	26	28	29	28	28	18.
10. [Human] ADGRA1	39	40	40	39	33	38	35	35	38	-	58	59	-24-	18	24	20	- 97	17	15	19	20	18	21	20	20	37	23	12	19	18	22	44	18
11. [Human] ADGRA2	38	37	38	35	36	37	35	37	38	71	•	51	21	20	22	21	19	18	14	10	-19	18	- 18	18	37	18	18		18	20	19	20	12
12. [Human] ADGRA3	38	40	41	38	37	38	38	38	.43	73	86	1.	.24	20	23	19	-14	18	10	17	22	- 16	21	19	22	19	21	15	21	17	21	10	12
13. [Human] CELSR1	58	58	57	52	54	55	55	52	53	42	37	44		57	49	32	-24	21		24	22	25	28	23	25	20	29	21	29	22	28	23	21
14. [Human] CELSR2	53	53	54	49	47	48	48	48	47	38	38	43	77		48	29	31	22	19	25	21	22	28	27	28	24	27	21	24	22	28	27	21
15. [Human] CELSR3	50	47	51	48	48	51	49	48	48	41	38	43	68	66		35	30	20	18	22	22	22	28	25	25	24	27	181	24	2.3	25	25	21
16. [Human] ADGRD1	57	54	58	55	51	51	52	50	53	37	38	41	52	50	55	-	33	28	20	28	26	35	30	31	31	24	29	22	29	28	30	22	20
17. [Human] ADGRD2	45	48	44	43	44	45	46	47	43	32	30	32	44	48	45	49		22	28	26	23	25	-24	22	24	25	23	23	22	24	23	22	18
18. [Human] ADGRF1	41	41	44	45	44	40	41	41	43	32	33	35	44	38	38	48	39		45	38	55	53	28	26	2.5	37	25	21	27.	23	21	23	19
19. [Human] ADGRF2	38	38	37	38	40	34	35	35	39	28	29	31	36	34	33	37	42	59		33	52	44	23	19	20	15	19	21	18	16	15	-17	17
20. [Human] ADGRF3	44	47	45	45	48	45	45	44	49	32	35	34	47	43	41	45	44	58	52	•	30	42	24	23	2.4	22	23	22	24	22	24	23	17
21. [Human] ADGRF4	40	40	43	42	48	40	41	40	43	34	-34	-38	45	39	41	47	40	73	62	60		53	24	24	24	18	24	22	22	18	23	20	16)
22. [Human] ADGRF5	44	44	46	42	38	39	40	41	40	33	31	35	42	38	41	52	38	70	58	59	69		26	25	28	- 19	24	21	23	19	28	22	17
23. [Human] ADGRB1	48	50	52	48	49	51	52	50	50	35	32	38	50	47	48	49	41	43	38	48	48	44	•	73	80	19	27	24	20	24	26	25	22
24. [Human] ADGRB2	48	49	52	49	48	48	47	47	48	33	32	34	49	45	47	50	38	43	35	43	42	43	85	1.0	78	-13	30	23	28	25	30	-26	21
25. [Human] ADGRB3	49	48	51	48	45	49	49	45	46	34	32	-37.	49	45	48	60	39	42	38	43	45	44	88	89		18	28	23	27	22	27	25	22
26. [Human] ADGRG1	48	48	45	39	-41	38	37	42	41	32	35	38	38	35	39	44	40	38	36	38	37	37	37	37	35		32	27	31	38	33	21	18
27. [Human] ADGRG2	47	47	49	48	48	47	48	48	48	39	38	41	46	44	45	49	42	43	37	41	44	40	49	48	48	53	1	32	67	35	82	29	23
28. [Human] ADGRG3	42	42	43	42	38	41	41	41	41	31	34	33	39	38	38	40	37	40	35	38	39	37	39	37	30	43	52		33	31	31	28	22
29. [Human] ADGRG4	49	49	54	49	49	48	47	48	47	-33	-33	38	44	43	41	48	41	42	35	40	43	38	49	47	47	52	82	48	-	34	54	30	22
30. [Human] ADGRG5	40	40	43	44	44	42	44	43	44	34	35	35	39	38	39	43	38	41	32	37	39	34	39	41	38	54	58	48	54		33	26	20
31. [Human] ADGRG6	50	49	53	49	44	49	48	47	46	40	36	39	45	45	45	49	42	42	35	41	44	43	48	47	47	54	70	48	76	55	-	28	21
32. [Human] ADGRG7	45	48	48	48	48	45	48	48	52	34	38	39	46	44	48	43	41	38	34	41	39	37	49	49	47	42	51	45	50	48	49	•	20
33. [Human] ADGRV1	42	43	45	39	42	38	38	40	40	34	32	-31	41	42	40	41	-38	38	33	35	41	38	42	40	40	35	43	42	45	37	43	42	

Figure S8: A matrix of the structure similarity between members of the aGPCR family: Similarity are shown on the lower-left side of the table and identities on the upper-right. The color of each score ranged from red (the lowest) to green (the highest). The figure was generated on gpcrdb.org/similaritymatrix/ and selecting for structurally conserved positions for the sequence segment selection.