Supplementary Figures to: Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in *Xenopus* and zebrafish embryos Thomas Naert^{1,2,6}, Dieter Tulkens^{1,2,6}, Nicole A. Edwards³, Marjolein Carron^{1,4}, Nikko-Ideen Shaidani⁵, Marcin Wlizla⁵, Annekatrien Boel⁴, Suzan Demuynck^{1,2}, Marko E. Horb⁵, Paul Coucke⁴, Andy Willaert⁴, Aaron M. Zorn³, Kris Vleminckx^{1,2,4§} #### § Corresponding author Kris Vleminckx, Ph.D. Dept. for Biomedical Molecular Biology Ghent University Technologiepark 71 B-9052 Ghent (Zwijnaarde) Tel +32-9-33-13760, Fax +32-9-221 76 73, E-mail: kris.vleminckx@irc.UGent.be ¹ Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ² Cancer Research Institute Ghent, Ghent, Belgium ³ Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA ⁴ Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ⁵ National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ⁶ These authors contributed equally to the work: Thomas Naert and Dieter Tulkens Fig. S1: ezh2 CRISPR/Cas9 gene editing outcome can be accurately predicted via the online prediction algorithm InDelphi. (A) Column graphs showing overlay of variant calls (%) between *in vivo* observations and *in silico* predictions (B) Pearson correlation with significance interval between *in vivo* observations and *in silico* predictions for the ezh2 gRNA. **Fig. S2:** Pearson correlations between *in vivo* observed (obtained by targeted amplicon sequencing) and respective *in silico* predicted variant frequencies for 28 gRNAs injected in *X. tropicalis* embryos. gRNAs are injected as Cas9/gRNA-ribonucleoprotein complexes at early developmental stages (2 to 8 cell stage). Target regions are PCR amplified and sequenced using MiSeq sequencing (Illumina) and raw data is processed using the BATCH-GE analysis software. *In silico* predictions are generated by the InDelphi software algorithm. Plots show correlations between *in vivo* observed and *in silico* predicted variant frequencies. x_g1, x_g2, x_g3 refers to different guide RNAs against the same gene. (****p < 0.0001; ***p < 0.001; ***p < 0.01). **Fig. S3:** Pearson correlations between *in vivo* observations (generated by Sanger sequencing and sequence trace deconvolution) and respective *in silico* predictions of 14 gRNAs injected in *X. tropicalis* embryos. gRNAs are injected as Cas9/gRNA-ribonucleoprotein complexes at early developmental stages (1-cell stage). Target regions are PCR amplified and sequenced using Sanger sequencing and deconvoluted using the Inference of CRISPR Edits (ICE) algorithm. *In silico* predictions are generated by the InDelphi software algorithm. Plots show correlations between *in vivo* observed and *in silico* predicted variant frequencies. x_g1, x_g2 refers to different guide RNAs against the same gene. (****p < 0.0001; ***p < 0.001; **p < 0.05; ns = not significant). **Fig. S4:** Pearson correlations between *in vivo* observations (generated by Sanger sequencing and sequence trace deconvolution) and respective *in silico* predictions of 10 gRNAs injected in *X. laevis* embryos. gRNAs are injected as Cas9/gRNA-ribonucleoprotein complexes at early developmental stages (1-cell stage). Target regions are PCR amplified and sequenced using Sanger sequencing and deconvoluted using the Inference of CRISPR Edits (ICE) algorithm. *In silico* predictions are generated by the InDelphi software algorithm. Plots show correlations between *in vivo* observed and *in silico* predicted variant frequencies. Gene name_S and gene name_L refers to the two homeologues of a particular gene present on the small and large chromosome, respectively. (****p < 0.0001; **p < 0.01; *p < 0.05; ns = not significant). Fig. S5: Pearson correlations between *in vivo* observations (generated by targeted amplicon sequencing) and respective *in silico* predictions of 15 gRNAs injected in zebrafish embryos. gRNAs are injected as Cas9/gRNA-ribonucleoprotein complexes at early developmental stages (1 cell stage). Target regions are PCR amplified and sequenced using MiSeq sequencing (Illumina) and raw data is processed using the BATCH-GE analysis software. *In silico* predictions are generated by the InDelphi software algorithm. Plots show correlations between *in vivo* observed and *in silico* predicted variant frequencies. x_g1 , x_g2 , x_g3 refers to different guide RNAs against the same gene. (****p < 0.0001; ***p < 0.001; ***p < 0.001). Fig. S6: Pictures from eyes of *tyrosinase* mutant embryos with their associated threshold mask used for quantification. #### Supplementary table legends **Supplementary table 1. (Sheet A)** *X. tropicalis* guide RNA (n=42) genomic target sites and oligos and genotyping primers for downstream targeted amplicon sequencing. **(Sheet B)** *X. laevis* guide RNA (n=12) genomic target sites, oligos and genotyping primers for downstream Sanger sequencing and sequence trace deconvolution. **(Sheets C)** Zebrafish guide RNA (n=15) genomic target sites and oligos and genotyping primers for downstream targeted amplicon sequencing. **Supplementary table 2. Statistical analyses.** In relation to Fig. 2C. Tests of normality (Shapiro-Wilk) show p>0.05 for all groups. Significant differences in homogeneity are observed (Levene p<0.05). Groups show statistical significant differences (One-way Welsh ANOVA to adjust for unequal variances, p<0.001). Games-Howell multiple comparisons are used as post-hoc tests between groups. In relation to Figure 4B. Mann Whitney test reveals statistically significant differences in percentage of repair by MMEJ when respectively comparing highest-in-class gRNAs (n=4,860) to a random selection of gRNAs (n=4,860) (p<0.001) and when comparing lowest-in-class gRNAs (n=4,860) to a random selection of gRNAs (n=4,860) (p<0.001). **Supplementary table 3.** This file contains an overview of the cutting efficiencies of the *tyr* CRISPR gRNAs as determined by PCR amplification and targeted amplicon sequencing.