SUPPLEMENTARY INFORMATION

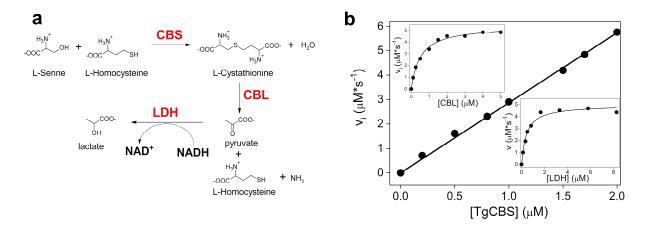
Cystathionine β -synthase is involved in cysteine biosynthesis and H_2S generation in Toxoplasma gondii

Carolina Conter^{1†}, Silvia Fruncillo^{1a†}, Carmen Fernández-Rodríguez², Luis Alfonso Martinez-Cruz², Paola Dominici¹ and Alessandra Astegno^{1*}

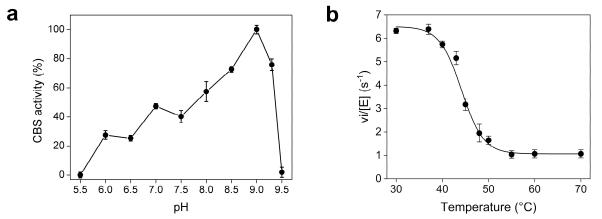
Table S1. Steady-state kinetic parameters of TgCBS for canonical reactions in the presence of SAMa.

	- SAM	+ SAM 0.5 mM
L-Ser + L-Hcys→L-Cth + H ₂ O		
$k_{cat}(s^{-1})$	6.3 ± 0.4	5.9 ± 0.2
$K_{\rm m}^{\rm L-Ser}({\rm mM})$	0.42 ± 0.04	0.47 ± 0.03
$K_m^{L-Hcys}(mM)$	0.23 ± 0.03	0.28 ± 0.04
K_i^{L-Hcys} (mM)	1.0 ± 0.1	1.1 ± 0.2
L-OAS + L-Hcys→L-Cth + H ₂ O		
$k_{cat}(s^{-1})$	5.5 ± 0.1	5.7 ± 0.3
$K_{\rm m}^{\rm L-OAS}$ (mM)	1.3 ± 0.2	1.6 ± 0.2
$K_{\rm m}^{\rm L-Hcys}$ (mM)	0.20 ± 0.05	0.24 ± 0.04
K _i ^{L-Hcys} (mM)	1.4 ± 0.2	1.7 ± 0.3

 $[^]a$ Reactions were carried out in MBP buffer pH 9 containing 0.2 mM NADH, 2 μM LDH, 1.5 μM CBL, and 0.1-10 mM L-Ser (or 1-100 mM L-OAS), 0.1-10 mM L-Hcys and 0.2-2 μM TgCBS at 37°C. Data were fit to Eq. (1). Data are mean \pm s.e.m.


¹Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.

²Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain


^a Present address: Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.

[†]These authors contributed equally to the work.

^{*}Corresponding author: Alessandra Astegno, e-mail: alessandra.astegno@univr.it

Figure S1. Coupled-coupled CBS assay. (a) Scheme of CBL/LDH coupled-coupled assay for CBS. CBS catalyzes condensation of L-Ser with L-Hcys to form L-Cth which is then converted to pyruvate, L-Hcys, and ammonia by CBL. Next, the conversion of pyruvate to lactate by LDH is accompanied by NADH oxidation, which is followed spectrophotometrically at 340 nm. **(b)** Dependence of the rate of NADH oxidation in the CBL/LDH assay as a function of TgCBS, CBL, and LDH concentration. Reactions were carried out in MBP pH 9 containing 0.2 mM NADH, 20 μM PLP, 1 mM L-Ser, 0.8 mM L-Hcys, and: *main panel*, 0.2-2 μM TgCBS, 1.5 μM CBL and 2 μM LDH; *upper inset*, 1.5 μM TgCBS, 0.1-5 μM CBL and 0.1-8.2 μM LDH.

Figure S2. Effect of pH and temperature on CBS canonical activity of TgCBS. (a) pH-dependent activity profile for TgCBS performed at constant substrate concentrations (10 mM L-Ser and 0.8 mM L-Hcys) in the pH range of 5.5-9.5 at 37 °C. (b) Effect of thermal pre-treatment of TgCBS (10 min at temperatures between 30°C and 70°C) on its steady-state initial velocity at saturating concentration of L-Ser and L-Hcys in the canonical reaction. Each data set is relative to four replicas and error bars represent s.e.m.