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I. LINEAR STABILITY ANALYSIS

Here, we discuss some details of the linear stability
analysis which we use in the main text to predict the tran-
sition between a non-motile phase (immobile droplet) and
a motile one (moving droplet), both in absence (in bulk)
and in the presence of substrate friction, as we will now
see in detail:

1. Uniform base state (φ = 1)

We first identify the uniform solution (m∗,v∗) =
(m0,0) of Eq. (3) in the main text which represents a
nonmoving actomyosin field with density m0. Using the
Ansatz m = m∗ + m′,v = v∗ + v′ and linearizing the
Eqs. (3) in the main text for φ = 1 around the uniform
solution to understand the dynamics of small flucations,
yields, after Fourier transforming the result:

ṁ′ = m0αmi(q · v′)− q2m′ (1)

v′ =
−iqχ

(1 +m0)2[Γ + (2 + η)q2]
(2)

Combining these equations for the dynamics of the
fluctuations m′,v′ and using the Ansatz ṁ′(q, t) =
exp[λ(q)t]m′(q, 0) yields the following dispersion relation
for fluctuations around the uniform phase

λ(q) = q2

(
αmχm0

(1 +m0)2[Γ + (2 + η)q2]
− 1

)
(3)

Linear instability of the uniform solution occurs when
(the real part of) λ(q) is positive for at least some
wavevector q, which leads to the instability criterion

αmχm0

Γ(1 +m0)2
> 1 (4)

This criterion depends only on χαm,m0 and Γ. If
contraction is strong enough and enough myosin is
present, with a large enough binding affinity (large
m0, χ, αm), the positive feedback loop between myosin-
induced ’fluid’ advection and advection-induced myosin
aggregation dominates substrate friction and the uniform
phase loses stability in favour of actomyosin-aggregates.
For m0 = 1, αm = 1, as used in most of our simula-
tions, Eq. (4) reduces to χ > 4Γ (see Fig. 2 A, main
text) suggesting the onset of cell motion at χ > 4 for
Γ = 1. In absence of substrate friction (Γ = 0), the
myosin feedback loop has no competitor and any posi-
tive χ destabilizes the uniform phase. Note that in all

cases, very large m0 values suppress the instability; this
represents the scenario where most actin fibres are satu-
rated with myosin so that substantial deviations from a
uniform myosin gradient are impossible.
The fastest growing mode (maximum of λ(q)), which de-
termines the early-time length scale of structures (clus-
ters) growing out of the uniform phase, results from (3)
as

qmax =


√

Γ χm0αm

(1+m0)2
− Γ

2 + η

1/2

(5)

The corresponding length scale lmax = 2π/qmax of
contraction-induced structures increases with η,Γ and
decreases with χ; that is, we expect large early-time
structures close to the onset of instability and smaller
ones further away from onset.

2. Presence of a cell (φ 6= 1)

In the presence of droplet boundaries (cell membrane),
φ builds up a nonuniform steady state profile given by the
corresponding solution of Eq. (3) in the main text. Here,
we calculate the growth rate of fluctuation around such a
nonuniform state in one dimension and use the following
approximate representation for the steady state solutions

m∗(x) = φ∗(x) =
1

2

(
1− tanh

[√
Γ

8Dφ
(|x| −R)

])
(6)

where R is the radius of the cell, and v∗ = 0. Now
we write (m,φ, v) = (m∗, φ∗, v∗) + (m′, φ′, v′) and lin-
earize the time-dependent equations of motion (Eqs. (3),
main text) in the fluctuations (m′, φ′, v′) around the
nonuniform base-state (m∗, φ∗, v∗). Representing the
resulting equations on a grid −L,−L + dx, ..., L, alge-
braically eliminating v′ and using the Ansatz m′i(t) =
exp(λit)m

′
i(0), φ′i(t) = exp(λit)φ

′
i(0) yields a N =

2L/dx+ 1-dimensional matrix-vector equation which we
solve for the eigenvalues λ1, ..λN by numerical diagonal-
ization. We visualize the result of this procedure in Fig. 2
C,D (main text) for χ = 4.5 (i.e. close to the onset of
instability in the corresponding uniform system). Here,
panel C shows that a few of the eigenvalues have a pos-
itive real part, i.e. the contraction-induced linear insta-
bility survives the presence of droplet boundaries and
leads to a narrow band of unstable modes close to χ = 4.
Panel D visualizes the mode with the largest growth rate
in configuration space (red) alongside the base phase field
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(blue). Here, deep inside the cell, the wavelength of the
shown mode resembles the one of the fastest growing
mode of the underlying uniform system (5). However,
the figure also shows that instability exists only in the
interior of the cell where the actomyosin concentration is
highest but is suppressed at the cell-boundaries. (Note
that when the cell starts to deform (or move), the maxi-
mum of the actomyosin concentration may leave the cell
center and the instability might be most effective close
to the cell boundaries.)
This finding of suppression of instability close to the cell-
boundaries suggests that instability is entirely suppressed
if the cell is too small, i.e. the present linear stability
analysis suggests that small cells cannot move based on
myosin-contraction. We therefore ask: What is the criti-
cal cell size to obtain instability and contraction-induced
droplet-motility? We first note that instability can only
occur if the shortest unstable mode (of the instability
band of the underlying uniform system) is smaller than
the droplet size. Thus, we predict the critical cell-size as
l = 2π/qc where qc is the short wavelength edge of the
instability band of the underlying uniform system (i.e.
the point where λ(q) crosses the λ = 0 axis in Fig. 2
A,B, main text). We can readily calculate qc from the
dispersion relation (3) and obtain the critical cell radius
Rcr from the condition that at least one wavelength of
the shortest possible unstable mode fits into the cell, i.e.
from 2Rcr = 2π/qc[1], as

Rcr = π

√
2 + η

χm0αm

(1+m0)2
− Γ

(7)

We visualize this critical cell size in an instability diagram
(or nonequilibrium phase diagram) in Fig. 2E (main text)

and find very good agreement with direct x numerical
simulations of the equations of motion. Our simulations
also confirm that Rcr decreases with χ, although we do
not have sufficient data to infer a precise exponent for
the decay.

II. SUPPLEMENTARY FIGURE

FIG. S1: Evolution of the dimensionless velocity of the cell
with respect to friction coefficient Γ. The parameters used in
simulations are Dφ = 25, χ = 150, αm = 1 and Vtar = 12.5.

[1] We note that a complete numerical linear stability in pres-
ence of the phase field suggests that in many cases also half
a wavelength can build up in the cell, suggesting an some-

what ’earlier’ onset of cell-motility than predicted below
in terms of Rcr.


