#### SI Appendix

SI Appendix includes six supplementary figures, six supplementary figure legends, three tables and supplementary references.

### **Supplementary Figure 1**

Growth curves, dissociation and recruitment kinetics in WT, Shp1 knock out and Shp1-AID strains. A-C) Densitometric analysis of Western blot band intensities of immunoprecipitations in Fig 1A. For quantifications in A-C the signal intensities for each Shp1 variant at time point 0 were set to 1. A) Skp1 signals were normalized to <sup>12xMyc</sup>Met30 to quantify Met30 dissociation from the core ligase. B) Shp1<sup>3xHA</sup> signals were normalized to <sup>12xMyc</sup>Met30 to determine recruitment of Shp1 to SCF<sup>Met30</sup>. Cdc48<sup>RGS6H</sup> signals were normalized to <sup>12xMyc</sup>Met30 to resolve recruitment into SCF<sup>Met30</sup>, t-test: p\*< 0.1, p\*\*<0.05, p\*\*\*< 0.01. D) Densitometry of Cdc48 RGS6H /<sup>12xMyc</sup>Met30 ratios, WT at time point 0 was set to 1. E) shp1 $\Delta$  mutants show a significant growth defect at 30°C. WT, and Shp1 K.O. strains were grown at 30°C in YEPD medium and samples were taken at indicated time points. Optical density was measured at 600nm. F) Shp1-AID gets sufficiently down-regulated upon auxin exposure. Strains expressing endogenous <sup>12xMyc</sup>Met30, Shp1<sup>3xHA-AID</sup> and the F-Box protein <sup>2xFLAG</sup>OsTir under the constitutive ADH promoter were cultured at 30°C in YEPD. Samples were taken at indicated time-points after the addition of 500µM auxin (IAA). Protein levels were analyzed by Western blotting. The amido black stain of the membrane is shown as a loading control. G) Depicted strains do not show a significant growth defect at 30°C in the absence or presence of auxin. Strains were grown at 30°C in YEPD medium or YEPD containing 500 µM IAA and samples were taken at indicated time points. Optical density was measured at 600nm. H) Densitometric analysis of Western blot band intensities of immunoprecipitations in Fig 1D. Skp1 signals were normalized to <sup>12xMyc</sup>Met30 to determine Met30 dissociation from the core ligase during cadmium stress.

#### Supplementary Figure 2

A) Amino acid sequence of Shp1 - Specific domains/motifs are labeled and colorcoded. B) Schematic of the most important Shp1 variants used throughout this study. C) Spotting assay - Serial dilutions of depicted strains were made and spotted onto YEPD plates. Plates were incubated for two days at 30°C. D) Shp1 WT,  $\Delta$ CIM1 &2 and K.O. strains were grown at 30°C in YEPD medium and samples were taken at indicated time points. Optical density was measured at 600nm. E) Cdc48 binding is significantly decreased in  $\Delta$ CIM1 and  $\Delta$ CIM2. SHP1<sup>3xHA</sup> variants were immunoprecipitated and co-purifications of Cdc48<sup>RGS6H</sup> were analyzed by Western blotting. F) Met30 protein stability is unaffected in *shp1* $\Delta$  deletion mutants. Depicted strains were grown at 30°C in YEPD medium, cycloheximide (100 µg/ml) was added, and samples were collected at indicated time points. Protein stability was analyzed by immunoblotting followed by densitometric analysis. Asterisk next to Met30 levels of K.O. (*shp1* $\Delta$ ) indicates longer exposure of the Western blot panel to show similar starting amounts of Met30 in CHX time course. G) *MET30* RNA levels are decreased in *shp1* $\Delta$  cells. Depicted cultured were grown at 30°C in YEPD medium. RNA was extracted and expression of *MET30* was analyzed by RT-qPCR and normalized to 18S rRNA levels.

#### Supplementary Figure 3

A) Quantification of spot assays shown in Figure 3A. The intensities of yeast spots were determined using ImageJ. The intensity of the lowest dilution of WT was set to 1. The intensities of *shp1 variant* spots were normalized to WT (n=3), data are represented as mean  $\pm$ SD. B&C) The expression of Met4-dependent genes in response to methionine starvation. Depicted yeast strains were grown at 30°C in YEDP medium to OD<sub>600</sub> of 0.6. For Methionine starvation, cultures were washed with water and shifted to minimal medium without methionine for 30 minutes and then harvested. For heavy metal stress induction, cultures were treated with 100µM CdCl<sub>2</sub> and samples were harvested after 40 min exposure. RNA was extracted and expression of Met4 target genes *MET25* and *GSH1* was analyzed by RT-qPCR and normalized to 18S rRNA levels (n=2). Set I shown in A, set II shown in B.

#### Supplementary Figure 4

A-D) Quantification data of  $\Delta UBX_{Ct}$  was integrated in the graphs shown in Suppl. Fig 1 A-D. For quantifications in A-C the signal intensity of each Shp1 variant at time point 0 was set to 1. A) co-immunoprecipitated Skp1 signals were normalized to immunoprecipitated <sup>12xMyc</sup>Met30 to quantify Met30 dissociation from the core ligase. B) Shp1<sup>3xHA</sup> signals were normalized to <sup>12xMyc</sup>Met30. Then the ratio of coimmunoprecipitated Shp1<sup>+Cd</sup>/Shp<sup>w/o Cd</sup> was determined to analyze recruitment of Shp1 to SCF<sup>Met30</sup>. Cdc48<sup>RGS6H</sup> signals were normalized to <sup>12xMyc</sup>Met30 and the ratio of co-immunoprecipitated Cdc48<sup>+Cd</sup>/Cdc48<sup>w/o Cd</sup> was analyzed to resolve recruitment of Cdc48 to SCF<sup>Met30</sup>, t-test: p\*< 0.1, p\*\*<0.05, p\*\*\*< 0.01. D) Densitometry of coimmunoprecipitated Cdc48<sup>RGS6H</sup>/ immunoprecipitated <sup>12xMyc</sup>Met30 ratio. WT at time point 0 was set to 1. E) Shp1 $\Delta$ CIM2 is recruited to SCF<sup>Met30</sup> during cadmium stress. WT and *shp1* $\Delta$ *CIM2* mutants were cultured at 30°C in YEPD medium and treated with 100 µM CdCl<sub>2</sub> and samples were harvested after 20 min of exposure. <sup>12xMyc</sup>Met30 was immunoprecipitated and co-precipitated proteins were analyzed by Western blotting. F) Full panel of immunoprecipitations that was partially shown in Fig 4C. A strain expressing endogenous <sup>12xMyc</sup>Met30, Shp1<sup>3xHA-AID</sup> and the F-Box protein <sup>2xFLAG</sup>OsTir under the constitutive ADH promoter was cultured at 30°C in YEPD medium in the absence and presence of auxin for the indicated time to gradually down-regulate endogenous Shp1-AID levels. Cells were exposed to 100µM <sup>12xMyc</sup>Met30 samples were harvested after 20 min. CdCl<sub>2</sub> and was immunoprecipitated and co-purified Skp1 was analyzed by Western blotting. G) Densitometric analysis of Western blot band intensities of immunoprecipitations in Suppl. Fig 4F. Shp1<sup>3xHA</sup> signals were normalized to <sup>12xMyc</sup>Met30. Then the ratio of coimmunoprecipitated Shp1<sup>+Cd</sup>/Shp<sup>w/o Cd</sup> was determined to follow Shp1 recruitment. H) Densitometry of Shp1<sup>3xHA</sup>/<sup>12xMyc</sup>Met30 ratio. Quantifications of Western blots shown in Fig. 4B and 4C.

#### Supplementary Figure 5

A) Quantification of spot assays shown in Figure 5A. The Intensities of yeast spots were determined using ImageJ. The intensity of the lowest dilution of WT was set to 1. The intensities of shp1- $\Delta$ sep spots were normalized to WT (n=3), data are represented as mean  $\pm$ SD. B) Shp1- $\Delta$ sep mutants do not show a significant growth defect at 30°C. Wild-type and *shp1*- $\Delta$ SEP cells were grown at 30°C in YEPD medium and samples were taken at indicated time points to measure optic density at 600nm. C) The expression of Met4-dependent genes in response to methionine starvation is not altered in shp1- $\Delta$ sep mutants. Depicted yeast strains were grown at 30°C in YEDP medium to OD<sub>600</sub> of 0.6. For Methionine starvation, cultures were washed with water and shifted to minimal medium without methionine for 30 minutes and then harvested. RNA was extracted and expression of Met4 target genes MET25 and GSH1 was analyzed by RT-qPCR and normalized to 18S rRNA levels (n=3), data are represented as mean ±SD. D-F) Densitometric analysis of Western blot band intensities of immunoprecipitations in Fig 5A. For quantifications in D-F the signal intensities for each Shp1 variant at time point 0 were set to 1. D) Skp1 signals were normalized to <sup>12xMyc</sup>Met30 to quantify Met30 dissociation from the core ligase. E) Shp1<sup>3xHA</sup> signals were normalized to <sup>12xMyc</sup>Met30 to determine recruitment of Shp1 to SCF<sup>Met30</sup>. F) Cdc48<sup>RGS6H</sup> signals were normalized to <sup>12xMyc</sup>Met30 to resolve recruitment into SCF<sup>Met30</sup>, t-test: p\*< 0.1, p\*\*<0.05, p\*\*\*< 0.01. G) Cdc48 binding is marginally decreased in *shp1-* $\Delta$ *sep* mutants. SHP1<sup>3xHA</sup> WT and  $\Delta$ SEP were immunoprecipitated and co-precipitation of Cdc48<sup>RGS6H</sup> was analyzed by Western blotting.

### Supplementary Figure 6

A&B) Cdc48 co-factors Ufd1 and Npl4 are recruited to SCF<sup>Met30</sup> during heavy metal stress. Strains expressing endogenous <sup>12xMyc</sup>Met30, Skp1, and Ufd1<sup>3xHA</sup> or Npl4<sup>3xHA</sup> respectively were cultured at 30°C in YEPD medium, treated with 100 µM CdCl<sub>2</sub>, and <sup>12xMyc</sup>Met30 was samples were harvested at indicated time points. immunoprecipitated and co-precipitated proteins were analyzed by Western blotting. C) Cdc48 cofactors Npl4 and Ufd1 are involved in 'Skp1-free' Met30 degradation. Wild type, npl4-1, and ufd1-2 temperature sensitive strains expressing <sup>12myc</sup>Met30∆Fbox were cultured at permissive temperature (25°C) and then shifted to non-permissive temperature (37°C) for 1.5 h. Cycloheximide (100 µg/ml) was added and samples were collected at the time intervals indicated. Met30AFbox protein stability was analyzed by immunoblotting with anti-myc antibodies. Tubulin was used as a loading control.



1.00 0.00 WT shp1∆





Α

 MAEIP
 DETIQQFMALTNVSHNIAVQYLSEFGDLNEALNSYYASQTD
 DQKDRREEAHWNRQQEKAL
 UBA

 KQEAFSTNSSNKAINTEHVGGLCPKPGSSQGSNEYLKRKGSTSPEPTKGSSRSGSGNNSRFMSFSDMV
 RGQADDDEDQPRNTFAGGETSGLEVTDPSDPNSLLKDLLEKARRGGQMGAENGFRDDEDHEMGA

 NRFTGRGFRLGSTIDAADEVVEDNTSQSQRRPEKVTREI
 TFWKEGFQVADGPLYRYDDPANSFYLSEL
 SEP

 NQGRAPLKLLDVQFGQEVEVNVYKKLDESYKAPTRKLGGFSGQGQRL
 GSPIPGESSPAEVPKNETPA
 BS1/SHP motif → CIM1

 AQEQPMPDNEPKQGDTSIQIRYANGKREVLHCNSTDTVKFLYEHVTSNANTDPSRNFTLNYAFPIKP
 UBX
 FPI → CIM2

 KSNDETTLKDADLLNSVVVQRWA\*
 (423 aa; 47kD)
 Additional Cdc48 binding sites



C D

Ε











GSH1

**AUBXCt** 





Ε



|       | Met30 IP        | Totals          |  |
|-------|-----------------|-----------------|--|
|       | <b>WT ΔCIM2</b> | WT <b>ΔCIM2</b> |  |
|       | 0 20 0 20       | 0 20 0 20       |  |
| Met30 |                 |                 |  |
| Shp1  |                 |                 |  |
| Skp1  |                 |                 |  |

F



20 min Cd<sup>2+</sup>







G



С





 WT
 npl4-1
 ufd1-2

 0
 30
 60
 0
 30
 60
 min CHX

 Image: Comparison of the state of the state

### Table S1 - Yeast strains

| Strain | relevant genotype                                                   | Source                   |
|--------|---------------------------------------------------------------------|--------------------------|
| 15Daub | a bar1∆ ura3∆ns, ade1 his2 leu2-3112 trp1-1                         | Reed et al., 1985; (1)   |
| PY236  | pep4::URA3                                                          | Kaiser et al., 2000; (2) |
| PY1073 | 12mycMET30::ZEO pep4::URA3                                          | Yen et al.; 2012; (3)    |
| PY1630 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>pep4::URA                     | Yen et al.; 2012; (3)    |
| PY1729 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp1::HYG pep4::URA           | Yen et al.; 2012; (3)    |
| PY2230 | 2xFLAGOsTir::URA Shp13xHA_AID::TRP<br>YCpLEUprmet30_9xMYCMET30      | This Study               |
| PY2231 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp13xHA::TRP pep4::URA       | This Study               |
| PY2232 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp13xHA ∆UBA pep4::URA       | This Study               |
| PY2234 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp13xHA ∆CIM1::TRP pep4::URA | This Study               |
| PY2235 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp13xHA ∆CIM2::TRP pep4::URA | This Study               |
| PY2236 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp13xHA ∆UBX::TRP pep4::URA  | This Study               |
| PY2237 | CDC48RGS6xHis::KAN 12MycMET30::ZEO<br>Shp13xHA ∆SEP::TRP pep4::URA  | This Study               |

### Table S2 – Plasmids

| Plasmid              | relevant genotype                                         | Source                     |
|----------------------|-----------------------------------------------------------|----------------------------|
| pP491                | pFa6a3xHA::TRP                                            | Longtine et al., 1998 ;(4) |
| pP699                | YCpLEUpmet30_9xMYCMET30                                   | Flick et al., 2006; (5)    |
| p1716                | pADH_OsTir9xMYC::URA                                      | Ulrich et al,; 2013; (6)   |
| pP1216               | pADH_OsTir2xFLAG::URA                                     | This Study                 |
| p1736                | pKAN-pCUP1-9xMYC-AID                                      | Ulrich et al,; 2013; (6)   |
| pP1217               | pFa6a3xHA_AID::TRP                                        | This Study                 |
| pML107               | pSNR52sgRNA casette CAS9-<br>gWY001 casette LEU2          | Laughery et al.; 2015;(7)  |
| pML107gShp1∆<br>UBA  | pSNR52sgRNA shp1 -13 casette<br>CAS9-gWY001 casette LEU2  | This Study                 |
| pML107gShp1∆<br>CIM1 | pSNR52sgRNA shp1 907 casette<br>CAS9-gWY001 casette LEU2  | This Study                 |
| pML107gShp1∆<br>CIM2 | pSNR52sgRNA shp1 1184 casette<br>CAS9-gWY001 casette LEU2 | This Study                 |
| pML107gShp1∆<br>SEP  | pSNR52sgRNA shp1 785 casette<br>CAS9-gWY001 casette LEU3  | This Study                 |

| No   | Primer           | Sequence                    | used for               |
|------|------------------|-----------------------------|------------------------|
|      |                  |                             |                        |
|      | OsTir-2xFLAG     | TGACAAAGACTACAAAGACGATGA    |                        |
| 1    | BamHI F          | TGACAAATAAagatctcggccgccacc |                        |
|      | OsTir-2xFLAG     | TTTmatcancaccTAGGATTTTAACA  | pMK_2xFLAGOsTir        |
| 2    | BamHI R          | AAATTTGGTGCATCATCCC         |                        |
| ~    |                  |                             |                        |
|      | nFa6a3xHA··T     | TACGCTGCTCAGTGCCCTAAAGAT    |                        |
| 3    | RD F             |                             |                        |
|      |                  |                             | pFa6a3xHA_AID::TRP     |
|      | nFa6a3xHA··T     |                             | p                      |
| 4    | RP R             | TCCCAAGTCCTTAGATT           |                        |
| -    |                  |                             |                        |
|      | shn1 -13         | TTATTTAGGTAGTTTTAGAGCTAGA   |                        |
| 5    | aRNA F           |                             |                        |
| -    | graver           | TTTTAACTTGCTATTTCTAGCTCTA   | pML107aShp1∆UBA        |
|      | shn1 -13         |                             | pine for gonp ieos, t  |
| 6    | aRNA F           | GATCATTTATCTTC              |                        |
| -    | gittivit         | GAAAGATAAATGATCACTGGGCGG    |                        |
|      | shn1 907         | TTTTCAGGCCAGTTTAGAGCTAG     |                        |
| g    | aRNA F           |                             |                        |
| 3    | gitinA i         | TTTTACTTCCTATTTCTACCTCTA    | pML107aShp1∆CIM1       |
|      | shn1 907         |                             | p                      |
| 10   |                  | TGATCATTTATCTTTC            |                        |
| 10   | gitti Ait        | GAAAGATAAATGATCAGCTTATTGG   |                        |
|      | shn1 1184        | TTTGATAGGAAGTTTTAGAGCTAGA   |                        |
| 11   |                  |                             |                        |
|      | gi (in A i       |                             | pMI 107aShp1∆CIM2      |
|      | shn1 1184        |                             | phile for gonp idonite |
| 12   |                  | GATCATTTATCTTTC             |                        |
| 12   |                  |                             |                        |
|      | Cterm tagging    |                             |                        |
| 13   | 5'               |                             |                        |
| 10   | 0<br>DK1127 SHD1 |                             | SHP1-3xHA              |
|      | Cterm tagging    |                             |                        |
| 14   | 3'               |                             |                        |
| 17   | 5                |                             |                        |
|      | DK1008 SHD1      | ΔΑΤΤΔΑΓΤΓΑ ΤΤΑΤΤΤΑΓΩΤ       |                        |
| 15   |                  |                             |                        |
| 15   | NO 5             |                             | K O renair             |
|      | DK1000 SHD1      |                             | N.O. Topul             |
| 16   |                  |                             |                        |
| 10   | KU 3             |                             |                        |
|      |                  |                             |                        |
|      |                  |                             |                        |
| 17   | Shn1ALIDA E      |                             |                        |
| 17   |                  | CITCACCCCCTTCTCCTCCTCTCT    | LIBA renair            |
|      |                  |                             | UDA Tepali             |
|      |                  |                             |                        |
| 10   |                  |                             |                        |
| 1 10 |                  |                             | 1                      |

 Table S3 – Primers (Cloning and 90mer repair fragments for CRISPR)

|     |             | tataaaaaattagatgagtcttataaagctccgacg     |                 |
|-----|-------------|------------------------------------------|-----------------|
| 21  | Shn1ACIM1 F | agaaaaGCGGCCGCTggalclcclalcccg           |                 |
| 21  |             |                                          | CIM1 repair     |
|     |             |                                          | •               |
| 22  | Shn1ACIM1 R | ctttataagactcatctaattttttata             |                 |
| ~~~ |             | gaacactgacccatcgaggaatttcaccttgaatta     |                 |
|     |             | tocTGGtGctGGTaaaccaataagcaacgat          |                 |
| 23  | Shp1∆CIM2 F | gagacaacattgaaggacgctg                   |                 |
|     |             | cagcatccttcaatattatctcatcattacttattaattt | CIM2 repair     |
|     |             | ACCaqCaCCAqcataattcaaqqtqaaattcc         |                 |
| 24  | Shp1∆CIM2 R | tcgatgggtcagtgttc                        |                 |
|     |             | tgacccatcgaggaatttcaccttgaattatgcTttt    |                 |
|     |             | cctatcaaaCCAATAtAGCAACGATGA              |                 |
| 25  | Shp∆UBX F   | GACAACattgaaggacgctga                    |                 |
|     |             | tcagcgtccttcaatGTTGTCTCATCGTTG           | UBX repair      |
|     |             | CTaTATTGGtttgataggaaaAgcataattca         |                 |
| 26  | Shp∆UBX R   | aggtgaaattcctcgatgggtca                  |                 |
|     |             | GAAAGATAAATGATCAATTTGAGC                 |                 |
|     | shp1 785    | GAGTTAAATCAAGTTTTAGAGCTAG                |                 |
| 27  | gRNA F      | AAATAGCAAGTTAAAA                         |                 |
|     |             | TTTTAACTTGCTATTTCTAGCTCTA                | pML107gShp1∆SEP |
|     | shp1 785    | AAACTTGATTTAACTCGCTCAAATT                |                 |
| 28  | gRNA R      | GATCATTTATCTTTC                          |                 |
|     |             | TCACAATCACAACGTAGACCAGAA                 |                 |
|     |             | AAAGTCACAAGAGAAATTGCGGCC                 |                 |
|     |             | GCTCCGACGAGAAAACTGGGCGG                  |                 |
| 29  | Shp1∆SEP F  | TTTTTCAGGCCAGGGCCAAAGA                   |                 |
|     |             | TCTTTGGCCCTGGCCTGAAAAACC                 | SEP repair      |
|     |             | GCCCAGTTTTCTCGTCGGAGCGGC                 |                 |
|     |             | CGCAATTTCTCTTGTGACTTTTTCT                |                 |
| 30  | Shp1∆SEP R  | GGTCTACGTTGTGATTGTGA                     |                 |

#### Supplementary References

- 1. S. I. Reed, J. A. Hadwiger, A. T. Lorincz, Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. *Proc. Natl. Acad. Sci. U. S. A.* (1985) https://doi.org/10.1073/pnas.82.12.4055.
- 2. P. Kaiser, K. Flick, C. Wittenberg, S. I. Reed, Regulation of Transcription by Ubiquitination without Proteolysis. *Cell* **102**, 303–314 (2000).
- 3. J. L. L. Yen, *et al.*, Signal-Induced Disassembly of the SCF Ubiquitin Ligase Complex by Cdc48/p97. *Mol Cell* **48** (2012).
- M. S. Longtine, *et al.*, Additional modules for versatile and economical PCRbased gene deletion and modification in Saccharomyces cerevisiae. *Yeast* (1998) https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U.
- 5. K. Flick, S. Raasi, H. Zhang, J. L. Yen, P. Kaiser, A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. *Nat. Cell Biol.* (2006) https://doi.org/10.1038/ncb1402.
- 6. M. Morawska, H. D. Ulrich, An expanded tool kit for the auxin-inducible degr on system in budding yeast. **4**, 1–4.
- M. F. Laughery, *et al.*, New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. *Yeast* (2015) https://doi.org/10.1002/yea.3098.