Supplementary Information for:

Intrinsically disordered linkers control tethered kinases via effective concentration

Mateusz Dylaa,b and Magnus Kjaergaarda,b,c,d,1

^aDepartment of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark;

^bDanish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL (European Molecular Biology Laboratory) Partnership for Molecular Medicine, DK-8000 Aarhus, Denmark;

^cCenter for Proteins in Memory - PROMEMO, Danish National Research Foundation, DK-8000 Aarhus, Denmark;

dAarhus Institute of Advanced Studies, AIAS, Aarhus University, DK-8000 Aarhus, Denmark;

¹To whom correspondence may be addressed. Email: [magnus@mbg.au.dk.](mailto:magnus@mbg.au.dk)

Protein sequences

Color coding:

- 6xHis-tag
- Thrombin cleavage sequence, // marks the cleavage site
- MBD2 dimerization domain
- \bullet p66 α dimerization domain
- GCTAGC (AS) NheI restriction site
- $(GS)_n$ variable-length GS linker; n = 1, 10, 30 or 60
- GGTACC (GT) KpnI restriction site
- PKA substrate motif, serine residue that becomes phosphorylated is shown in **bold**

1. PKAc

MGSSHHHHHHSSGLVPR//GSHMGNAAAAKKGSEQESVKEFLAKAKEDFLKKWETPSQNTAQLDQFDRIKTLGT GSFGRVMLVKHKESGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVAGG EMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPE YLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRF GNLKNGVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVSINEKCGKEFTEF

2. MBD2-(GS)n-PKAc

MGSSHHHHHHSSGLVPR//GSHMVTDEDIRKQEERAQQVRKKLEEALMADAS(GS)_nGTGNAAAAKKGSEQESVKE FLAKAKEDFLKKWETPSQNTAQLDQFDRIKTLGTGSFGRVMLVKHKESGNHYAMKILDKQKVVKLKQIEHTLNEK RILQAVNFPFLVKLEFSFKDNSNLYMVMEYVAGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKP ENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQI YEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPG DTSNFDDYEEEEIRVSINEKCGKEFTEF

3. p66α -(GS)n-WT substrate

MGSSHHHHHHSSGLVPR//GSHMTSPEERERMIKQLKEELRLEEAKLVLLKKLRQSQIQKEATAQKAS(GS)_nGTPG SGSGSGSLRRA**S**LGGGGGY

4. p66α -(GS)n-R-2K substrate

MGSSHHHHHHSSGLVPR//GSHMTSPEERERMIKQLKEELRLEEAKLVLLKKLRQSQIQKEATAQKAS(GS)_nGTPG SGSGSGSLRKA**S**LGGGGGY

5. p66α -(GS)n-R-3K substrate

MGSSHHHHHHSSGLVPR//GSHMTSPEERERMIKQLKEELRLEEAKLVLLKKLRQSQIQKEATAQKAS(GS)_nGTPG SGSGSGSLKRA**S**LGGGGGY

Supplementary figures

Fig. S1: Protein variants used in this study. SDS-PAGE gel of purified proteins. The substrates with a 120 residue GS linker $(GS)_{60}$ could not be purified to sufficient purity.

Next four pages:

Fig. S2: Primary data from quench-flow experiments. The data are fitted to one-phase association model using GraphPad Prism 8.3, with best-fit parameter values and standard errors shown for each experiment.

PKA & SWT

PKA & S R-3K

0.1 mM ATP+ 0.5 µM PKA & S

PKA & S R-3K

Fig. S3: Linker dependence of single-turnover phosphorylation rates. Quench-flow kinetics of the phosphorylation reactions of (A) WT and (B) R-2K substrate. The total linker length is a combination of contributions from GS-repeats in the two constructs labeled PKA_x and $WT_y/R-2K_y$, where x and y denote linker length in each construct, listed in the figure. *k*tet is derived from a fit to one-phase association model (black and grey lines). Error bars indicate mean ± s.d., *n* = 2.

Fig. S4: ATP dependence of the tethered reaction. The ATP dependence of the tethered phosphorylation was tested at 1 mM ATP, whereas all other experiments were conducted at 100 µM. The amount of [γ-³²P]ATP was already at maximally permitted level, so the protein concentration was also increased 10-fold to preserve the same signal to noise. Error bars correspond to standard error of the fit to one-phase association model

Fig. S5: Quantifying the quality of PKA substrate variants. Primary data from a steady-state kinetic experiment performed at 1 nM PKAc and an indicated concentration of (A) the p66α-(QS)-WT substrate and (B) the p66α-(QS)- R-3K substrate. Error bars indicate mean ± s.d., *n* = 3.

Derivations of rate equations

Tethered system

We consider a catalytical model where product release limits steady-state reaction rates and where phosphorylation and product release are two irreversible steps.

Moreover, we use saturating ATP concentrations and assume k_{ATP} binding >> k_{cat} . Thus, we define the following states:

- \bullet 0 = open tethered system, bound ATP
- C = closed tethered system, bound ATP
- CP = closed, phosphorylated tethered system, bound ADP
- $OP = open$ tethered system

The tethered system is composed of two interacting partners, and closure of this system is governed by effective concentration, C_{eff}:

$$
O \xleftarrow[k_1 C_{eff} C \xrightarrow{k_2} CP \xrightarrow{k_3} OP
$$

The Law of Mass Action applied to the model leads to the following system of nonlinear reaction equations:

$$
\frac{d[O]}{dt} = -k_1 C_{eff}[O] + k_{-1}[C]
$$

$$
\frac{d[C]}{dt} = k_1 C_{eff}[O] - (k_{-1} + k_2)[C]
$$

$$
\frac{d[CP]}{dt} = k_2[C] - k_3[CP]
$$

$$
\frac{d[OP]}{dt} = k_3[CP]
$$

In single turnover experiments both closed and open phosphorylated products are measured, hence:

$$
P = CP + OP
$$

$$
\frac{d[P]}{dt} = \frac{d[CP]}{dt} + \frac{d[OP]}{dt} = k_2[C]
$$

From the conservation law, total concentration of the tethered system is constant:

$$
\frac{d[O]}{dt} + \frac{d[C]}{dt} + \frac{d[CP]}{dt} + \frac{d[OP]}{dt} = 0
$$

$$
[O] + [C] + [CP] + [OP] = [E]_{T}
$$

$$
[O] = [E]_T - [C] - [P]
$$

Rapid equilibrium assumption for the open/closed complex:

$$
\frac{d[O]}{dt} = 0
$$
\n
$$
k_1 C_{eff}[O] = k_{-1}[C]
$$
\n
$$
k_1 C_{eff}([E]_T - [C] - [P]) = k_{-1}[C]
$$
\n
$$
k_{-1}[C] + k_1 C_{eff}[C] = k_1 C_{eff}[E]_T - k_1 C_{eff}[P]
$$
\n
$$
[C] = \frac{k_1 C_{eff}[E]_T - k_1 C_{eff}[P]}{k_{-1} + k_1 C_{eff}} = \frac{C_{eff}[E]_T - C_{eff}[P]}{k_{-1} + C_{eff}}
$$

Given $K_{\rm d}=\frac{k}{\lambda}$ $\frac{k-1}{k_1}$:

$$
[C] = \frac{C_{eff}[E]_T - C_{eff}[P]}{K_d + C_{eff}}
$$

Substituting $[C]$ into the product formation equation:

$$
\frac{d[P]}{dt} = k_2[C] = k_2 \frac{C_{eff}[E]_T - C_{eff}[P]}{K_d + C_{eff}}
$$

Integrate product formation rate:

$$
\frac{d[P]}{dt} = -\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_T}{K_d + C_{eff}} \n\frac{1}{-\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_T}{K_d + C_{eff}} d[P] = dt \n\int_0^{[P]} \frac{1}{-\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_T}{K_d + C_{eff}} d[P] = \int_0^t dt \n-\frac{K_d + C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_T}{K_d + C_{eff}} + \frac{K_d + C_{eff}}{K_d + C_{eff}} ln \left| -\frac{k_2 C_{eff}}{K_d + C_{eff}} \cdot 0 + \frac{k_2 C_{eff} [E]_T}{K_d + C_{eff}} \right| \n= t - 0
$$

$$
\ln \left| \frac{k_2 C_{eff}([E]_T - [P])}{K_d + C_{eff}} \right| - \ln \left| \frac{k_2 C_{eff}[E]_T}{K_d + C_{eff}} \right| = -\frac{k_2 C_{eff}}{K_d + C_{eff}} t
$$

$$
\ln \left| \frac{[E]_T - [P]}{[E]_T} \right| = -\frac{k_2 C_{eff}}{K_d + C_{eff}} t
$$

$$
\frac{[E]_T - [P]}{[E]_T} = e^{-\frac{k_2 C_{eff}}{K_d + C_{eff}} t}
$$

Formation of phosphorylated product is described by the following equation:

$$
[P] = [E]_T \left(1 - e^{-\frac{k_2 C_{eff}}{K_d + C_{eff}t}} \right)
$$

Phosphorylation rates in the tethered system obtained from quench flow measurements (k_{tet}) are dependent on effective concentration:

$$
k_{tet} = \frac{k_2 C_{eff}}{K_d + C_{eff}}
$$

Untethered system

We consider a catalytical model where product release limits steady-state reaction rates and where phosphorylation and product release are two irreversible steps.

$$
S + E \underset{k_{-1}}{\longleftrightarrow} ES \overset{k_2}{\rightarrow} EP \overset{k_3}{\rightarrow} E + P
$$

The Law of Mass Action applied to the model leads to the following system of nonlinear reaction equations:

$$
\frac{d[S]}{dt} = -k_1[S][E] + k_{-1}[ES]
$$

\n
$$
\frac{d[E]}{dt} = -k_1[S][E] + k_{-1}[ES] + k_3[EP]
$$

\n
$$
\frac{d[ES]}{dt} = k_1[S][E] - (k_{-1} + k_2)[ES]
$$

\n
$$
\frac{d[EP]}{dt} = k_2[ES] - k_3[EP]
$$

\n
$$
\frac{d[P]}{dt} = k_3[EP]
$$

From the conservation law for the enzyme, total enzyme concentration is constant:

$$
\frac{d[E]}{dt} + \frac{d[ES]}{dt} + \frac{d[EP]}{dt} = 0
$$

[E] + [ES] + [EP] = [E]₀
[E] = [E]₀ - [ES] - [EP]

Rapid equilibrium assumption:

$$
\frac{d[S]}{dt} = 0
$$

\n
$$
k_1[S][E] = k_{-1}[ES]
$$

\n
$$
k_1[S]([E]_0 - [ES] - [EP]) = k_{-1}[ES]
$$

\n
$$
k_1[S][E]_0 - k_1[S][EP] = k_{-1}[ES] + k_1[S][ES]
$$

\n
$$
[ES] = \frac{k_1[S][E]_0 - k_1[S][EP]}{k_1[S] + k_{-1}}
$$

Quasi-steady-state approximation of the $[EP]$ complex:

$$
\frac{d[EP]}{dt} = 0
$$
\n
$$
k_2[ES] - k_3[EP] = 0
$$
\n
$$
\frac{k_3[EP]}{k_2} = [ES]
$$
\n
$$
\frac{k_3[EP]}{k_2} = \frac{k_1[S][E]_0 - k_1[S][EP]}{k_1[S] + k_{-1}}
$$
\n
$$
k_1k_3[S][EP] + k_{-1}k_3[EP] = k_1k_2[S][E]_0 - k_1k_2[S][EP]
$$
\n
$$
[EP] = [S]k_1(k_2 + k_3) + k_{-1}k_3 = k_1k_2[S][E]_0
$$
\n
$$
[EP] = \frac{k_1k_2[S][E]_0}{[S]k_1(k_2 + k_3) + k_{-1}k_3}
$$
\n
$$
[EP] = \frac{\frac{k_2[S][E]_0}{k_2 + k_3}}{[S] + \frac{k_{-1}k_3}{k_1(k_2 + k_3)}}
$$

Given $K_{\rm d}=\frac{k}{v}$ $\frac{k-1}{k_1}$:

$$
[EP] = \frac{\frac{k_2[S][E]_0}{k_2 + k_3}}{[S] + K_{\rm d} \frac{k_3}{k_2 + k_3}}
$$

Finally, substituting $[EP]$ into the product formation equation:

$$
\frac{d[P]}{dt} = k_3[EP] = \frac{\frac{k_2 k_3}{k_2 + k_3} [S][E]_0}{[S] + K_d \frac{k_3}{k_2 + k_3}}
$$

Hence:

$$
k_{cat} = \frac{k_2 k_3}{k_2 + k_3}
$$

$$
K_{\rm M} = K_{\rm d} \frac{k_3}{k_2 + k_3}
$$